1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
|
/*
* Copyright (C) 2016 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "portable.h"
#include "io.h"
void (*io_start)(struct snapraid_io* io,
block_off_t blockstart, block_off_t blockmax,
bit_vect_t* block_enabled) = 0;
void (*io_stop)(struct snapraid_io* io) = 0;
block_off_t (*io_read_next)(struct snapraid_io* io, void*** buffer) = 0;
struct snapraid_task* (*io_data_read)(struct snapraid_io* io, unsigned* diskcur, unsigned* waiting_map, unsigned* waiting_mac) = 0;
struct snapraid_task* (*io_parity_read)(struct snapraid_io* io, unsigned* levcur, unsigned* waiting_map, unsigned* waiting_mac) = 0;
void (*io_parity_write)(struct snapraid_io* io, unsigned* levcur, unsigned* waiting_map, unsigned* waiting_mac) = 0;
void (*io_write_preset)(struct snapraid_io* io, block_off_t blockcur, int skip) = 0;
void (*io_write_next)(struct snapraid_io* io, block_off_t blockcur, int skip, int* writer_error) = 0;
void (*io_refresh)(struct snapraid_io* io) = 0;
/**
* Get the next block position to process.
*/
static block_off_t io_position_next(struct snapraid_io* io)
{
block_off_t blockcur;
/* get the next position */
if (io->block_enabled) {
while (io->block_next < io->block_max && !bit_vect_test(io->block_enabled, io->block_next))
++io->block_next;
}
blockcur = io->block_next;
/* next block for the next call */
++io->block_next;
return blockcur;
}
/**
* Setup the next pending task for all readers.
*/
static void io_reader_sched(struct snapraid_io* io, int task_index, block_off_t blockcur)
{
unsigned i;
for (i = 0; i < io->reader_max; ++i) {
struct snapraid_worker* worker = &io->reader_map[i];
struct snapraid_task* task = &worker->task_map[task_index];
/* setup the new pending task */
if (blockcur < io->block_max)
task->state = TASK_STATE_READY;
else
task->state = TASK_STATE_EMPTY;
task->path[0] = 0;
if (worker->handle)
task->disk = worker->handle->disk;
else
task->disk = 0;
task->buffer = io->buffer_map[task_index][worker->buffer_skew + i];
task->position = blockcur;
task->block = 0;
task->file = 0;
task->file_pos = 0;
task->read_size = 0;
task->is_timestamp_different = 0;
}
}
/**
* Setup the next pending task for all writers.
*/
static void io_writer_sched(struct snapraid_io* io, int task_index, block_off_t blockcur)
{
unsigned i;
for (i = 0; i < io->writer_max; ++i) {
struct snapraid_worker* worker = &io->writer_map[i];
struct snapraid_task* task = &worker->task_map[task_index];
/* setup the new pending task */
task->state = TASK_STATE_READY;
task->path[0] = 0;
task->disk = 0;
task->buffer = io->buffer_map[task_index][worker->buffer_skew + i];
task->position = blockcur;
task->block = 0;
task->file = 0;
task->file_pos = 0;
task->read_size = 0;
task->is_timestamp_different = 0;
}
}
/**
* Setup an empty next pending task for all writers.
