File: snappy-test.cc

package info (click to toggle)
snappy 1.1.2-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 4,752 kB
  • ctags: 573
  • sloc: sh: 11,075; cpp: 3,177; makefile: 65
file content (606 lines) | stat: -rw-r--r-- 20,120 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// Copyright 2011 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Various stubs for the unit tests for the open-source version of Snappy.

#include "snappy-test.h"

#ifdef HAVE_WINDOWS_H
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif

#include <algorithm>

DEFINE_bool(run_microbenchmarks, true,
            "Run microbenchmarks before doing anything else.");

namespace snappy {

string ReadTestDataFile(const string& base, size_t size_limit) {
  string contents;
  const char* srcdir = getenv("srcdir");  // This is set by Automake.
  string prefix;
  if (srcdir) {
    prefix = string(srcdir) + "/";
  }
  file::GetContents(prefix + "testdata/" + base, &contents, file::Defaults()
      ).CheckSuccess();
  if (size_limit > 0) {
    contents = contents.substr(0, size_limit);
  }
  return contents;
}

string ReadTestDataFile(const string& base) {
  return ReadTestDataFile(base, 0);
}

string StringPrintf(const char* format, ...) {
  char buf[4096];
  va_list ap;
  va_start(ap, format);
  vsnprintf(buf, sizeof(buf), format, ap);
  va_end(ap);
  return buf;
}

bool benchmark_running = false;
int64 benchmark_real_time_us = 0;
int64 benchmark_cpu_time_us = 0;
string *benchmark_label = NULL;
int64 benchmark_bytes_processed = 0;

void ResetBenchmarkTiming() {
  benchmark_real_time_us = 0;
  benchmark_cpu_time_us = 0;
}

#ifdef WIN32
LARGE_INTEGER benchmark_start_real;
FILETIME benchmark_start_cpu;
#else  // WIN32
struct timeval benchmark_start_real;
struct rusage benchmark_start_cpu;
#endif  // WIN32

void StartBenchmarkTiming() {
#ifdef WIN32
  QueryPerformanceCounter(&benchmark_start_real);
  FILETIME dummy;
  CHECK(GetProcessTimes(
      GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_start_cpu));
#else
  gettimeofday(&benchmark_start_real, NULL);
  if (getrusage(RUSAGE_SELF, &benchmark_start_cpu) == -1) {
    perror("getrusage(RUSAGE_SELF)");
    exit(1);
  }
#endif
  benchmark_running = true;
}

void StopBenchmarkTiming() {
  if (!benchmark_running) {
    return;
  }

#ifdef WIN32
  LARGE_INTEGER benchmark_stop_real;
  LARGE_INTEGER benchmark_frequency;
  QueryPerformanceCounter(&benchmark_stop_real);
  QueryPerformanceFrequency(&benchmark_frequency);

  double elapsed_real = static_cast<double>(
      benchmark_stop_real.QuadPart - benchmark_start_real.QuadPart) /
      benchmark_frequency.QuadPart;
  benchmark_real_time_us += elapsed_real * 1e6 + 0.5;

  FILETIME benchmark_stop_cpu, dummy;
  CHECK(GetProcessTimes(
      GetCurrentProcess(), &dummy, &dummy, &dummy, &benchmark_stop_cpu));

  ULARGE_INTEGER start_ulargeint;
  start_ulargeint.LowPart = benchmark_start_cpu.dwLowDateTime;
  start_ulargeint.HighPart = benchmark_start_cpu.dwHighDateTime;

  ULARGE_INTEGER stop_ulargeint;
  stop_ulargeint.LowPart = benchmark_stop_cpu.dwLowDateTime;
  stop_ulargeint.HighPart = benchmark_stop_cpu.dwHighDateTime;

  benchmark_cpu_time_us +=
      (stop_ulargeint.QuadPart - start_ulargeint.QuadPart + 5) / 10;
#else  // WIN32
  struct timeval benchmark_stop_real;
  gettimeofday(&benchmark_stop_real, NULL);
  benchmark_real_time_us +=
      1000000 * (benchmark_stop_real.tv_sec - benchmark_start_real.tv_sec);
  benchmark_real_time_us +=
      (benchmark_stop_real.tv_usec - benchmark_start_real.tv_usec);

