File: scrub.c

package info (click to toggle)
snapraid 12.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,020 kB
  • sloc: ansic: 43,897; makefile: 989; sh: 137
file content (907 lines) | stat: -rw-r--r-- 26,503 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/*
 * Copyright (C) 2013 Andrea Mazzoleni
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "portable.h"

#include "support.h"
#include "elem.h"
#include "state.h"
#include "parity.h"
#include "handle.h"
#include "io.h"
#include "raid/raid.h"

/****************************************************************************/
/* scrub */

/**
 * Buffer for storing the new hashes.
 */
struct snapraid_rehash {
	unsigned char hash[HASH_MAX];
	struct snapraid_block* block;
};

/**
 * Scrub plan to use.
 */
struct snapraid_plan {
	struct snapraid_state* state;
	int plan; /**< One of the SCRUB_*. */
	time_t timelimit; /**< Time limit. Valid only with SCRUB_AUTO. */
	block_off_t lastlimit; /**< Number of blocks allowed with time exactly at ::timelimit. */
	block_off_t countlast; /**< Counter of blocks with time exactly at ::timelimit. */
};

/**
 * Check if we have to process the specified block index ::i.
 */
static int block_is_enabled(struct snapraid_plan* plan, block_off_t i)
{
	time_t blocktime;
	snapraid_info info;

	/* don't scrub unused blocks in all plans */
	info = info_get(&plan->state->infoarr, i);
	if (info == 0)
		return 0;

	/* bad blocks are always scrubbed in all plans */
	if (info_get_bad(info))
		return 1;

	switch (plan->plan) {
	case SCRUB_FULL :
		/* in 'full' plan everything is scrubbed */
		return 1;
	case SCRUB_EVEN :
		/* in 'even' plan, scrub only even blocks */
		return i % 2 == 0;
	case SCRUB_NEW :
		/* in 'sync' plan, only blocks never scrubbed */
		return info_get_justsynced(info);
	case SCRUB_BAD :
		/* in 'bad' plan, only bad blocks (already reported) */
		return 0;
	}

	/* if it's too new */
	blocktime = info_get_time(info);
	if (blocktime > plan->timelimit) {
		/* skip it */
		return 0;
	}

	/* if the time is less than the limit, always include */
	/* otherwise, check if we reached the last limit count */
	if (blocktime == plan->timelimit) {
		/* if we reached the count limit */
		if (plan->countlast >= plan->lastlimit) {
			/* skip it */
			return 0;
		}

		++plan->countlast;
	}

	return 1;
}

static void scrub_data_reader(struct snapraid_worker* worker, struct snapraid_task* task)
{
	struct snapraid_io* io = worker->io;
	struct snapraid_state* state = io->state;
	struct snapraid_handle* handle = worker->handle;
	struct snapraid_disk* disk = handle->disk;
	block_off_t blockcur = task->position;
	unsigned char* buffer = task->buffer;
	int ret;
	char esc_buffer[ESC_MAX];

	/* if the disk position is not used */
	if (!disk) {
		/* use an empty block */
		memset(buffer, 0, state->block_size);
		task->state = TASK_STATE_DONE;
		return;
	}

	/* get the block */
	task->block = fs_par2block_find(disk, blockcur);

	/* if the block is not used */
	if (!block_has_file(task->block)) {
		/* use an empty block */
		memset(buffer, 0, state->block_size);
		task->state = TASK_STATE_DONE;
		return;
	}

	/* get the file of this block */
	task->file = fs_par2file_get(disk, blockcur, &task->file_pos);

	/* if the file is different than the current one, close it */
	if (handle->file != 0 && handle->file != task->file) {
		/* keep a pointer at the file we are going to close for error reporting */
		struct snapraid_file* report = handle->file;
		ret = handle_close(handle);
		if (ret == -1) {
			/* LCOV_EXCL_START */
			/* This one is really an unexpected error, because we are only reading */
			/* and closing a descriptor should never fail */
			if (errno == EIO) {
				log_tag("error:%u:%s:%s: Close EIO error. %s\n", blockcur, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
				log_fatal("DANGER! Unexpected input/output close error in a data disk, it isn't possible to scrub.\n");
				log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle->path);
				log_fatal("Stopping at block %u\n", blockcur);
				task->state = TASK_STATE_IOERROR;
				return;
			}