*/
static void io_writer_sched_empty(struct snapraid_io* io, int task_index, block_off_t blockcur)
{
unsigned i;
for (i = 0; i < io->writer_max; ++i) {
struct snapraid_worker* worker = &io->writer_map[i];
struct snapraid_task* task = &worker->task_map[task_index];
/* setup the new pending task */
task->state = TASK_STATE_EMPTY;
task->path[0] = 0;
task->disk = 0;
task->buffer = 0;
task->position = blockcur;
task->block = 0;
task->file = 0;
task->file_pos = 0;
task->read_size = 0;
task->is_timestamp_different = 0;
}
}
/*****************************************************************************/
/* mono thread */
static block_off_t io_read_next_mono(struct snapraid_io* io, void*** buffer)
{
block_off_t blockcur_schedule;
/* reset the index */
io->reader_index = 0;
blockcur_schedule = io_position_next(io);
/* schedule the next read */
io_reader_sched(io, 0, blockcur_schedule);
/* set the buffer to use */
*buffer = io->buffer_map[0];
return blockcur_schedule;
}
static void io_write_preset_mono(struct snapraid_io* io, block_off_t blockcur, int skip)
{
unsigned i;
/* reset the index */
io->writer_index = 0;
/* clear errors */
for (i = 0; i < IO_WRITER_ERROR_MAX; ++i)
io->writer_error[i] = 0;
if (skip) {
/* skip the next write */
io_writer_sched_empty(io, 0, blockcur);
} else {
/* schedule the next write */
io_writer_sched(io, 0, blockcur);
}
}
static void io_write_next_mono(struct snapraid_io* io, block_off_t blockcur, int skip, int* writer_error)
{
unsigned i;
(void)blockcur;
(void)skip;
/* report errors */
for (i = 0; i < IO_WRITER_ERROR_MAX; ++i)
writer_error[i] = io->writer_error[i];
}
static void io_refresh_mono(struct snapraid_io* io)
{
(void)io;
}
static struct snapraid_task* io_task_read_mono(struct snapraid_io* io, unsigned base, unsigned count, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
struct snapraid_worker* worker;
struct snapraid_task* task;
unsigned i;
/* get the next task */
i = io->reader_index++;
assert(base <= i && i < base + count);
worker = &io->reader_map[i];
task = &worker->task_map[0];
/* do the work */
if (task->state != TASK_STATE_EMPTY)
worker->func(worker, task);
/* return the position */
*pos = i - base;
/* store the waiting index */
waiting_map[0] = i - base;
*waiting_mac = 1;
return task;
}
static struct snapraid_task* io_data_read_mono(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
return io_task_read_mono(io, io->data_base, io->data_count, pos, waiting_map, waiting_mac);
}
static struct snapraid_task* io_parity_read_mono(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
return io_task_read_mono(io, io->parity_base, io->parity_count, pos, waiting_map, waiting_mac);
}
static void io_parity_write_mono(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
struct snapraid_worker* worker;
struct snapraid_task* task;
unsigned i;
/* get the next task */
i = io->writer_index++;
worker = &io->writer_map[i];
task = &worker->task_map[0];
io->writer_error[i] = 0;
/* do the work */
if (task->state != TASK_STATE_EMPTY)
worker->func(worker, task);
/* return the position */
*pos = i;
/* store the waiting index */
waiting_map[0] = i;
*waiting_mac = 1;
}
static void io_start_mono(struct snapraid_io* io,
block_off_t blockstart, block_off_t blockmax,
bit_vect_t* block_enabled)
{
io->block_start = blockstart;
io->block_max = blockmax;
io->block_enabled = block_enabled;
io->block_next = blockstart;
}
static void io_stop_mono(struct snapraid_io* io)
{
(void)io;
}
/*****************************************************************************/
/* multi thread */
/* disable multithread if pthread is not present */
#if HAVE_THREAD
/**
* Get the next task to work on for a reader.
*
* This is the synchronization point for workers with the io.
*/
static struct snapraid_task* io_reader_step(struct snapraid_worker* worker)
{
struct snapraid_io* io = worker->io;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
while (1) {
unsigned next_index;
/* check if the worker has to exit */
/* even if there is work to do */
if (io->done) {
thread_mutex_unlock(&io->io_mutex);
return 0;
}
/* get the next pending task */
next_index = (worker->index + 1) % io->io_max;
/* if the queue of pending tasks is not empty */
if (next_index != io->reader_index) {
struct snapraid_task* task;
/* the index that the IO may be waiting for */
unsigned waiting_index = io->reader_index;
/* the index that worker just completed */
unsigned done_index = worker->index;
/* get the new working task */
worker->index = next_index;
task = &worker->task_map[worker->index];
/* if the just completed task is at this index */
if (done_index == waiting_index) {
/* notify the IO that a new read is complete */
thread_cond_signal_and_unlock(&io->read_done, &io->io_mutex);
} else {
thread_mutex_unlock(&io->io_mutex);
}
/* return the new task */
return task;
}
/* otherwise wait for a read_sched event */
thread_cond_wait(&io->read_sched, &io->io_mutex);
}
}
/**
* Get the next task to work on for a writer.
*
* This is the synchronization point for workers with the io.
