File: snappy_unittest.cc

package info (click to toggle)
snappy 1.1.4-1
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 4,880 kB
  • ctags: 645
  • sloc: sh: 11,427; cpp: 3,544; makefile: 71
file content (1531 lines) | stat: -rwxr-xr-x 51,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
// Copyright 2005 and onwards Google Inc.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <math.h>
#include <stdlib.h>


#include <algorithm>
#include <string>
#include <vector>

#include "snappy.h"
#include "snappy-internal.h"
#include "snappy-test.h"
#include "snappy-sinksource.h"

DEFINE_int32(start_len, -1,
             "Starting prefix size for testing (-1: just full file contents)");
DEFINE_int32(end_len, -1,
             "Starting prefix size for testing (-1: just full file contents)");
DEFINE_int32(bytes, 10485760,
             "How many bytes to compress/uncompress per file for timing");

DEFINE_bool(zlib, false,
            "Run zlib compression (http://www.zlib.net)");
DEFINE_bool(lzo, false,
            "Run LZO compression (http://www.oberhumer.com/opensource/lzo/)");
DEFINE_bool(quicklz, false,
            "Run quickLZ compression (http://www.quicklz.com/)");
DEFINE_bool(liblzf, false,
            "Run libLZF compression "
            "(http://www.goof.com/pcg/marc/liblzf.html)");
DEFINE_bool(fastlz, false,
            "Run FastLZ compression (http://www.fastlz.org/");
DEFINE_bool(snappy, true, "Run snappy compression");

DEFINE_bool(write_compressed, false,
            "Write compressed versions of each file to <file>.comp");
DEFINE_bool(write_uncompressed, false,
            "Write uncompressed versions of each file to <file>.uncomp");

DEFINE_bool(snappy_dump_decompression_table, false,
            "If true, we print the decompression table during tests.");

namespace snappy {


#ifdef HAVE_FUNC_MMAP

// To test against code that reads beyond its input, this class copies a
// string to a newly allocated group of pages, the last of which
// is made unreadable via mprotect. Note that we need to allocate the
// memory with mmap(), as POSIX allows mprotect() only on memory allocated
// with mmap(), and some malloc/posix_memalign implementations expect to
// be able to read previously allocated memory while doing heap allocations.
class DataEndingAtUnreadablePage {
 public:
  explicit DataEndingAtUnreadablePage(const string& s) {
    const size_t page_size = getpagesize();
    const size_t size = s.size();
    // Round up space for string to a multiple of page_size.
    size_t space_for_string = (size + page_size - 1) & ~(page_size - 1);
    alloc_size_ = space_for_string + page_size;
    mem_ = mmap(NULL, alloc_size_,
                PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    CHECK_NE(MAP_FAILED, mem_);
    protected_page_ = reinterpret_cast<char*>(mem_) + space_for_string;
    char* dst = protected_page_ - size;
    memcpy(dst, s.data(), size);
    data_ = dst;
    size_ = size;
    // Make guard page unreadable.
    CHECK_EQ(0, mprotect(protected_page_, page_size, PROT_NONE));
  }

  ~DataEndingAtUnreadablePage() {
    // Undo the mprotect.
    CHECK_EQ(0, mprotect(protected_page_, getpagesize(), PROT_READ|PROT_WRITE));
    CHECK_EQ(0, munmap(mem_, alloc_size_));
  }

  const char* data() const { return data_; }
  size_t size() const { return size_; }

 private:
  size_t alloc_size_;
  void* mem_;
  char* protected_page_;
  const char* data_;
  size_t size_;
};

#else  // HAVE_FUNC_MMAP

// Fallback for systems without mmap.
typedef string DataEndingAtUnreadablePage;

#endif

enum CompressorType {
  ZLIB, LZO, LIBLZF, QUICKLZ, FASTLZ, SNAPPY
};

const char* names[] = {
  "ZLIB", "LZO", "LIBLZF", "QUICKLZ", "FASTLZ", "SNAPPY"
};

static size_t MinimumRequiredOutputSpace(size_t input_size,
                                         CompressorType comp) {
  switch (comp) {
#ifdef ZLIB_VERSION
    case ZLIB:
      return ZLib::MinCompressbufSize(input_size);
#endif  // ZLIB_VERSION

#ifdef LZO_VERSION
    case LZO:
      return input_size + input_size/64 + 16 + 3;
#endif  // LZO_VERSION

#ifdef LZF_VERSION
    case LIBLZF:
      return input_size;
#endif  // LZF_VERSION

#ifdef QLZ_VERSION_MAJOR
    case QUICKLZ:
      return input_size + 36000;  // 36000 is used for scratch.
#endif  // QLZ_VERSION_MAJOR

#ifdef FASTLZ_VERSION
    case FASTLZ:
      return max(static_cast<int>(ceil(input_size * 1.05)), 66);
#endif  // FASTLZ_VERSION

    case SNAPPY:
      return snappy::MaxCompressedLength(input_size);

    default:
      LOG(FATAL) << "Unknown compression type number " << comp;
      return 0;
  }
}

// Returns true if we successfully compressed, false otherwise.
//
// If compressed_is_preallocated is set, do not resize the compressed buffer.
// This is typically what you want for a benchmark, in order to not spend
// time in the memory allocator. If you do set this flag, however,
// "compressed" must be preinitialized to at least MinCompressbufSize(comp)
// number of bytes, and may contain junk bytes at the end after return.
static bool Compress(const char* input, size_t input_size, CompressorType comp,
                     string* compressed, bool compressed_is_preallocated) {
  if (!compressed_is_preallocated) {
    compressed->resize(MinimumRequiredOutputSpace(input_size, comp));
  }

  switch (comp) {
#ifdef ZLIB_VERSION
    case ZLIB: {
      ZLib zlib;
      uLongf destlen = compressed->size();
      int ret = zlib.Compress(
          reinterpret_cast<Bytef*>(string_as_array(compressed)),
          &destlen,
          reinterpret_cast<const Bytef*>(input),
          input_size);
      CHECK_EQ(Z_OK, ret);
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      return true;
    }
#endif  // ZLIB_VERSION

#ifdef LZO_VERSION
    case LZO: {
      unsigned char* mem = new unsigned char[LZO1X_1_15_MEM_COMPRESS];
      lzo_uint destlen;
      int ret = lzo1x_1_15_compress(
          reinterpret_cast<const uint8*>(input),
          input_size,
          reinterpret_cast<uint8*>(string_as_array(compressed)),
          &destlen,
          mem);
      CHECK_EQ(LZO_E_OK, ret);
      delete[] mem;
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      break;
    }
#endif  // LZO_VERSION