			log_tag("error:%u:%s:%s: Close error. %s\n", blockcur, disk->name, esc_tag(report->sub, esc_buffer), strerror(errno));
			log_fatal("WARNING! Unexpected close error in a data disk, it isn't possible to scrub.\n");
			log_fatal("Ensure that file '%s' can be accessed.\n", handle->path);
			log_fatal("Stopping at block %u\n", blockcur);
			task->state = TASK_STATE_ERROR;
			return;
			/* LCOV_EXCL_STOP */
		}
	}

	ret = handle_open(handle, task->file, state->file_mode, log_error, 0);
	if (ret == -1) {
		if (errno == EIO) {
			/* LCOV_EXCL_START */
			log_tag("error:%u:%s:%s: Open EIO error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
			log_fatal("DANGER! Unexpected input/output open error in a data disk, it isn't possible to scrub.\n");
			log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, handle->path);
			log_fatal("Stopping at block %u\n", blockcur);
			task->state = TASK_STATE_IOERROR;
			return;
			/* LCOV_EXCL_STOP */
		}

		log_tag("error:%u:%s:%s: Open error. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), strerror(errno));
		task->state = TASK_STATE_ERROR_CONTINUE;
		return;
	}

	/* check if the file is changed */
	if (handle->st.st_size != task->file->size
		|| handle->st.st_mtime != task->file->mtime_sec
		|| STAT_NSEC(&handle->st) != task->file->mtime_nsec
	        /* don't check the inode to support filesystem without persistent inodes */
	) {
		/* report that the block and the file are not synced */
		task->is_timestamp_different = 1;
		/* follow */
	}

	/* note that we intentionally don't abort if the file has different attributes */
	/* from the last sync, as we are expected to return errors if running */
	/* in an unsynced array. This is just like the check command. */

	task->read_size = handle_read(handle, task->file_pos, buffer, state->block_size, log_error, 0);
	if (task->read_size == -1) {
		if (errno == EIO) {
			log_tag("error:%u:%s:%s: Read EIO error at position %u. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), task->file_pos, strerror(errno));
			log_error("Input/Output error in file '%s' at position '%u'\n", handle->path, task->file_pos);
			task->state = TASK_STATE_IOERROR_CONTINUE;
			return;
		}

		log_tag("error:%u:%s:%s: Read error at position %u. %s\n", blockcur, disk->name, esc_tag(task->file->sub, esc_buffer), task->file_pos, strerror(errno));
		task->state = TASK_STATE_ERROR_CONTINUE;
		return;
	}

	/* store the path of the opened file */
	pathcpy(task->path, sizeof(task->path), handle->path);

	task->state = TASK_STATE_DONE;
}

static void scrub_parity_reader(struct snapraid_worker* worker, struct snapraid_task* task)
{
	struct snapraid_io* io = worker->io;
	struct snapraid_state* state = io->state;
	struct snapraid_parity_handle* parity_handle = worker->parity_handle;
	unsigned level = parity_handle->level;
	block_off_t blockcur = task->position;
	unsigned char* buffer = task->buffer;
	int ret;

	/* read the parity */
	ret = parity_read(parity_handle, blockcur, buffer, state->block_size, log_error);
	if (ret == -1) {
		if (errno == EIO) {
			log_tag("parity_error:%u:%s: Read EIO error. %s\n", blockcur, lev_config_name(level), strerror(errno));
			log_error("Input/Output error in parity '%s' at position '%u'\n", lev_config_name(level), blockcur);
			task->state = TASK_STATE_IOERROR_CONTINUE;
			return;
		}

		log_tag("parity_error:%u:%s: Read error. %s\n", blockcur, lev_config_name(level), strerror(errno));
		task->state = TASK_STATE_ERROR_CONTINUE;
		return;
	}

	task->state = TASK_STATE_DONE;
}

static int state_scrub_process(struct snapraid_state* state, struct snapraid_parity_handle* parity_handle, block_off_t blockstart, block_off_t blockmax, struct snapraid_plan* plan, time_t now)
{
	struct snapraid_io io;
	struct snapraid_handle* handle;
	void* rehandle_alloc;
	struct snapraid_rehash* rehandle;
	unsigned diskmax;
	block_off_t blockcur;
	unsigned j;
	unsigned buffermax;
	data_off_t countsize;
	block_off_t countpos;
	block_off_t countmax;
	block_off_t autosavedone;
	block_off_t autosavelimit;
	block_off_t autosavemissing;
	int ret;
	unsigned error;
	unsigned silent_error;
	unsigned io_error;
	unsigned l;
	unsigned* waiting_map;
	unsigned waiting_mac;
	char esc_buffer[ESC_MAX];
	bit_vect_t* block_enabled;