*/
static struct snapraid_task* io_writer_step(struct snapraid_worker* worker, int state)
{
struct snapraid_io* io = worker->io;
int error_index;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
/* counts the number of errors in the global state */
error_index = state - IO_WRITER_ERROR_BASE;
if (error_index >= 0 && error_index < IO_WRITER_ERROR_MAX)
++io->writer_error[error_index];
while (1) {
unsigned next_index;
/* get the next pending task */
next_index = (worker->index + 1) % io->io_max;
/* if the queue of pending tasks is not empty */
if (next_index != io->writer_index) {
struct snapraid_task* task;
/* the index that the IO may be waiting for */
unsigned waiting_index = (io->writer_index + 1) % io->io_max;
/* the index that worker just completed */
unsigned done_index = worker->index;
/* get the new working task */
worker->index = next_index;
task = &worker->task_map[worker->index];
/* if the just completed task is at this index */
if (done_index == waiting_index) {
/* notify the IO that a new write is complete */
thread_cond_signal_and_unlock(&io->write_done, &io->io_mutex);
} else {
thread_mutex_unlock(&io->io_mutex);
}
/* return the new task */
return task;
}
/* check if the worker has to exit */
/* but only if there is no work to do */
if (io->done) {
thread_mutex_unlock(&io->io_mutex);
return 0;
}
/* otherwise wait for a write_sched event */
thread_cond_wait(&io->write_sched, &io->io_mutex);
}
}
/**
* Get the next block position to operate on.
*
* This is the synchronization point for workers with the io.
*/
static block_off_t io_read_next_thread(struct snapraid_io* io, void*** buffer)
{
block_off_t blockcur_schedule;
block_off_t blockcur_caller;
unsigned i;
/* get the next parity position to process */
blockcur_schedule = io_position_next(io);
/* ensure that all data/parity was read */
assert(io->reader_list[0] == io->reader_max);
/* setup the list of workers to process */
for (i = 0; i <= io->reader_max; ++i)
io->reader_list[i] = i;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
/* schedule the next read */
io_reader_sched(io, io->reader_index, blockcur_schedule);
/* set the index for the tasks to return to the caller */
io->reader_index = (io->reader_index + 1) % io->io_max;
/* get the position to operate at high level from one task */
blockcur_caller = io->reader_map[0].task_map[io->reader_index].position;
/* set the buffer to use */
*buffer = io->buffer_map[io->reader_index];
/* signal all the workers that there is a new pending task */
thread_cond_broadcast_and_unlock(&io->read_sched, &io->io_mutex);
return blockcur_caller;
}
static void io_write_preset_thread(struct snapraid_io* io, block_off_t blockcur, int skip)
{
(void)io;
(void)blockcur;
(void)skip;
}
static void io_write_next_thread(struct snapraid_io* io, block_off_t blockcur, int skip, int* writer_error)
{
unsigned i;
/* ensure that all parity was written */
assert(io->writer_list[0] == io->writer_max);
/* setup the list of workers to process */
for (i = 0; i <= io->writer_max; ++i)
io->writer_list[i] = i;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
/* report errors */
for (i = 0; i < IO_WRITER_ERROR_MAX; ++i) {
writer_error[i] = io->writer_error[i];
io->writer_error[i] = 0;
}
if (skip) {
/* skip the next write */
io_writer_sched_empty(io, io->writer_index, blockcur);
} else {
/* schedule the next write */
io_writer_sched(io, io->writer_index, blockcur);
}
/* at this point the writers must be in sync with the readers */
assert(io->writer_index == io->reader_index);
/* set the index to be used for the next write */
io->writer_index = (io->writer_index + 1) % io->io_max;
/* signal all the workers that there is a new pending task */
thread_cond_broadcast_and_unlock(&io->write_sched, &io->io_mutex);
}
static void io_refresh_thread(struct snapraid_io* io)
{
unsigned i;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
/* for all readers, count the number of read blocks */
for (i = 0; i < io->reader_max; ++i) {
unsigned begin, end, cached;
struct snapraid_worker* worker = &io->reader_map[i];
/* the first block read */
begin = io->reader_index + 1;
/* the block in reading */
end = worker->index;