  struct rusage benchmark_stop_cpu;
  if (getrusage(RUSAGE_SELF, &benchmark_stop_cpu) == -1) {
    perror("getrusage(RUSAGE_SELF)");
    exit(1);
  }
  benchmark_cpu_time_us += 1000000 * (benchmark_stop_cpu.ru_utime.tv_sec -
                                      benchmark_start_cpu.ru_utime.tv_sec);
  benchmark_cpu_time_us += (benchmark_stop_cpu.ru_utime.tv_usec -
                            benchmark_start_cpu.ru_utime.tv_usec);
#endif  // WIN32

  benchmark_running = false;
}

void SetBenchmarkLabel(const string& str) {
  if (benchmark_label) {
    delete benchmark_label;
  }
  benchmark_label = new string(str);
}

void SetBenchmarkBytesProcessed(int64 bytes) {
  benchmark_bytes_processed = bytes;
}

struct BenchmarkRun {
  int64 real_time_us;
  int64 cpu_time_us;
};

struct BenchmarkCompareCPUTime {
  bool operator() (const BenchmarkRun& a, const BenchmarkRun& b) const {
    return a.cpu_time_us < b.cpu_time_us;
  }
};

void Benchmark::Run() {
  for (int test_case_num = start_; test_case_num <= stop_; ++test_case_num) {
    // Run a few iterations first to find out approximately how fast
    // the benchmark is.
    const int kCalibrateIterations = 100;
    ResetBenchmarkTiming();
    StartBenchmarkTiming();
    (*function_)(kCalibrateIterations, test_case_num);
    StopBenchmarkTiming();

    // Let each test case run for about 200ms, but at least as many
    // as we used to calibrate.
    // Run five times and pick the median.
    const int kNumRuns = 5;
    const int kMedianPos = kNumRuns / 2;
    int num_iterations = 0;
    if (benchmark_real_time_us > 0) {
      num_iterations = 200000 * kCalibrateIterations / benchmark_real_time_us;
    }
    num_iterations = max(num_iterations, kCalibrateIterations);
    BenchmarkRun benchmark_runs[kNumRuns];

    for (int run = 0; run < kNumRuns; ++run) {
      ResetBenchmarkTiming();
      StartBenchmarkTiming();
      (*function_)(num_iterations, test_case_num);
      StopBenchmarkTiming();

      benchmark_runs[run].real_time_us = benchmark_real_time_us;
      benchmark_runs[run].cpu_time_us = benchmark_cpu_time_us;
    }

    string heading = StringPrintf("%s/%d", name_.c_str(), test_case_num);
    string human_readable_speed;

    nth_element(benchmark_runs,
                benchmark_runs + kMedianPos,
                benchmark_runs + kNumRuns,
                BenchmarkCompareCPUTime());
    int64 real_time_us = benchmark_runs[kMedianPos].real_time_us;
    int64 cpu_time_us = benchmark_runs[kMedianPos].cpu_time_us;
    if (cpu_time_us <= 0) {
      human_readable_speed = "?";
    } else {
      int64 bytes_per_second =
          benchmark_bytes_processed * 1000000 / cpu_time_us;
      if (bytes_per_second < 1024) {
        human_readable_speed = StringPrintf("%dB/s", bytes_per_second);
      } else if (bytes_per_second < 1024 * 1024) {
        human_readable_speed = StringPrintf(
            "%.1fkB/s", bytes_per_second / 1024.0f);
      } else if (bytes_per_second < 1024 * 1024 * 1024) {
        human_readable_speed = StringPrintf(
            "%.1fMB/s", bytes_per_second / (1024.0f * 1024.0f));
      } else {
        human_readable_speed = StringPrintf(
            "%.1fGB/s", bytes_per_second / (1024.0f * 1024.0f * 1024.0f));
      }
    }

    fprintf(stderr,
#ifdef WIN32
            "%-18s %10I64d %10I64d %10d %s  %s\n",
#else
            "%-18s %10lld %10lld %10d %s  %s\n",
#endif
            heading.c_str(),
            static_cast<long long>(real_time_us * 1000 / num_iterations),
            static_cast<long long>(cpu_time_us * 1000 / num_iterations),
            num_iterations,
            human_readable_speed.c_str(),
            benchmark_label->c_str());
  }
}