	/* maps the disks to handles */
	handle = handle_mapping(state, &diskmax);

	/* rehash buffers */
	rehandle = malloc_nofail_align(diskmax * sizeof(struct snapraid_rehash), &rehandle_alloc);

	/* we need 1 * data + 2 * parity */
	buffermax = diskmax + 2 * state->level;

	/* initialize the io threads */
	io_init(&io, state, state->opt.io_cache, buffermax, scrub_data_reader, handle, diskmax, scrub_parity_reader, 0, parity_handle, state->level);

	/* possibly waiting disks */
	waiting_mac = diskmax > RAID_PARITY_MAX ? diskmax : RAID_PARITY_MAX;
	waiting_map = malloc_nofail(waiting_mac * sizeof(unsigned));

	error = 0;
	silent_error = 0;
	io_error = 0;

	msg_progress("Selecting...\n");

	/* first count the number of blocks to process */
	countmax = 0;
	plan->countlast = 0;
	block_enabled = calloc_nofail(1, bit_vect_size(blockmax)); /* preinitialize to 0 */
	for (blockcur = blockstart; blockcur < blockmax; ++blockcur) {
		if (!block_is_enabled(plan, blockcur))
			continue;
		bit_vect_set(block_enabled, blockcur);
		++countmax;
	}

	/* compute the autosave size for all disk, even if not read */
	/* this makes sense because the speed should be almost the same */
	/* if the disks are read in parallel */
	autosavelimit = state->autosave / (diskmax * state->block_size);
	autosavemissing = countmax; /* blocks to do */
	autosavedone = 0; /* blocks done */

	/* drop until now */
	state_usage_waste(state);

	countsize = 0;
	countpos = 0;

	msg_progress("Scrubbing...\n");

	/* start all the worker threads */
	io_start(&io, blockstart, blockmax, block_enabled);

	state_progress_begin(state, blockstart, blockmax, countmax);
	while (1) {
		unsigned char* buffer_recov[LEV_MAX];
		snapraid_info info;
		int error_on_this_block;
		int silent_error_on_this_block;
		int io_error_on_this_block;
		int block_is_unsynced;
		int rehash;
		void** buffer;

		/* go to the next block */
		blockcur = io_read_next(&io, &buffer);
		if (blockcur >= blockmax)
			break;

		/* until now is scheduling */
		state_usage_sched(state);

		/* one more block processed for autosave */
		++autosavedone;
		--autosavemissing;

		/* by default process the block, and skip it if something goes wrong */
		error_on_this_block = 0;
		silent_error_on_this_block = 0;
		io_error_on_this_block = 0;

		/* if all the blocks at this address are synced */
		/* if not, parity is not even checked */
		block_is_unsynced = 0;

		/* get block specific info */
		info = info_get(&state->infoarr, blockcur);

		/* if we have to use the old hash */
		rehash = info_get_rehash(info);

		/* for each disk, process the block */
		for (j = 0; j < diskmax; ++j) {
			struct snapraid_task* task;
			int read_size;
			unsigned char hash[HASH_MAX];
			struct snapraid_block* block;
			int file_is_unsynced;
			struct snapraid_disk* disk;
			struct snapraid_file* file;
			block_off_t file_pos;
			unsigned diskcur;

			/* if the file on this disk is synced */
			/* if not, silent errors are assumed as expected error */
			file_is_unsynced = 0;

			/* until now is misc */
			state_usage_misc(state);

			/* get the next task */
			task = io_data_read(&io, &diskcur, waiting_map, &waiting_mac);

			/* until now is disk */
			state_usage_disk(state, handle, waiting_map, waiting_mac);