if (begin > end)
end += io->io_max;
cached = end - begin;
if (worker->parity_handle)
io->state->parity[worker->parity_handle->level].cached_blocks = cached;
else
worker->handle->disk->cached_blocks = cached;
}
/* for all writers, count the number of written blocks */
/* note that this is a kind of "opposite" of cached blocks */
for (i = 0; i < io->writer_max; ++i) {
unsigned begin, end, cached;
struct snapraid_worker* worker = &io->writer_map[i];
/* the first block written */
begin = io->writer_index + 1;
/* the block in writing */
end = worker->index;
if (begin > end)
end += io->io_max;
cached = end - begin;
io->state->parity[worker->parity_handle->level].cached_blocks = cached;
}
thread_mutex_unlock(&io->io_mutex);
}
static struct snapraid_task* io_task_read_thread(struct snapraid_io* io, unsigned base, unsigned count, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
unsigned waiting_cycle;
/* count the waiting cycle */
waiting_cycle = 0;
/* clear the waiting indexes */
*waiting_mac = 0;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
while (1) {
unsigned char* let;
unsigned busy_index;
/* get the index the IO is using */
/* we must ensure that this index has not a read in progress */
/* to avoid a concurrent access */
busy_index = io->reader_index;
/* search for a worker that has already finished */
let = &io->reader_list[0];
while (1) {
unsigned i = *let;
/* if we are at the end */
if (i == io->reader_max)
break;
/* if it's in range */
if (base <= i && i < base + count) {
struct snapraid_worker* worker;
/* if it's the first cycle */
if (waiting_cycle == 0) {
/* store the waiting indexes */
waiting_map[(*waiting_mac)++] = i - base;
}
worker = &io->reader_map[i];
/* if the worker has finished this index */
if (busy_index != worker->index) {
struct snapraid_task* task;
task = &worker->task_map[io->reader_index];
thread_mutex_unlock(&io->io_mutex);
/* mark the worker as processed */
/* setting the previous one to point at the next one */
*let = io->reader_list[i + 1];
/* return the position */
*pos = i - base;
/* on the first cycle, no one is waiting */
if (waiting_cycle == 0)
*waiting_mac = 0;
return task;
}
}
/* next position to check */
let = &io->reader_list[i + 1];
}
/* if no worker is ready, wait for an event */
thread_cond_wait(&io->read_done, &io->io_mutex);
/* count the cycles */
++waiting_cycle;
}
}
static struct snapraid_task* io_data_read_thread(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
return io_task_read_thread(io, io->data_base, io->data_count, pos, waiting_map, waiting_mac);
}
static struct snapraid_task* io_parity_read_thread(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
return io_task_read_thread(io, io->parity_base, io->parity_count, pos, waiting_map, waiting_mac);
}
static void io_parity_write_thread(struct snapraid_io* io, unsigned* pos, unsigned* waiting_map, unsigned* waiting_mac)
{
unsigned waiting_cycle;
/* count the waiting cycle */
waiting_cycle = 0;
/* clear the waiting indexes */
*waiting_mac = 0;
/* the synchronization is protected by the io mutex */
thread_mutex_lock(&io->io_mutex);
while (1) {
unsigned char* let;
unsigned busy_index;
/* get the next index the IO is going to use */
/* we must ensure that this index has not a write in progress */
/* to avoid a concurrent access */
/* note that we are already sure that a write is not in progress */
/* at the index the IO is using at now */
busy_index = (io->writer_index + 1) % io->io_max;
/* search for a worker that has already finished */
let = &io->writer_list[0];
while (1) {
unsigned i = *let;
struct snapraid_worker* worker;
/* if we are at the end */
if (i == io->writer_max)
break;
/* if it's the first cycle */
if (waiting_cycle == 0) {
/* store the waiting indexes */
waiting_map[(*waiting_mac)++] = i;
}
worker = &io->writer_map[i];
/* the two indexes cannot be equal */
assert(io->writer_index != worker->index);
/* if the worker has finished this index */
if (busy_index != worker->index) {
thread_mutex_unlock(&io->io_mutex);
/* mark the worker as processed */
/* setting the previous one to point at the next one */
*let = io->writer_list[i + 1];
/* return the position */