#ifdef LZF_VERSION
    case LIBLZF: {
      int destlen = lzf_compress(input,
                                 input_size,
                                 string_as_array(compressed),
                                 input_size);
      if (destlen == 0) {
        // lzf *can* cause lots of blowup when compressing, so they
        // recommend to limit outsize to insize, and just not compress
        // if it's bigger.  Ideally, we'd just swap input and output.
        compressed->assign(input, input_size);
        destlen = input_size;
      }
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      break;
    }
#endif  // LZF_VERSION

#ifdef QLZ_VERSION_MAJOR
    case QUICKLZ: {
      qlz_state_compress *state_compress = new qlz_state_compress;
      int destlen = qlz_compress(input,
                                 string_as_array(compressed),
                                 input_size,
                                 state_compress);
      delete state_compress;
      CHECK_NE(0, destlen);
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      break;
    }
#endif  // QLZ_VERSION_MAJOR

#ifdef FASTLZ_VERSION
    case FASTLZ: {
      // Use level 1 compression since we mostly care about speed.
      int destlen = fastlz_compress_level(
          1,
          input,
          input_size,
          string_as_array(compressed));
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      CHECK_NE(destlen, 0);
      break;
    }
#endif  // FASTLZ_VERSION

    case SNAPPY: {
      size_t destlen;
      snappy::RawCompress(input, input_size,
                          string_as_array(compressed),
                          &destlen);
      CHECK_LE(destlen, snappy::MaxCompressedLength(input_size));
      if (!compressed_is_preallocated) {
        compressed->resize(destlen);
      }
      break;
    }

    default: {
      return false;     // the asked-for library wasn't compiled in
    }
  }
  return true;
}

static bool Uncompress(const string& compressed, CompressorType comp,
                       int size, string* output) {
  switch (comp) {
#ifdef ZLIB_VERSION
    case ZLIB: {
      output->resize(size);
      ZLib zlib;
      uLongf destlen = output->size();
      int ret = zlib.Uncompress(
          reinterpret_cast<Bytef*>(string_as_array(output)),
          &destlen,
          reinterpret_cast<const Bytef*>(compressed.data()),
          compressed.size());
      CHECK_EQ(Z_OK, ret);
      CHECK_EQ(static_cast<uLongf>(size), destlen);
      break;
    }
#endif  // ZLIB_VERSION

#ifdef LZO_VERSION
    case LZO: {
      output->resize(size);
      lzo_uint destlen;
      int ret = lzo1x_decompress(
          reinterpret_cast<const uint8*>(compressed.data()),
          compressed.size(),
          reinterpret_cast<uint8*>(string_as_array(output)),
          &destlen,
          NULL);
      CHECK_EQ(LZO_E_OK, ret);
      CHECK_EQ(static_cast<lzo_uint>(size), destlen);
      break;
    }
#endif  // LZO_VERSION

#ifdef LZF_VERSION
    case LIBLZF: {
      output->resize(size);
      int destlen = lzf_decompress(compressed.data(),
                                   compressed.size(),
                                   string_as_array(output),
                                   output->size());
      if (destlen == 0) {
        // This error probably means we had decided not to compress,
        // and thus have stored input in output directly.
        output->assign(compressed.data(), compressed.size());
        destlen = compressed.size();
      }
      CHECK_EQ(destlen, size);
      break;
    }
#endif  // LZF_VERSION

#ifdef QLZ_VERSION_MAJOR
    case QUICKLZ: {
      output->resize(size);
      qlz_state_decompress *state_decompress = new qlz_state_decompress;
      int destlen = qlz_decompress(compressed.data(),
                                   string_as_array(output),
                                   state_decompress);
      delete state_decompress;
      CHECK_EQ(destlen, size);
      break;
    }
#endif  // QLZ_VERSION_MAJOR

#ifdef FASTLZ_VERSION
    case FASTLZ: {
      output->resize(size);
      int destlen = fastlz_decompress(compressed.data(),
                                      compressed.length(),
                                      string_as_array(output),
                                      size);
      CHECK_EQ(destlen, size);
      break;
    }
#endif  // FASTLZ_VERSION

    case SNAPPY: {
      snappy::RawUncompress(compressed.data(), compressed.size(),
                            string_as_array(output));
      break;
    }

    default: {
      return false;     // the asked-for library wasn't compiled in
    }
  }
  return true;
}

static void Measure(const char* data,
                    size_t length,
                    CompressorType comp,
                    int repeats,
                    int block_size) {
  // Run tests a few time and pick median running times
  static const int kRuns = 5;
  double ctime[kRuns];
  double utime[kRuns];
  int compressed_size = 0;

  {
    // Chop the input into blocks
    int num_blocks = (length + block_size - 1) / block_size;
    std::vector<const char*> input(num_blocks);
    std::vector<size_t> input_length(num_blocks);
    std::vector<string> compressed(num_blocks);
    std::vector<string> output(num_blocks);
    for (int b = 0; b < num_blocks; b++) {
      int input_start = b * block_size;
      int input_limit = min<int>((b+1)*block_size, length);
      input[b] = data+input_start;
      input_length[b] = input_limit-input_start;

      // Pre-grow the output buffer so we don't measure string append time.
      compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
    }

    // First, try one trial compression to make sure the code is compiled in
    if (!Compress(input[0], input_length[0], comp, &compressed[0], true)) {
      LOG(WARNING) << "Skipping " << names[comp] << ": "
                   << "library not compiled in";
      return;
    }

    for (int run = 0; run < kRuns; run++) {
      CycleTimer ctimer, utimer;

      for (int b = 0; b < num_blocks; b++) {
        // Pre-grow the output buffer so we don't measure string append time.
        compressed[b].resize(MinimumRequiredOutputSpace(block_size, comp));
      }

      ctimer.Start();
      for (int b = 0; b < num_blocks; b++)
        for (int i = 0; i < repeats; i++)
          Compress(input[b], input_length[b], comp, &compressed[b], true);
      ctimer.Stop();