			/* get the task results */
			disk = task->disk;
			block = task->block;
			file = task->file;
			file_pos = task->file_pos;
			read_size = task->read_size;

			/* by default no rehash in case of "continue" */
			rehandle[diskcur].block = 0;

			/* if the disk position is not used */
			if (!disk)
				continue;

			state_usage_file(state, disk, file);

			/* if the block is unsynced, errors are expected */
			if (block_has_invalid_parity(block)) {
				/* report that the block and the file are not synced */
				block_is_unsynced = 1;
				file_is_unsynced = 1;
				/* follow */
			}

			/* if the block is not used */
			if (!block_has_file(block))
				continue;

			/* if the block is unsynced, errors are expected */
			if (task->is_timestamp_different) {
				/* report that the block and the file are not synced */
				block_is_unsynced = 1;
				file_is_unsynced = 1;
				/* follow */
			}

			/* handle error conditions */
			if (task->state == TASK_STATE_IOERROR) {
				/* LCOV_EXCL_START */
				++io_error;
				goto bail;
				/* LCOV_EXCL_STOP */
			}
			if (task->state == TASK_STATE_ERROR) {
				/* LCOV_EXCL_START */
				++error;
				goto bail;
				/* LCOV_EXCL_STOP */
			}
			if (task->state == TASK_STATE_ERROR_CONTINUE) {
				++error;
				error_on_this_block = 1;
				continue;
			}
			if (task->state == TASK_STATE_IOERROR_CONTINUE) {
				++io_error;
				if (io_error >= state->opt.io_error_limit) {
					/* LCOV_EXCL_START */
					log_fatal("DANGER! Too many input/output read error in a data disk, it isn't possible to scrub.\n");
					log_fatal("Ensure that disk '%s' is sane and that file '%s' can be accessed.\n", disk->dir, task->path);
					log_fatal("Stopping at block %u\n", blockcur);
					goto bail;
					/* LCOV_EXCL_STOP */
				}

				/* otherwise continue */
				io_error_on_this_block = 1;
				continue;
			}
			if (task->state != TASK_STATE_DONE) {
				/* LCOV_EXCL_START */
				log_fatal("Internal inconsistency in task state\n");
				os_abort();
				/* LCOV_EXCL_STOP */
			}

			countsize += read_size;

			/* now compute the hash */
			if (rehash) {
				memhash(state->prevhash, state->prevhashseed, hash, buffer[diskcur], read_size);

				/* compute the new hash, and store it */
				rehandle[diskcur].block = block;
				memhash(state->hash, state->hashseed, rehandle[diskcur].hash, buffer[diskcur], read_size);
			} else {
				memhash(state->hash, state->hashseed, hash, buffer[diskcur], read_size);
			}

			/* until now is hash */
			state_usage_hash(state);

			if (block_has_updated_hash(block)) {
				/* compare the hash */
				if (memcmp(hash, block->hash, BLOCK_HASH_SIZE) != 0) {
					unsigned diff = memdiff(hash, block->hash, BLOCK_HASH_SIZE);

					log_tag("error:%u:%s:%s: Data error at position %u, diff bits %u/%u\n", blockcur, disk->name, esc_tag(file->sub, esc_buffer), file_pos, diff, BLOCK_HASH_SIZE * 8);

					/* it's a silent error only if we are dealing with synced files */
					if (file_is_unsynced) {
						++error;
						error_on_this_block = 1;
					} else {
						log_error("Data error in file '%s' at position '%u', diff bits %u/%u\n", task->path, file_pos, diff, BLOCK_HASH_SIZE * 8);
						++silent_error;
						silent_error_on_this_block = 1;
					}
					continue;
				}
			}
		}

		/* buffers for parity read and not computed */
		for (l = 0; l < state->level; ++l)
			buffer_recov[l] = buffer[diskmax + state->level + l];
		for (; l < LEV_MAX; ++l)
			buffer_recov[l] = 0;

		/* until now is misc */
		state_usage_misc(state);

		/* read the parity */
		for (l = 0; l < state->level; ++l) {
			struct snapraid_task* task;
			unsigned levcur;

			task = io_parity_read(&io, &levcur, waiting_map, &waiting_mac);