*pos = i;
/* on the first cycle, no one is waiting */
if (waiting_cycle == 0)
*waiting_mac = 0;
return;
}
/* next position to check */
let = &io->writer_list[i + 1];
}
/* if no worker is ready, wait for an event */
thread_cond_wait(&io->write_done, &io->io_mutex);
/* count the cycles */
++waiting_cycle;
}
}
static void io_reader_worker(struct snapraid_worker* worker, struct snapraid_task* task)
{
/* if we reached the end */
if (task->position >= worker->io->block_max) {
/* complete a dummy task */
task->state = TASK_STATE_EMPTY;
} else {
worker->func(worker, task);
}
}
static void* io_reader_thread(void* arg)
{
struct snapraid_worker* worker = arg;
/* force completion of the first task */
io_reader_worker(worker, &worker->task_map[0]);
while (1) {
struct snapraid_task* task;
/* get the new task */
task = io_reader_step(worker);
/* if no task, it means to exit */
if (!task)
break;
/* nothing more to do */
if (task->state == TASK_STATE_EMPTY)
continue;
assert(task->state == TASK_STATE_READY);
/* work on the assigned task */
io_reader_worker(worker, task);
}
return 0;
}
static void* io_writer_thread(void* arg)
{
struct snapraid_worker* worker = arg;
int latest_state = TASK_STATE_DONE;
while (1) {
struct snapraid_task* task;
/* get the new task */
task = io_writer_step(worker, latest_state);
/* if no task, it means to exit */
if (!task)
break;
/* nothing more to do */
if (task->state == TASK_STATE_EMPTY) {
latest_state = TASK_STATE_DONE;
continue;
}
assert(task->state == TASK_STATE_READY);
/* work on the assigned task */
worker->func(worker, task);
/* save the resulting state */
latest_state = task->state;
}
return 0;
}
static void io_start_thread(struct snapraid_io* io,
block_off_t blockstart, block_off_t blockmax,
bit_vect_t* block_enabled)
{
unsigned i;
tommy_node* j;
/* enable the filesystem mutex in all disks */
for (j = io->state->disklist; j != 0; j = j->next) {
struct snapraid_disk* disk = j->data;
disk_start_thread(disk);
}
io->block_start = blockstart;
io->block_max = blockmax;
io->block_enabled = block_enabled;
io->block_next = blockstart;
io->done = 0;
io->reader_index = io->io_max - 1;
io->writer_index = 0;
/* clear writer errors */
for (i = 0; i < IO_WRITER_ERROR_MAX; ++i)
io->writer_error[i] = 0;
/* setup the initial read pending tasks, except the latest one, */
/* the latest will be initialized at the fist io_read_next() call */
for (i = 0; i < io->io_max - 1; ++i) {
block_off_t blockcur = io_position_next(io);
io_reader_sched(io, i, blockcur);
}
/* setup the lists of workers to process */
io->reader_list[0] = io->reader_max;
for (i = 0; i <= io->writer_max; ++i)
io->writer_list[i] = i;
/* start the reader threads */
for (i = 0; i < io->reader_max; ++i) {
struct snapraid_worker* worker = &io->reader_map[i];
worker->index = 0;
thread_create(&worker->thread, io_reader_thread, worker);
}
/* start the writer threads */
for (i = 0; i < io->writer_max; ++i) {
struct snapraid_worker* worker = &io->writer_map[i];
worker->index = io->io_max - 1;
thread_create(&worker->thread, io_writer_thread, worker);
}
}
static void io_stop_thread(struct snapraid_io* io)
{
unsigned i;
thread_mutex_lock(&io->io_mutex);
/* mark that we are stopping */
io->done = 1;
/* signal all the threads to recognize the new state */
thread_cond_broadcast(&io->read_sched);
thread_cond_broadcast(&io->write_sched);
thread_mutex_unlock(&io->io_mutex);
/* wait for all readers to terminate */
for (i = 0; i < io->reader_max; ++i) {
struct snapraid_worker* worker = &io->reader_map[i];
void* retval;
/* wait for thread termination */
thread_join(worker->thread, &retval);
}
/* wait for all writers to terminate */
for (i = 0; i < io->writer_max; ++i) {
struct snapraid_worker* worker = &io->writer_map[i];
void* retval;
/* wait for thread termination */
thread_join(worker->thread, &retval);
}
}
#endif
/*****************************************************************************/
/* global */
void io_init(struct snapraid_io* io, struct snapraid_state* state,
unsigned io_cache, unsigned buffer_max,
void (*data_reader)(struct snapraid_worker*, struct snapraid_task*),
struct snapraid_handle* handle_map, unsigned handle_max,