      // Compress once more, with resizing, so we don't leave junk
      // at the end that will confuse the decompressor.
      for (int b = 0; b < num_blocks; b++) {
        Compress(input[b], input_length[b], comp, &compressed[b], false);
      }

      for (int b = 0; b < num_blocks; b++) {
        output[b].resize(input_length[b]);
      }

      utimer.Start();
      for (int i = 0; i < repeats; i++)
        for (int b = 0; b < num_blocks; b++)
          Uncompress(compressed[b], comp, input_length[b], &output[b]);
      utimer.Stop();

      ctime[run] = ctimer.Get();
      utime[run] = utimer.Get();
    }

    compressed_size = 0;
    for (size_t i = 0; i < compressed.size(); i++) {
      compressed_size += compressed[i].size();
    }
  }

  sort(ctime, ctime + kRuns);
  sort(utime, utime + kRuns);
  const int med = kRuns/2;

  float comp_rate = (length / ctime[med]) * repeats / 1048576.0;
  float uncomp_rate = (length / utime[med]) * repeats / 1048576.0;
  string x = names[comp];
  x += ":";
  string urate = (uncomp_rate >= 0)
                 ? StringPrintf("%.1f", uncomp_rate)
                 : string("?");
  printf("%-7s [b %dM] bytes %6d -> %6d %4.1f%%  "
         "comp %5.1f MB/s  uncomp %5s MB/s\n",
         x.c_str(),
         block_size/(1<<20),
         static_cast<int>(length), static_cast<uint32>(compressed_size),
         (compressed_size * 100.0) / max<int>(1, length),
         comp_rate,
         urate.c_str());
}

static int VerifyString(const string& input) {
  string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(),
           snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  string uncompressed;
  DataEndingAtUnreadablePage c(compressed);
  CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
  CHECK_EQ(uncompressed, input);
  return uncompressed.size();
}

static void VerifyStringSink(const string& input) {
  string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(),
           snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  string uncompressed;
  uncompressed.resize(input.size());
  snappy::UncheckedByteArraySink sink(string_as_array(&uncompressed));
  DataEndingAtUnreadablePage c(compressed);
  snappy::ByteArraySource source(c.data(), c.size());
  CHECK(snappy::Uncompress(&source, &sink));
  CHECK_EQ(uncompressed, input);
}

static void VerifyIOVec(const string& input) {
  string compressed;
  DataEndingAtUnreadablePage i(input);
  const size_t written = snappy::Compress(i.data(), i.size(), &compressed);
  CHECK_EQ(written, compressed.size());
  CHECK_LE(compressed.size(),
           snappy::MaxCompressedLength(input.size()));
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));

  // Try uncompressing into an iovec containing a random number of entries
  // ranging from 1 to 10.
  char* buf = new char[input.size()];
  ACMRandom rnd(input.size());
  size_t num = rnd.Next() % 10 + 1;
  if (input.size() < num) {
    num = input.size();
  }
  struct iovec* iov = new iovec[num];
  int used_so_far = 0;
  for (size_t i = 0; i < num; ++i) {
    iov[i].iov_base = buf + used_so_far;
    if (i == num - 1) {
      iov[i].iov_len = input.size() - used_so_far;
    } else {
      // Randomly choose to insert a 0 byte entry.
      if (rnd.OneIn(5)) {
        iov[i].iov_len = 0;
      } else {
        iov[i].iov_len = rnd.Uniform(input.size());
      }
    }
    used_so_far += iov[i].iov_len;
  }
  CHECK(snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, num));
  CHECK(!memcmp(buf, input.data(), input.size()));
  delete[] iov;
  delete[] buf;
}

// Test that data compressed by a compressor that does not
// obey block sizes is uncompressed properly.
static void VerifyNonBlockedCompression(const string& input) {
  if (input.length() > snappy::kBlockSize) {
    // We cannot test larger blocks than the maximum block size, obviously.
    return;
  }

  string prefix;
  Varint::Append32(&prefix, input.size());

  // Setup compression table
  snappy::internal::WorkingMemory wmem;
  int table_size;
  uint16* table = wmem.GetHashTable(input.size(), &table_size);

  // Compress entire input in one shot
  string compressed;
  compressed += prefix;
  compressed.resize(prefix.size()+snappy::MaxCompressedLength(input.size()));
  char* dest = string_as_array(&compressed) + prefix.size();
  char* end = snappy::internal::CompressFragment(input.data(), input.size(),
                                                dest, table, table_size);
  compressed.resize(end - compressed.data());

  // Uncompress into string
  string uncomp_str;
  CHECK(snappy::Uncompress(compressed.data(), compressed.size(), &uncomp_str));
  CHECK_EQ(uncomp_str, input);

  // Uncompress using source/sink
  string uncomp_str2;
  uncomp_str2.resize(input.size());
  snappy::UncheckedByteArraySink sink(string_as_array(&uncomp_str2));
  snappy::ByteArraySource source(compressed.data(), compressed.size());
  CHECK(snappy::Uncompress(&source, &sink));
  CHECK_EQ(uncomp_str2, input);

  // Uncompress into iovec
  {
    static const int kNumBlocks = 10;
    struct iovec vec[kNumBlocks];
    const int block_size = 1 + input.size() / kNumBlocks;
    string iovec_data(block_size * kNumBlocks, 'x');
    for (int i = 0; i < kNumBlocks; i++) {
      vec[i].iov_base = string_as_array(&iovec_data) + i * block_size;
      vec[i].iov_len = block_size;
    }
    CHECK(snappy::RawUncompressToIOVec(compressed.data(), compressed.size(),
                                       vec, kNumBlocks));
    CHECK_EQ(string(iovec_data.data(), input.size()), input);
  }
}

// Expand the input so that it is at least K times as big as block size
static string Expand(const string& input) {
  static const int K = 3;
  string data = input;
  while (data.size() < K * snappy::kBlockSize) {
    data += input;
  }
  return data;
}

static int Verify(const string& input) {
  VLOG(1) << "Verifying input of size " << input.size();

  // Compress using string based routines
  const int result = VerifyString(input);

  // Verify using sink based routines
  VerifyStringSink(input);

  VerifyNonBlockedCompression(input);
  VerifyIOVec(input);
  if (!input.empty()) {
    const string expanded = Expand(input);
    VerifyNonBlockedCompression(expanded);
    VerifyIOVec(input);
  }

  return result;
}


static bool IsValidCompressedBuffer(const string& c) {
  return snappy::IsValidCompressedBuffer(c.data(), c.size());
}
static bool Uncompress(const string& c, string* u) {
  return snappy::Uncompress(c.data(), c.size(), u);
}