#ifdef HAVE_LIBZ

ZLib::ZLib()
    : comp_init_(false),
      uncomp_init_(false) {
  Reinit();
}

ZLib::~ZLib() {
  if (comp_init_)   { deflateEnd(&comp_stream_); }
  if (uncomp_init_) { inflateEnd(&uncomp_stream_); }
}

void ZLib::Reinit() {
  compression_level_ = Z_DEFAULT_COMPRESSION;
  window_bits_ = MAX_WBITS;
  mem_level_ =  8;  // DEF_MEM_LEVEL
  if (comp_init_) {
    deflateEnd(&comp_stream_);
    comp_init_ = false;
  }
  if (uncomp_init_) {
    inflateEnd(&uncomp_stream_);
    uncomp_init_ = false;
  }
  first_chunk_ = true;
}

void ZLib::Reset() {
  first_chunk_ = true;
}

// --------- COMPRESS MODE

// Initialization method to be called if we hit an error while
// compressing. On hitting an error, call this method before returning
// the error.
void ZLib::CompressErrorInit() {
  deflateEnd(&comp_stream_);
  comp_init_ = false;
  Reset();
}

int ZLib::DeflateInit() {
  return deflateInit2(&comp_stream_,
                      compression_level_,
                      Z_DEFLATED,
                      window_bits_,
                      mem_level_,
                      Z_DEFAULT_STRATEGY);
}

int ZLib::CompressInit(Bytef *dest, uLongf *destLen,
                       const Bytef *source, uLong *sourceLen) {
  int err;

  comp_stream_.next_in = (Bytef*)source;
  comp_stream_.avail_in = (uInt)*sourceLen;
  if ((uLong)comp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;
  comp_stream_.next_out = dest;
  comp_stream_.avail_out = (uInt)*destLen;
  if ((uLong)comp_stream_.avail_out != *destLen) return Z_BUF_ERROR;

  if ( !first_chunk_ )   // only need to set up stream the first time through
    return Z_OK;

  if (comp_init_) {      // we've already initted it
    err = deflateReset(&comp_stream_);
    if (err != Z_OK) {
      LOG(WARNING) << "ERROR: Can't reset compress object; creating a new one";
      deflateEnd(&comp_stream_);
      comp_init_ = false;
    }
  }
  if (!comp_init_) {     // first use
    comp_stream_.zalloc = (alloc_func)0;
    comp_stream_.zfree = (free_func)0;
    comp_stream_.opaque = (voidpf)0;
    err = DeflateInit();
    if (err != Z_OK) return err;
    comp_init_ = true;
  }
  return Z_OK;
}

// In a perfect world we'd always have the full buffer to compress
// when the time came, and we could just call Compress().  Alas, we
// want to do chunked compression on our webserver.  In this
// application, we compress the header, send it off, then compress the
// results, send them off, then compress the footer.  Thus we need to
// use the chunked compression features of zlib.
int ZLib::CompressAtMostOrAll(Bytef *dest, uLongf *destLen,
                              const Bytef *source, uLong *sourceLen,
                              int flush_mode) {   // Z_FULL_FLUSH or Z_FINISH
  int err;

  if ( (err=CompressInit(dest, destLen, source, sourceLen)) != Z_OK )
    return err;

  // This is used to figure out how many bytes we wrote *this chunk*
  int compressed_size = comp_stream_.total_out;

  // Some setup happens only for the first chunk we compress in a run
  if ( first_chunk_ ) {
    first_chunk_ = false;
  }

  // flush_mode is Z_FINISH for all mode, Z_SYNC_FLUSH for incremental
  // compression.
  err = deflate(&comp_stream_, flush_mode);

  *sourceLen = comp_stream_.avail_in;

  if ((err == Z_STREAM_END || err == Z_OK)
      && comp_stream_.avail_in == 0
      && comp_stream_.avail_out != 0 ) {
    // we processed everything ok and the output buffer was large enough.
    ;
  } else if (err == Z_STREAM_END && comp_stream_.avail_in > 0) {
    return Z_BUF_ERROR;                            // should never happen
  } else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
    // an error happened
    CompressErrorInit();
    return err;
  } else if (comp_stream_.avail_out == 0) {     // not enough space
    err = Z_BUF_ERROR;
  }

  assert(err == Z_OK || err == Z_STREAM_END || err == Z_BUF_ERROR);
  if (err == Z_STREAM_END)
    err = Z_OK;