			/* until now is parity */
			state_usage_parity(state, waiting_map, waiting_mac);

			/* handle error conditions */
			if (task->state == TASK_STATE_IOERROR) {
				/* LCOV_EXCL_START */
				++io_error;
				goto bail;
				/* LCOV_EXCL_STOP */
			}
			if (task->state == TASK_STATE_ERROR) {
				/* LCOV_EXCL_START */
				++error;
				goto bail;
				/* LCOV_EXCL_STOP */
			}
			if (task->state == TASK_STATE_ERROR_CONTINUE) {
				++error;
				error_on_this_block = 1;

				/* if continuing on error, clear the missing buffer */
				buffer_recov[levcur] = 0;
				continue;
			}
			if (task->state == TASK_STATE_IOERROR_CONTINUE) {
				++io_error;
				if (io_error >= state->opt.io_error_limit) {
					/* LCOV_EXCL_START */
					log_fatal("DANGER! Too many input/output read error in the %s disk, it isn't possible to scrub.\n", lev_name(levcur));
					log_fatal("Ensure that disk '%s' is sane and can be read.\n", lev_config_name(levcur));
					log_fatal("Stopping at block %u\n", blockcur);
					goto bail;
					/* LCOV_EXCL_STOP */
				}

				/* otherwise continue */
				io_error_on_this_block = 1;

				/* if continuing on error, clear the missing buffer */
				buffer_recov[levcur] = 0;
				continue;
			}
			if (task->state != TASK_STATE_DONE) {
				/* LCOV_EXCL_START */
				log_fatal("Internal inconsistency in task state\n");
				os_abort();
				/* LCOV_EXCL_STOP */
			}
		}

		/* if we have read all the data required and it's correct, proceed with the parity check */
		if (!error_on_this_block && !silent_error_on_this_block && !io_error_on_this_block) {

			/* compute the parity */
			raid_gen(diskmax, state->level, state->block_size, buffer);

			/* compare the parity */
			for (l = 0; l < state->level; ++l) {
				if (buffer_recov[l] && memcmp(buffer[diskmax + l], buffer_recov[l], state->block_size) != 0) {
					unsigned diff = memdiff(buffer[diskmax + l], buffer_recov[l], state->block_size);

					log_tag("parity_error:%u:%s: Data error, diff bits %u/%u\n", blockcur, lev_config_name(l), diff, state->block_size * 8);

					/* it's a silent error only if we are dealing with synced blocks */
					if (block_is_unsynced) {
						++error;
						error_on_this_block = 1;
					} else {
						log_fatal("Data error in parity '%s' at position '%u', diff bits %u/%u\n", lev_config_name(l), blockcur, diff, state->block_size * 8);
						++silent_error;
						silent_error_on_this_block = 1;
					}
				}
			}

			/* until now is raid */
			state_usage_raid(state);
		}

		if (silent_error_on_this_block || io_error_on_this_block) {
			/* set the error status keeping other info */
			info_set(&state->infoarr, blockcur, info_set_bad(info));
		} else if (error_on_this_block) {
			/* do nothing, as this is a generic error */
			/* likely caused by a not synced array */
		} else {
			/* if rehash is needed */
			if (rehash) {
				/* store all the new hash already computed */
				for (j = 0; j < diskmax; ++j) {
					if (rehandle[j].block)
						memcpy(rehandle[j].block->hash, rehandle[j].hash, BLOCK_HASH_SIZE);
				}
			}

			/* update the time info of the block */
			/* and clear any other flag */
			info_set(&state->infoarr, blockcur, info_make(now, 0, 0, 0));
		}

		/* mark the state as needing write */
		state->need_write = 1;

		/* count the number of processed block */
		++countpos;

		/* progress */
		if (state_progress(state, &io, blockcur, countpos, countmax, countsize)) {
			/* LCOV_EXCL_START */
			break;
			/* LCOV_EXCL_STOP */
		}

		/* autosave */
		if (state->autosave != 0
			&& autosavedone >= autosavelimit /* if we have reached the limit */
			&& autosavemissing >= autosavelimit /* if we have at least a full step to do */
		) {
			autosavedone = 0; /* restart the counter */

			/* until now is misc */
			state_usage_misc(state);

			state_progress_stop(state);

			msg_progress("Autosaving...\n");
			state_write(state);

			state_progress_restart(state);