// This test checks to ensure that snappy doesn't coredump if it gets
// corrupted data.
TEST(CorruptedTest, VerifyCorrupted) {
  string source = "making sure we don't crash with corrupted input";
  VLOG(1) << source;
  string dest;
  string uncmp;
  snappy::Compress(source.data(), source.size(), &dest);

  // Mess around with the data. It's hard to simulate all possible
  // corruptions; this is just one example ...
  CHECK_GT(dest.size(), 3);
  dest[1]--;
  dest[3]++;
  // this really ought to fail.
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  // This is testing for a security bug - a buffer that decompresses to 100k
  // but we lie in the snappy header and only reserve 0 bytes of memory :)
  source.resize(100000);
  for (size_t i = 0; i < source.length(); ++i) {
    source[i] = 'A';
  }
  snappy::Compress(source.data(), source.size(), &dest);
  dest[0] = dest[1] = dest[2] = dest[3] = 0;
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  if (sizeof(void *) == 4) {
    // Another security check; check a crazy big length can't DoS us with an
    // over-allocation.
    // Currently this is done only for 32-bit builds.  On 64-bit builds,
    // where 3 GB might be an acceptable allocation size, Uncompress()
    // attempts to decompress, and sometimes causes the test to run out of
    // memory.
    dest[0] = dest[1] = dest[2] = dest[3] = '\xff';
    // This decodes to a really large size, i.e., about 3 GB.
    dest[4] = 'k';
    CHECK(!IsValidCompressedBuffer(dest));
    CHECK(!Uncompress(dest, &uncmp));
  } else {
    LOG(WARNING) << "Crazy decompression lengths not checked on 64-bit build";
  }

  // This decodes to about 2 MB; much smaller, but should still fail.
  dest[0] = dest[1] = dest[2] = '\xff';
  dest[3] = 0x00;
  CHECK(!IsValidCompressedBuffer(dest));
  CHECK(!Uncompress(dest, &uncmp));

  // try reading stuff in from a bad file.
  for (int i = 1; i <= 3; ++i) {
    string data = ReadTestDataFile(StringPrintf("baddata%d.snappy", i).c_str(),
                                   0);
    string uncmp;
    // check that we don't return a crazy length
    size_t ulen;
    CHECK(!snappy::GetUncompressedLength(data.data(), data.size(), &ulen)
          || (ulen < (1<<20)));
    uint32 ulen2;
    snappy::ByteArraySource source(data.data(), data.size());
    CHECK(!snappy::GetUncompressedLength(&source, &ulen2) ||
          (ulen2 < (1<<20)));
    CHECK(!IsValidCompressedBuffer(data));
    CHECK(!Uncompress(data, &uncmp));
  }
}

// Helper routines to construct arbitrary compressed strings.
// These mirror the compression code in snappy.cc, but are copied
// here so that we can bypass some limitations in the how snappy.cc
// invokes these routines.
static void AppendLiteral(string* dst, const string& literal) {
  if (literal.empty()) return;
  int n = literal.size() - 1;
  if (n < 60) {
    // Fit length in tag byte
    dst->push_back(0 | (n << 2));
  } else {
    // Encode in upcoming bytes
    char number[4];
    int count = 0;
    while (n > 0) {
      number[count++] = n & 0xff;
      n >>= 8;
    }
    dst->push_back(0 | ((59+count) << 2));
    *dst += string(number, count);
  }
  *dst += literal;
}

static void AppendCopy(string* dst, int offset, int length) {
  while (length > 0) {
    // Figure out how much to copy in one shot
    int to_copy;
    if (length >= 68) {
      to_copy = 64;
    } else if (length > 64) {
      to_copy = 60;
    } else {
      to_copy = length;
    }
    length -= to_copy;

    if ((to_copy >= 4) && (to_copy < 12) && (offset < 2048)) {
      assert(to_copy-4 < 8);            // Must fit in 3 bits
      dst->push_back(1 | ((to_copy-4) << 2) | ((offset >> 8) << 5));
      dst->push_back(offset & 0xff);
    } else if (offset < 65536) {
      dst->push_back(2 | ((to_copy-1) << 2));
      dst->push_back(offset & 0xff);
      dst->push_back(offset >> 8);
    } else {
      dst->push_back(3 | ((to_copy-1) << 2));
      dst->push_back(offset & 0xff);
      dst->push_back((offset >> 8) & 0xff);
      dst->push_back((offset >> 16) & 0xff);
      dst->push_back((offset >> 24) & 0xff);
    }
  }
}

TEST(Snappy, SimpleTests) {
  Verify("");
  Verify("a");
  Verify("ab");
  Verify("abc");

  Verify("aaaaaaa" + string(16, 'b') + string("aaaaa") + "abc");
  Verify("aaaaaaa" + string(256, 'b') + string("aaaaa") + "abc");
  Verify("aaaaaaa" + string(2047, 'b') + string("aaaaa") + "abc");
  Verify("aaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
  Verify("abcaaaaaaa" + string(65536, 'b') + string("aaaaa") + "abc");
}

// Verify max blowup (lots of four-byte copies)
TEST(Snappy, MaxBlowup) {
  string input;
  for (int i = 0; i < 20000; i++) {
    ACMRandom rnd(i);
    uint32 bytes = static_cast<uint32>(rnd.Next());
    input.append(reinterpret_cast<char*>(&bytes), sizeof(bytes));
  }
  for (int i = 19999; i >= 0; i--) {
    ACMRandom rnd(i);
    uint32 bytes = static_cast<uint32>(rnd.Next());
    input.append(reinterpret_cast<char*>(&bytes), sizeof(bytes));
  }
  Verify(input);
}

TEST(Snappy, RandomData) {
  ACMRandom rnd(FLAGS_test_random_seed);

  const int num_ops = 20000;
  for (int i = 0; i < num_ops; i++) {
    if ((i % 1000) == 0) {
      VLOG(0) << "Random op " << i << " of " << num_ops;
    }

    string x;
    size_t len = rnd.Uniform(4096);
    if (i < 100) {
      len = 65536 + rnd.Uniform(65536);
    }
    while (x.size() < len) {
      int run_len = 1;
      if (rnd.OneIn(10)) {
        run_len = rnd.Skewed(8);
      }
      char c = (i < 100) ? rnd.Uniform(256) : rnd.Skewed(3);
      while (run_len-- > 0 && x.size() < len) {
        x += c;
      }
    }

    Verify(x);
  }
}

TEST(Snappy, FourByteOffset) {
  // The new compressor cannot generate four-byte offsets since
  // it chops up the input into 32KB pieces.  So we hand-emit the
  // copy manually.