  // update the crc and other metadata
  compressed_size = comp_stream_.total_out - compressed_size;  // delta
  *destLen = compressed_size;

  return err;
}

int ZLib::CompressChunkOrAll(Bytef *dest, uLongf *destLen,
                             const Bytef *source, uLong sourceLen,
                             int flush_mode) {   // Z_FULL_FLUSH or Z_FINISH
  const int ret =
    CompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
  if (ret == Z_BUF_ERROR)
    CompressErrorInit();
  return ret;
}

// This routine only initializes the compression stream once.  Thereafter, it
// just does a deflateReset on the stream, which should be faster.
int ZLib::Compress(Bytef *dest, uLongf *destLen,
                   const Bytef *source, uLong sourceLen) {
  int err;
  if ( (err=CompressChunkOrAll(dest, destLen, source, sourceLen,
                               Z_FINISH)) != Z_OK )
    return err;
  Reset();         // reset for next call to Compress

  return Z_OK;
}


// --------- UNCOMPRESS MODE

int ZLib::InflateInit() {
  return inflateInit2(&uncomp_stream_, MAX_WBITS);
}

// Initialization method to be called if we hit an error while
// uncompressing. On hitting an error, call this method before
// returning the error.
void ZLib::UncompressErrorInit() {
  inflateEnd(&uncomp_stream_);
  uncomp_init_ = false;
  Reset();
}

int ZLib::UncompressInit(Bytef *dest, uLongf *destLen,
                         const Bytef *source, uLong *sourceLen) {
  int err;

  uncomp_stream_.next_in = (Bytef*)source;
  uncomp_stream_.avail_in = (uInt)*sourceLen;
  // Check for source > 64K on 16-bit machine:
  if ((uLong)uncomp_stream_.avail_in != *sourceLen) return Z_BUF_ERROR;

  uncomp_stream_.next_out = dest;
  uncomp_stream_.avail_out = (uInt)*destLen;
  if ((uLong)uncomp_stream_.avail_out != *destLen) return Z_BUF_ERROR;

  if ( !first_chunk_ )   // only need to set up stream the first time through
    return Z_OK;

  if (uncomp_init_) {    // we've already initted it
    err = inflateReset(&uncomp_stream_);
    if (err != Z_OK) {
      LOG(WARNING)
        << "ERROR: Can't reset uncompress object; creating a new one";
      UncompressErrorInit();
    }
  }
  if (!uncomp_init_) {
    uncomp_stream_.zalloc = (alloc_func)0;
    uncomp_stream_.zfree = (free_func)0;
    uncomp_stream_.opaque = (voidpf)0;
    err = InflateInit();
    if (err != Z_OK) return err;
    uncomp_init_ = true;
  }
  return Z_OK;
}

// If you compressed your data a chunk at a time, with CompressChunk,
// you can uncompress it a chunk at a time with UncompressChunk.
// Only difference bewteen chunked and unchunked uncompression
// is the flush mode we use: Z_SYNC_FLUSH (chunked) or Z_FINISH (unchunked).
int ZLib::UncompressAtMostOrAll(Bytef *dest, uLongf *destLen,
                                const Bytef *source, uLong *sourceLen,
                                int flush_mode) {  // Z_SYNC_FLUSH or Z_FINISH
  int err = Z_OK;

  if ( (err=UncompressInit(dest, destLen, source, sourceLen)) != Z_OK ) {
    LOG(WARNING) << "UncompressInit: Error: " << err << " SourceLen: "
                 << *sourceLen;
    return err;
  }

  // This is used to figure out how many output bytes we wrote *this chunk*:
  const uLong old_total_out = uncomp_stream_.total_out;

  // This is used to figure out how many input bytes we read *this chunk*:
  const uLong old_total_in = uncomp_stream_.total_in;

  // Some setup happens only for the first chunk we compress in a run
  if ( first_chunk_ ) {
    first_chunk_ = false;                          // so we don't do this again

    // For the first chunk *only* (to avoid infinite troubles), we let
    // there be no actual data to uncompress.  This sometimes triggers
    // when the input is only the gzip header, say.
    if ( *sourceLen == 0 ) {
      *destLen = 0;
      return Z_OK;
    }
  }

  // We'll uncompress as much as we can.  If we end OK great, otherwise
  // if we get an error that seems to be the gzip footer, we store the
  // gzip footer and return OK, otherwise we return the error.