			/* drop until now */
			state_usage_waste(state);
		}
	}

	state_progress_end(state, countpos, countmax, countsize);

	state_usage_print(state);

	if (error || silent_error || io_error) {
		msg_status("\n");
		msg_status("%8u file errors\n", error);
		msg_status("%8u io errors\n", io_error);
		msg_status("%8u data errors\n", silent_error);
	} else {
		/* print the result only if processed something */
		if (countpos != 0)
			msg_status("Everything OK\n");
	}

	if (error)
		log_fatal("WARNING! Unexpected file errors!\n");
	if (io_error)
		log_fatal("DANGER! Unexpected input/output errors! The failing blocks are now marked as bad!\n");
	if (silent_error)
		log_fatal("DANGER! Unexpected data errors! The failing blocks are now marked as bad!\n");
	if (io_error || silent_error) {
		log_fatal("Use 'snapraid status' to list the bad blocks.\n");
		log_fatal("Use 'snapraid -e fix' to recover them.\n");
		log_fatal("Use 'snapraid -p bad scrub' to recheck after fixing to clear the bad state.\n");
	}

	log_tag("summary:error_file:%u\n", error);
	log_tag("summary:error_io:%u\n", io_error);
	log_tag("summary:error_data:%u\n", silent_error);
	if (error + silent_error + io_error == 0)
		log_tag("summary:exit:ok\n");
	else
		log_tag("summary:exit:error\n");
	log_flush();

bail:
	/* stop all the worker threads */
	io_stop(&io);

	for (j = 0; j < diskmax; ++j) {
		struct snapraid_file* file = handle[j].file;
		struct snapraid_disk* disk = handle[j].disk;
		ret = handle_close(&handle[j]);
		if (ret == -1) {
			/* LCOV_EXCL_START */
			log_tag("error:%u:%s:%s: Close error. %s\n", blockcur, disk->name, esc_tag(file->sub, esc_buffer), strerror(errno));
			log_fatal("DANGER! Unexpected close error in a data disk.\n");
			++error;
			/* continue, as we are already exiting */
			/* LCOV_EXCL_STOP */
		}
	}

	free(handle);
	free(rehandle_alloc);
	free(waiting_map);
	io_done(&io);
	free(block_enabled);

	if (state->opt.expect_recoverable) {
		if (error + silent_error + io_error == 0)
			return -1;
	} else {
		if (error + silent_error + io_error != 0)
			return -1;
	}
	return 0;
}

/**
 * Return a * b / c approximated to the upper value.
 */
static uint32_t md(uint32_t a, uint32_t b, uint32_t c)
{
	uint64_t v = a;

	v *= b;
	v += c - 1;
	v /= c;

	return v;
}

int state_scrub(struct snapraid_state* state, int plan, int olderthan)
{
	block_off_t blockmax;
	block_off_t countlimit;
	block_off_t i;
	block_off_t count;
	time_t recentlimit;
	int ret;
	struct snapraid_parity_handle parity_handle[LEV_MAX];
	struct snapraid_plan ps;
	time_t* timemap;
	unsigned error;
	time_t now;
	unsigned l;

	/* get the present time */
	now = time(0);

	msg_progress("Initializing...\n");

	if ((plan == SCRUB_BAD || plan == SCRUB_NEW || plan == SCRUB_FULL)
		&& olderthan >= 0) {
		/* LCOV_EXCL_START */
		log_fatal("You can specify -o, --older-than only with a numeric percentage.\n");
		exit(EXIT_FAILURE);
		/* LCOV_EXCL_STOP */
	}

	blockmax = parity_allocated_size(state);