  // The two fragments that make up the input string.
  string fragment1 = "012345689abcdefghijklmnopqrstuvwxyz";
  string fragment2 = "some other string";

  // How many times each fragment is emitted.
  const int n1 = 2;
  const int n2 = 100000 / fragment2.size();
  const int length = n1 * fragment1.size() + n2 * fragment2.size();

  string compressed;
  Varint::Append32(&compressed, length);

  AppendLiteral(&compressed, fragment1);
  string src = fragment1;
  for (int i = 0; i < n2; i++) {
    AppendLiteral(&compressed, fragment2);
    src += fragment2;
  }
  AppendCopy(&compressed, src.size(), fragment1.size());
  src += fragment1;
  CHECK_EQ(length, src.size());

  string uncompressed;
  CHECK(snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(snappy::Uncompress(compressed.data(), compressed.size(),
                           &uncompressed));
  CHECK_EQ(uncompressed, src);
}

TEST(Snappy, IOVecEdgeCases) {
  // Test some tricky edge cases in the iovec output that are not necessarily
  // exercised by random tests.

  // Our output blocks look like this initially (the last iovec is bigger
  // than depicted):
  // [  ] [ ] [    ] [        ] [        ]
  static const int kLengths[] = { 2, 1, 4, 8, 128 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  string compressed;
  Varint::Append32(&compressed, 22);

  // A literal whose output crosses three blocks.
  // [ab] [c] [123 ] [        ] [        ]
  AppendLiteral(&compressed, "abc123");

  // A copy whose output crosses two blocks (source and destination
  // segments marked).
  // [ab] [c] [1231] [23      ] [        ]
  //           ^--^   --
  AppendCopy(&compressed, 3, 3);

  // A copy where the input is, at first, in the block before the output:
  //
  // [ab] [c] [1231] [231231  ] [        ]
  //           ^---     ^---
  // Then during the copy, the pointers move such that the input and
  // output pointers are in the same block:
  //
  // [ab] [c] [1231] [23123123] [        ]
  //                  ^-    ^-
  // And then they move again, so that the output pointer is no longer
  // in the same block as the input pointer:
  // [ab] [c] [1231] [23123123] [123     ]
  //                    ^--      ^--
  AppendCopy(&compressed, 6, 9);

  // Finally, a copy where the input is from several blocks back,
  // and it also crosses three blocks:
  //
  // [ab] [c] [1231] [23123123] [123b    ]
  //   ^                            ^
  // [ab] [c] [1231] [23123123] [123bc   ]
  //       ^                         ^
  // [ab] [c] [1231] [23123123] [123bc12 ]
  //           ^-                     ^-
  AppendCopy(&compressed, 17, 4);

  CHECK(snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));
  CHECK_EQ(0, memcmp(iov[0].iov_base, "ab", 2));
  CHECK_EQ(0, memcmp(iov[1].iov_base, "c", 1));
  CHECK_EQ(0, memcmp(iov[2].iov_base, "1231", 4));
  CHECK_EQ(0, memcmp(iov[3].iov_base, "23123123", 8));
  CHECK_EQ(0, memcmp(iov[4].iov_base, "123bc12", 7));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

TEST(Snappy, IOVecLiteralOverflow) {
  static const int kLengths[] = { 3, 4 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  string compressed;
  Varint::Append32(&compressed, 8);

  AppendLiteral(&compressed, "12345678");

  CHECK(!snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

TEST(Snappy, IOVecCopyOverflow) {
  static const int kLengths[] = { 3, 4 };

  struct iovec iov[ARRAYSIZE(kLengths)];
  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    iov[i].iov_base = new char[kLengths[i]];
    iov[i].iov_len = kLengths[i];
  }

  string compressed;
  Varint::Append32(&compressed, 8);

  AppendLiteral(&compressed, "123");
  AppendCopy(&compressed, 3, 5);

  CHECK(!snappy::RawUncompressToIOVec(
      compressed.data(), compressed.size(), iov, ARRAYSIZE(iov)));

  for (int i = 0; i < ARRAYSIZE(kLengths); ++i) {
    delete[] reinterpret_cast<char *>(iov[i].iov_base);
  }
}

static bool CheckUncompressedLength(const string& compressed,
                                    size_t* ulength) {
  const bool result1 = snappy::GetUncompressedLength(compressed.data(),
                                                     compressed.size(),
                                                     ulength);

  snappy::ByteArraySource source(compressed.data(), compressed.size());
  uint32 length;
  const bool result2 = snappy::GetUncompressedLength(&source, &length);
  CHECK_EQ(result1, result2);
  return result1;
}

TEST(SnappyCorruption, TruncatedVarint) {
  string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\xf0');
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(SnappyCorruption, UnterminatedVarint) {
  string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back('\x80');
  compressed.push_back(10);
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(SnappyCorruption, OverflowingVarint) {
  string compressed, uncompressed;
  size_t ulength;
  compressed.push_back('\xfb');
  compressed.push_back('\xff');
  compressed.push_back('\xff');
  compressed.push_back('\xff');
  compressed.push_back('\x7f');
  CHECK(!CheckUncompressedLength(compressed, &ulength));
  CHECK(!snappy::IsValidCompressedBuffer(compressed.data(), compressed.size()));
  CHECK(!snappy::Uncompress(compressed.data(), compressed.size(),
                            &uncompressed));
}

TEST(Snappy, ReadPastEndOfBuffer) {
  // Check that we do not read past end of input

  // Make a compressed string that ends with a single-byte literal
  string compressed;
  Varint::Append32(&compressed, 1);
  AppendLiteral(&compressed, "x");

  string uncompressed;
  DataEndingAtUnreadablePage c(compressed);
  CHECK(snappy::Uncompress(c.data(), c.size(), &uncompressed));
  CHECK_EQ(uncompressed, string("x"));
}

// Check for an infinite loop caused by a copy with offset==0
TEST(Snappy, ZeroOffsetCopy) {
  const char* compressed = "\x40\x12\x00\x00";
  //  \x40              Length (must be > kMaxIncrementCopyOverflow)
  //  \x12\x00\x00      Copy with offset==0, length==5
  char uncompressed[100];
  EXPECT_FALSE(snappy::RawUncompress(compressed, 4, uncompressed));
}