  // flush_mode is Z_SYNC_FLUSH for chunked mode, Z_FINISH for all mode.
  err = inflate(&uncomp_stream_, flush_mode);

  // Figure out how many bytes of the input zlib slurped up:
  const uLong bytes_read = uncomp_stream_.total_in - old_total_in;
  CHECK_LE(source + bytes_read, source + *sourceLen);
  *sourceLen = uncomp_stream_.avail_in;

  if ((err == Z_STREAM_END || err == Z_OK)  // everything went ok
             && uncomp_stream_.avail_in == 0) {    // and we read it all
    ;
  } else if (err == Z_STREAM_END && uncomp_stream_.avail_in > 0) {
    LOG(WARNING)
      << "UncompressChunkOrAll: Received some extra data, bytes total: "
      << uncomp_stream_.avail_in << " bytes: "
      << string(reinterpret_cast<const char *>(uncomp_stream_.next_in),
                min(int(uncomp_stream_.avail_in), 20));
    UncompressErrorInit();
    return Z_DATA_ERROR;       // what's the extra data for?
  } else if (err != Z_OK && err != Z_STREAM_END && err != Z_BUF_ERROR) {
    // an error happened
    LOG(WARNING) << "UncompressChunkOrAll: Error: " << err
                 << " avail_out: " << uncomp_stream_.avail_out;
    UncompressErrorInit();
    return err;
  } else if (uncomp_stream_.avail_out == 0) {
    err = Z_BUF_ERROR;
  }

  assert(err == Z_OK || err == Z_BUF_ERROR || err == Z_STREAM_END);
  if (err == Z_STREAM_END)
    err = Z_OK;

  *destLen = uncomp_stream_.total_out - old_total_out;  // size for this call

  return err;
}

int ZLib::UncompressChunkOrAll(Bytef *dest, uLongf *destLen,
                               const Bytef *source, uLong sourceLen,
                               int flush_mode) {  // Z_SYNC_FLUSH or Z_FINISH
  const int ret =
    UncompressAtMostOrAll(dest, destLen, source, &sourceLen, flush_mode);
  if (ret == Z_BUF_ERROR)
    UncompressErrorInit();
  return ret;
}

int ZLib::UncompressAtMost(Bytef *dest, uLongf *destLen,
                          const Bytef *source, uLong *sourceLen) {
  return UncompressAtMostOrAll(dest, destLen, source, sourceLen, Z_SYNC_FLUSH);
}

// We make sure we've uncompressed everything, that is, the current
// uncompress stream is at a compressed-buffer-EOF boundary.  In gzip
// mode, we also check the gzip footer to make sure we pass the gzip
// consistency checks.  We RETURN true iff both types of checks pass.
bool ZLib::UncompressChunkDone() {
  assert(!first_chunk_ && uncomp_init_);
  // Make sure we're at the end-of-compressed-data point.  This means
  // if we call inflate with Z_FINISH we won't consume any input or
  // write any output
  Bytef dummyin, dummyout;
  uLongf dummylen = 0;
  if ( UncompressChunkOrAll(&dummyout, &dummylen, &dummyin, 0, Z_FINISH)
       != Z_OK ) {
    return false;
  }

  // Make sure that when we exit, we can start a new round of chunks later
  Reset();

  return true;
}

// Uncompresses the source buffer into the destination buffer.
// The destination buffer must be long enough to hold the entire
// decompressed contents.
//
// We only initialize the uncomp_stream once.  Thereafter, we use
// inflateReset, which should be faster.
//
// Returns Z_OK on success, otherwise, it returns a zlib error code.
int ZLib::Uncompress(Bytef *dest, uLongf *destLen,
                     const Bytef *source, uLong sourceLen) {
  int err;
  if ( (err=UncompressChunkOrAll(dest, destLen, source, sourceLen,
                                 Z_FINISH)) != Z_OK ) {
    Reset();                           // let us try to compress again
    return err;
  }
  if ( !UncompressChunkDone() )        // calls Reset()
    return Z_DATA_ERROR;
  return Z_OK;  // stream_end is ok
}

#endif  // HAVE_LIBZ

}  // namespace snappy