	/* preinitialize to avoid warnings */
	countlimit = 0;
	recentlimit = 0;

	ps.state = state;
	if (state->opt.force_scrub_even) {
		ps.plan = SCRUB_EVEN;
	} else if (plan == SCRUB_FULL) {
		ps.plan = SCRUB_FULL;
	} else if (plan == SCRUB_NEW) {
		ps.plan = SCRUB_NEW;
	} else if (plan == SCRUB_BAD) {
		ps.plan = SCRUB_BAD;
	} else if (state->opt.force_scrub_at) {
		/* scrub the specified amount of blocks */
		ps.plan = SCRUB_AUTO;
		countlimit = state->opt.force_scrub_at;
		recentlimit = now;
	} else {
		ps.plan = SCRUB_AUTO;
		if (plan >= 0) {
			countlimit = md(blockmax, plan, 100);
		} else {
			/* by default scrub 8.33% of the array (100/12=8.(3)) */
			countlimit = md(blockmax, 1, 12);
		}

		if (olderthan >= 0) {
			recentlimit = now - olderthan * 24 * 3600;
		} else {
			/* by default use a 10 day time limit */
			recentlimit = now - 10 * 24 * 3600;
		}
	}

	/* identify the time limit */
	/* we sort all the block times, and we identify the time limit for which we reach the quota */
	/* this allow to process first the oldest blocks */
	timemap = malloc_nofail(blockmax * sizeof(time_t));

	/* copy the info in the temp vector */
	count = 0;
	log_tag("block_count:%u\n", blockmax);
	for (i = 0; i < blockmax; ++i) {
		snapraid_info info = info_get(&state->infoarr, i);

		/* skip unused blocks */
		if (info == 0)
			continue;

		timemap[count++] = info_get_time(info);
	}

	if (!count) {
		/* LCOV_EXCL_START */
		log_fatal("The array appears to be empty.\n");
		exit(EXIT_FAILURE);
		/* LCOV_EXCL_STOP */
	}

	/* sort it */
	qsort(timemap, count, sizeof(time_t), time_compare);

	/* output the info map */
	i = 0;
	log_tag("info_count:%u\n", count);
	while (i < count) {
		unsigned j = i + 1;
		while (j < count && timemap[i] == timemap[j])
			++j;
		log_tag("info_time:%" PRIu64 ":%u\n", (uint64_t)timemap[i], j - i);
		i = j;
	}

	/* compute the limits from count/recentlimit */
	if (ps.plan == SCRUB_AUTO) {
		/* no more than the full count */
		if (countlimit > count)
			countlimit = count;

		/* decrease until we reach the specific recentlimit */
		while (countlimit > 0 && timemap[countlimit - 1] > recentlimit)
			--countlimit;

		/* if there is something to scrub */
		if (countlimit > 0) {
			/* get the most recent time we want to scrub */
			ps.timelimit = timemap[countlimit - 1];

			/* count how many entries for this exact time we have to scrub */
			/* if the blocks have all the same time, we end with countlimit == lastlimit */
			ps.lastlimit = 1;
			while (countlimit > ps.lastlimit && timemap[countlimit - ps.lastlimit - 1] == ps.timelimit)
				++ps.lastlimit;
		} else {
			/* if nothing to scrub, disable also other limits */
			ps.timelimit = 0;
			ps.lastlimit = 0;
		}

		log_tag("count_limit:%u\n", countlimit);
		log_tag("time_limit:%" PRIu64 "\n", (uint64_t)ps.timelimit);
		log_tag("last_limit:%u\n", ps.lastlimit);
	}

	/* free the temp vector */
	free(timemap);

	/* open the file for reading */
	for (l = 0; l < state->level; ++l) {
		ret = parity_open(&parity_handle[l], &state->parity[l], l, state->file_mode, state->block_size, state->opt.parity_limit_size);
		if (ret == -1) {
			/* LCOV_EXCL_START */
			log_fatal("WARNING! Without an accessible %s file, it isn't possible to scrub.\n", lev_name(l));
			exit(EXIT_FAILURE);
			/* LCOV_EXCL_STOP */
		}
	}

	error = 0;

	ret = state_scrub_process(state, parity_handle, 0, blockmax, &ps, now);
	if (ret == -1) {
		++error;
		/* continue, as we are already exiting */
	}

	for (l = 0; l < state->level; ++l) {
		ret = parity_close(&parity_handle[l]);
		if (ret == -1) {
			/* LCOV_EXCL_START */
			log_fatal("DANGER! Unexpected close error in %s disk.\n", lev_name(l));
			++error;
			/* continue, as we are already exiting */
			/* LCOV_EXCL_STOP */
		}
	}

	/* abort if required */
	if (error != 0)
		return -1;
	return 0;
}