TEST(Snappy, ZeroOffsetCopyValidation) {
  const char* compressed = "\x05\x12\x00\x00";
  //  \x05              Length
  //  \x12\x00\x00      Copy with offset==0, length==5
  EXPECT_FALSE(snappy::IsValidCompressedBuffer(compressed, 4));
}

namespace {

int TestFindMatchLength(const char* s1, const char *s2, unsigned length) {
  std::pair<size_t, bool> p =
      snappy::internal::FindMatchLength(s1, s2, s2 + length);
  CHECK_EQ(p.first < 8, p.second);
  return p.first;
}

}  // namespace

TEST(Snappy, FindMatchLength) {
  // Exercise all different code paths through the function.
  // 64-bit version:

  // Hit s1_limit in 64-bit loop, hit s1_limit in single-character loop.
  EXPECT_EQ(6, TestFindMatchLength("012345", "012345", 6));
  EXPECT_EQ(11, TestFindMatchLength("01234567abc", "01234567abc", 11));

  // Hit s1_limit in 64-bit loop, find a non-match in single-character loop.
  EXPECT_EQ(9, TestFindMatchLength("01234567abc", "01234567axc", 9));

  // Same, but edge cases.
  EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc!", 11));
  EXPECT_EQ(11, TestFindMatchLength("01234567abc!", "01234567abc?", 11));

  // Find non-match at once in first loop.
  EXPECT_EQ(0, TestFindMatchLength("01234567xxxxxxxx", "?1234567xxxxxxxx", 16));
  EXPECT_EQ(1, TestFindMatchLength("01234567xxxxxxxx", "0?234567xxxxxxxx", 16));
  EXPECT_EQ(4, TestFindMatchLength("01234567xxxxxxxx", "01237654xxxxxxxx", 16));
  EXPECT_EQ(7, TestFindMatchLength("01234567xxxxxxxx", "0123456?xxxxxxxx", 16));

  // Find non-match in first loop after one block.
  EXPECT_EQ(8, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                   "abcdefgh?1234567xxxxxxxx", 24));
  EXPECT_EQ(9, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                   "abcdefgh0?234567xxxxxxxx", 24));
  EXPECT_EQ(12, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                    "abcdefgh01237654xxxxxxxx", 24));
  EXPECT_EQ(15, TestFindMatchLength("abcdefgh01234567xxxxxxxx",
                                    "abcdefgh0123456?xxxxxxxx", 24));

  // 32-bit version:

  // Short matches.
  EXPECT_EQ(0, TestFindMatchLength("01234567", "?1234567", 8));
  EXPECT_EQ(1, TestFindMatchLength("01234567", "0?234567", 8));
  EXPECT_EQ(2, TestFindMatchLength("01234567", "01?34567", 8));
  EXPECT_EQ(3, TestFindMatchLength("01234567", "012?4567", 8));
  EXPECT_EQ(4, TestFindMatchLength("01234567", "0123?567", 8));
  EXPECT_EQ(5, TestFindMatchLength("01234567", "01234?67", 8));
  EXPECT_EQ(6, TestFindMatchLength("01234567", "012345?7", 8));
  EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 8));
  EXPECT_EQ(7, TestFindMatchLength("01234567", "0123456?", 7));
  EXPECT_EQ(7, TestFindMatchLength("01234567!", "0123456??", 7));

  // Hit s1_limit in 32-bit loop, hit s1_limit in single-character loop.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd", "xxxxxxabcd", 10));
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd?", "xxxxxxabcd?", 10));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcdef", "xxxxxxabcdef", 13));

  // Same, but edge cases.
  EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc!", 12));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxx0123abc!", "xxxxxx0123abc?", 12));

  // Hit s1_limit in 32-bit loop, find a non-match in single-character loop.
  EXPECT_EQ(11, TestFindMatchLength("xxxxxx0123abc", "xxxxxx0123axc", 13));

  // Find non-match at once in first loop.
  EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx?123xxxxxxxx", 18));
  EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx0?23xxxxxxxx", 18));
  EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx0132xxxxxxxx", 18));
  EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123xxxxxxxx",
                                   "xxxxxx012?xxxxxxxx", 18));

  // Same, but edge cases.
  EXPECT_EQ(6, TestFindMatchLength("xxxxxx0123", "xxxxxx?123", 10));
  EXPECT_EQ(7, TestFindMatchLength("xxxxxx0123", "xxxxxx0?23", 10));
  EXPECT_EQ(8, TestFindMatchLength("xxxxxx0123", "xxxxxx0132", 10));
  EXPECT_EQ(9, TestFindMatchLength("xxxxxx0123", "xxxxxx012?", 10));

  // Find non-match in first loop after one block.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd?123xx", 16));
  EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd0?23xx", 16));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd0132xx", 16));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123xx",
                                    "xxxxxxabcd012?xx", 16));

  // Same, but edge cases.
  EXPECT_EQ(10, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd?123", 14));
  EXPECT_EQ(11, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0?23", 14));
  EXPECT_EQ(12, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd0132", 14));
  EXPECT_EQ(13, TestFindMatchLength("xxxxxxabcd0123", "xxxxxxabcd012?", 14));
}

TEST(Snappy, FindMatchLengthRandom) {
  const int kNumTrials = 10000;
  const int kTypicalLength = 10;
  ACMRandom rnd(FLAGS_test_random_seed);

  for (int i = 0; i < kNumTrials; i++) {
    string s, t;
    char a = rnd.Rand8();
    char b = rnd.Rand8();
    while (!rnd.OneIn(kTypicalLength)) {
      s.push_back(rnd.OneIn(2) ? a : b);
      t.push_back(rnd.OneIn(2) ? a : b);
    }
    DataEndingAtUnreadablePage u(s);
    DataEndingAtUnreadablePage v(t);
    int matched = TestFindMatchLength(u.data(), v.data(), t.size());
    if (matched == t.size()) {
      EXPECT_EQ(s, t);
    } else {
      EXPECT_NE(s[matched], t[matched]);
      for (int j = 0; j < matched; j++) {
        EXPECT_EQ(s[j], t[j]);
      }
    }
  }
}

static uint16 MakeEntry(unsigned int extra,
                        unsigned int len,
                        unsigned int copy_offset) {
  // Check that all of the fields fit within the allocated space
  assert(extra       == (extra & 0x7));          // At most 3 bits
  assert(copy_offset == (copy_offset & 0x7));    // At most 3 bits
  assert(len         == (len & 0x7f));           // At most 7 bits
  return len | (copy_offset << 8) | (extra << 11);
}