void (*parity_reader)(struct snapraid_worker*, struct snapraid_task*),
void (*parity_writer)(struct snapraid_worker*, struct snapraid_task*),
struct snapraid_parity_handle* parity_handle_map, unsigned parity_handle_max)
{
unsigned i;
size_t allocated_size;
size_t block_size = state->block_size;
io->state = state;
#if HAVE_THREAD
if (io_cache == 0) {
/* default is 16 MiB of cache */
/* this seems to be a good tradeoff between speed and memory usage */
io->io_max = 16 * 1024 * 1024 / state->block_size;
if (io->io_max < IO_MIN)
io->io_max = IO_MIN;
if (io->io_max > IO_MAX)
io->io_max = IO_MAX;
} else {
io->io_max = io_cache;
}
#else
(void)io_cache;
/* without pthread force the mono thread mode */
io->io_max = 1;
#endif
assert(io->io_max == 1 || (io->io_max >= IO_MIN && io->io_max <= IO_MAX));
io->buffer_max = buffer_max;
allocated_size = 0;
for (i = 0; i < io->io_max; ++i) {
if (state->file_mode != ADVISE_DIRECT)
io->buffer_map[i] = malloc_nofail_vector_align(handle_max, buffer_max, block_size, &io->buffer_alloc_map[i]);
else
io->buffer_map[i] = malloc_nofail_vector_direct(handle_max, buffer_max, block_size, &io->buffer_alloc_map[i]);
if (!state->opt.skip_self)
mtest_vector(io->buffer_max, state->block_size, io->buffer_map[i]);
allocated_size += block_size * buffer_max;
}
msg_progress("Using %u MiB of memory for %u cached blocks.\n", (unsigned)(allocated_size / MEBI), io->io_max);
if (parity_writer) {
io->reader_max = handle_max;
io->writer_max = parity_handle_max;
} else {
io->reader_max = handle_max + parity_handle_max;
io->writer_max = 0;
}
io->reader_map = malloc_nofail(sizeof(struct snapraid_worker) * io->reader_max);
io->reader_list = malloc_nofail(io->reader_max + 1);
io->writer_map = malloc_nofail(sizeof(struct snapraid_worker) * io->writer_max);
io->writer_list = malloc_nofail(io->writer_max + 1);
io->data_base = 0;
io->data_count = handle_max;
io->parity_base = handle_max;
io->parity_count = parity_handle_max;
for (i = 0; i < io->reader_max; ++i) {
struct snapraid_worker* worker = &io->reader_map[i];
worker->io = io;
if (i < handle_max) {
/* it's a data read */
worker->handle = &handle_map[i];
worker->parity_handle = 0;
worker->func = data_reader;
/* data read is put in lower buffer index */
worker->buffer_skew = 0;
} else {
/* it's a parity read */
worker->handle = 0;
worker->parity_handle = &parity_handle_map[i - handle_max];
worker->func = parity_reader;
/* parity read is put after data and computed parity */
worker->buffer_skew = parity_handle_max;
}
}
for (i = 0; i < io->writer_max; ++i) {
struct snapraid_worker* worker = &io->writer_map[i];
worker->io = io;
/* it's a parity write */
worker->handle = 0;
worker->parity_handle = &parity_handle_map[i];
worker->func = parity_writer;
/* parity to write is put after data */
worker->buffer_skew = handle_max;
}
#if HAVE_THREAD
if (io->io_max > 1) {
io_read_next = io_read_next_thread;
io_write_preset = io_write_preset_thread;
io_write_next = io_write_next_thread;
io_refresh = io_refresh_thread;
io_data_read = io_data_read_thread;
io_parity_read = io_parity_read_thread;
io_parity_write = io_parity_write_thread;
io_start = io_start_thread;
io_stop = io_stop_thread;
thread_mutex_init(&io->io_mutex);
thread_cond_init(&io->read_done);
thread_cond_init(&io->read_sched);
thread_cond_init(&io->write_done);
thread_cond_init(&io->write_sched);
} else
#endif
{
io_read_next = io_read_next_mono;
io_write_preset = io_write_preset_mono;
io_write_next = io_write_next_mono;
io_refresh = io_refresh_mono;
io_data_read = io_data_read_mono;
io_parity_read = io_parity_read_mono;
io_parity_write = io_parity_write_mono;
io_start = io_start_mono;
io_stop = io_stop_mono;
}
}
void io_done(struct snapraid_io* io)
{
unsigned i;
for (i = 0; i < io->io_max; ++i) {
free(io->buffer_map[i]);
free(io->buffer_alloc_map[i]);
}
free(io->reader_map);
free(io->reader_list);
free(io->writer_map);
free(io->writer_list);
#if HAVE_THREAD
if (io->io_max > 1) {
thread_mutex_destroy(&io->io_mutex);
thread_cond_destroy(&io->read_done);
thread_cond_destroy(&io->read_sched);
thread_cond_destroy(&io->write_done);
thread_cond_destroy(&io->write_sched);
}
#endif
}
|