// Check that the decompression table is correct, and optionally print out
// the computed one.
TEST(Snappy, VerifyCharTable) {
  using snappy::internal::LITERAL;
  using snappy::internal::COPY_1_BYTE_OFFSET;
  using snappy::internal::COPY_2_BYTE_OFFSET;
  using snappy::internal::COPY_4_BYTE_OFFSET;
  using snappy::internal::char_table;
  using snappy::internal::wordmask;

  uint16 dst[256];

  // Place invalid entries in all places to detect missing initialization
  int assigned = 0;
  for (int i = 0; i < 256; i++) {
    dst[i] = 0xffff;
  }

  // Small LITERAL entries.  We store (len-1) in the top 6 bits.
  for (unsigned int len = 1; len <= 60; len++) {
    dst[LITERAL | ((len-1) << 2)] = MakeEntry(0, len, 0);
    assigned++;
  }

  // Large LITERAL entries.  We use 60..63 in the high 6 bits to
  // encode the number of bytes of length info that follow the opcode.
  for (unsigned int extra_bytes = 1; extra_bytes <= 4; extra_bytes++) {
    // We set the length field in the lookup table to 1 because extra
    // bytes encode len-1.
    dst[LITERAL | ((extra_bytes+59) << 2)] = MakeEntry(extra_bytes, 1, 0);
    assigned++;
  }

  // COPY_1_BYTE_OFFSET.
  //
  // The tag byte in the compressed data stores len-4 in 3 bits, and
  // offset/256 in 5 bits.  offset%256 is stored in the next byte.
  //
  // This format is used for length in range [4..11] and offset in
  // range [0..2047]
  for (unsigned int len = 4; len < 12; len++) {
    for (unsigned int offset = 0; offset < 2048; offset += 256) {
      dst[COPY_1_BYTE_OFFSET | ((len-4)<<2) | ((offset>>8)<<5)] =
        MakeEntry(1, len, offset>>8);
      assigned++;
    }
  }

  // COPY_2_BYTE_OFFSET.
  // Tag contains len-1 in top 6 bits, and offset in next two bytes.
  for (unsigned int len = 1; len <= 64; len++) {
    dst[COPY_2_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(2, len, 0);
    assigned++;
  }

  // COPY_4_BYTE_OFFSET.
  // Tag contents len-1 in top 6 bits, and offset in next four bytes.
  for (unsigned int len = 1; len <= 64; len++) {
    dst[COPY_4_BYTE_OFFSET | ((len-1)<<2)] = MakeEntry(4, len, 0);
    assigned++;
  }

  // Check that each entry was initialized exactly once.
  EXPECT_EQ(256, assigned) << "Assigned only " << assigned << " of 256";
  for (int i = 0; i < 256; i++) {
    EXPECT_NE(0xffff, dst[i]) << "Did not assign byte " << i;
  }

  if (FLAGS_snappy_dump_decompression_table) {
    printf("static const uint16 char_table[256] = {\n  ");
    for (int i = 0; i < 256; i++) {
      printf("0x%04x%s",
             dst[i],
             ((i == 255) ? "\n" : (((i%8) == 7) ? ",\n  " : ", ")));
    }
    printf("};\n");
  }

  // Check that computed table matched recorded table.
  for (int i = 0; i < 256; i++) {
    EXPECT_EQ(dst[i], char_table[i]) << "Mismatch in byte " << i;
  }
}

static void CompressFile(const char* fname) {
  string fullinput;
  CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));

  string compressed;
  Compress(fullinput.data(), fullinput.size(), SNAPPY, &compressed, false);

  CHECK_OK(file::SetContents(string(fname).append(".comp"), compressed,
                             file::Defaults()));
}

static void UncompressFile(const char* fname) {
  string fullinput;
  CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));

  size_t uncompLength;
  CHECK(CheckUncompressedLength(fullinput, &uncompLength));

  string uncompressed;
  uncompressed.resize(uncompLength);
  CHECK(snappy::Uncompress(fullinput.data(), fullinput.size(), &uncompressed));

  CHECK_OK(file::SetContents(string(fname).append(".uncomp"), uncompressed,
                             file::Defaults()));
}

static void MeasureFile(const char* fname) {
  string fullinput;
  CHECK_OK(file::GetContents(fname, &fullinput, file::Defaults()));
  printf("%-40s :\n", fname);

  int start_len = (FLAGS_start_len < 0) ? fullinput.size() : FLAGS_start_len;
  int end_len = fullinput.size();
  if (FLAGS_end_len >= 0) {
    end_len = min<int>(fullinput.size(), FLAGS_end_len);
  }
  for (int len = start_len; len <= end_len; len++) {
    const char* const input = fullinput.data();
    int repeats = (FLAGS_bytes + len) / (len + 1);
    if (FLAGS_zlib)     Measure(input, len, ZLIB, repeats, 1024<<10);
    if (FLAGS_lzo)      Measure(input, len, LZO, repeats, 1024<<10);
    if (FLAGS_liblzf)   Measure(input, len, LIBLZF, repeats, 1024<<10);
    if (FLAGS_quicklz)  Measure(input, len, QUICKLZ, repeats, 1024<<10);
    if (FLAGS_fastlz)   Measure(input, len, FASTLZ, repeats, 1024<<10);
    if (FLAGS_snappy)    Measure(input, len, SNAPPY, repeats, 4096<<10);

    // For block-size based measurements
    if (0 && FLAGS_snappy) {
      Measure(input, len, SNAPPY, repeats, 8<<10);
      Measure(input, len, SNAPPY, repeats, 16<<10);
      Measure(input, len, SNAPPY, repeats, 32<<10);
      Measure(input, len, SNAPPY, repeats, 64<<10);
      Measure(input, len, SNAPPY, repeats, 256<<10);
      Measure(input, len, SNAPPY, repeats, 1024<<10);
    }
  }
}

static struct {
  const char* label;
  const char* filename;
  size_t size_limit;
} files[] = {
  { "html", "html", 0 },
  { "urls", "urls.10K", 0 },
  { "jpg", "fireworks.jpeg", 0 },
  { "jpg_200", "fireworks.jpeg", 200 },
  { "pdf", "paper-100k.pdf", 0 },
  { "html4", "html_x_4", 0 },
  { "txt1", "alice29.txt", 0 },
  { "txt2", "asyoulik.txt", 0 },
  { "txt3", "lcet10.txt", 0 },
  { "txt4", "plrabn12.txt", 0 },
  { "pb", "geo.protodata", 0 },
  { "gaviota", "kppkn.gtb", 0 },
};

static void BM_UFlat(int iters, int arg) {
  StopBenchmarkTiming();

  // Pick file to process based on "arg"
  CHECK_GE(arg, 0);
  CHECK_LT(arg, ARRAYSIZE(files));
  string contents = ReadTestDataFile(files[arg].filename,
                                     files[arg].size_limit);

  string zcontents;
  snappy::Compress(contents.data(), contents.size(), &zcontents);
  char* dst = new char[contents.size()];

  SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
                             static_cast<int64>(contents.size()));
  SetBenchmarkLabel(files[arg].label);
  StartBenchmarkTiming();
  while (iters-- > 0) {
    CHECK(snappy::RawUncompress(zcontents.data(), zcontents.size(), dst));
  }
  StopBenchmarkTiming();

  delete[] dst;
}
BENCHMARK(BM_UFlat)->DenseRange(0, ARRAYSIZE(files) - 1);

static void BM_UValidate(int iters, int arg) {
  StopBenchmarkTiming();

  // Pick file to process based on "arg"
  CHECK_GE(arg, 0);
  CHECK_LT(arg, ARRAYSIZE(files));
  string contents = ReadTestDataFile(files[arg].filename,
                                     files[arg].size_limit);

  string zcontents;
  snappy::Compress(contents.data(), contents.size(), &zcontents);

  SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
                             static_cast<int64>(contents.size()));
  SetBenchmarkLabel(files[arg].label);
  StartBenchmarkTiming();
  while (iters-- > 0) {
    CHECK(snappy::IsValidCompressedBuffer(zcontents.data(), zcontents.size()));
  }
  StopBenchmarkTiming();
}
BENCHMARK(BM_UValidate)->DenseRange(0, 4);

static void BM_UIOVec(int iters, int arg) {
  StopBenchmarkTiming();

  // Pick file to process based on "arg"
  CHECK_GE(arg, 0);
  CHECK_LT(arg, ARRAYSIZE(files));
  string contents = ReadTestDataFile(files[arg].filename,
                                     files[arg].size_limit);

  string zcontents;
  snappy::Compress(contents.data(), contents.size(), &zcontents);

  // Uncompress into an iovec containing ten entries.
  const int kNumEntries = 10;
  struct iovec iov[kNumEntries];
  char *dst = new char[contents.size()];
  int used_so_far = 0;
  for (int i = 0; i < kNumEntries; ++i) {
    iov[i].iov_base = dst + used_so_far;
    if (used_so_far == contents.size()) {
      iov[i].iov_len = 0;
      continue;
    }

    if (i == kNumEntries - 1) {
      iov[i].iov_len = contents.size() - used_so_far;
    } else {
      iov[i].iov_len = contents.size() / kNumEntries;
    }
    used_so_far += iov[i].iov_len;
  }

  SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
                             static_cast<int64>(contents.size()));
  SetBenchmarkLabel(files[arg].label);
  StartBenchmarkTiming();
  while (iters-- > 0) {
    CHECK(snappy::RawUncompressToIOVec(zcontents.data(), zcontents.size(), iov,
                                       kNumEntries));
  }
  StopBenchmarkTiming();

  delete[] dst;
}
BENCHMARK(BM_UIOVec)->DenseRange(0, 4);

static void BM_UFlatSink(int iters, int arg) {
  StopBenchmarkTiming();

  // Pick file to process based on "arg"
  CHECK_GE(arg, 0);
  CHECK_LT(arg, ARRAYSIZE(files));
  string contents = ReadTestDataFile(files[arg].filename,
                                     files[arg].size_limit);

  string zcontents;
  snappy::Compress(contents.data(), contents.size(), &zcontents);
  char* dst = new char[contents.size()];

  SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
                             static_cast<int64>(contents.size()));
  SetBenchmarkLabel(files[arg].label);
  StartBenchmarkTiming();
  while (iters-- > 0) {
    snappy::ByteArraySource source(zcontents.data(), zcontents.size());
    snappy::UncheckedByteArraySink sink(dst);
    CHECK(snappy::Uncompress(&source, &sink));
  }
  StopBenchmarkTiming();

  string s(dst, contents.size());
  CHECK_EQ(contents, s);

  delete[] dst;
}

BENCHMARK(BM_UFlatSink)->DenseRange(0, ARRAYSIZE(files) - 1);

static void BM_ZFlat(int iters, int arg) {
  StopBenchmarkTiming();

  // Pick file to process based on "arg"
  CHECK_GE(arg, 0);
  CHECK_LT(arg, ARRAYSIZE(files));
  string contents = ReadTestDataFile(files[arg].filename,
                                     files[arg].size_limit);

  char* dst = new char[snappy::MaxCompressedLength(contents.size())];

  SetBenchmarkBytesProcessed(static_cast<int64>(iters) *
                             static_cast<int64>(contents.size()));
  StartBenchmarkTiming();

  size_t zsize = 0;
  while (iters-- > 0) {
    snappy::RawCompress(contents.data(), contents.size(), dst, &zsize);
  }
  StopBenchmarkTiming();
  const double compression_ratio =
      static_cast<double>(zsize) / std::max<size_t>(1, contents.size());
  SetBenchmarkLabel(StringPrintf("%s (%.2f %%)",
                                 files[arg].label, 100.0 * compression_ratio));
  VLOG(0) << StringPrintf("compression for %s: %zd -> %zd bytes",
                          files[arg].label, contents.size(), zsize);
  delete[] dst;
}
BENCHMARK(BM_ZFlat)->DenseRange(0, ARRAYSIZE(files) - 1);

}  // namespace snappy


int main(int argc, char** argv) {
  InitGoogle(argv[0], &argc, &argv, true);
  RunSpecifiedBenchmarks();

  if (argc >= 2) {
    for (int arg = 1; arg < argc; arg++) {
      if (FLAGS_write_compressed) {
        CompressFile(argv[arg]);
      } else if (FLAGS_write_uncompressed) {
        UncompressFile(argv[arg]);
      } else {
        MeasureFile(argv[arg]);
      }
    }
    return 0;
  }

  return RUN_ALL_TESTS();
}