File: thermal.c

package info (click to toggle)
snapraid 13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: ansic: 46,018; makefile: 1,004; sh: 154
file content (396 lines) | stat: -rw-r--r-- 11,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*
 * Copyright (C) 2025 Andrea Mazzoleni
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "portable.h"

#include "thermal.h"
#include "state.h"
#include "io.h"

#include <math.h>

struct snapraid_thermal* thermal_alloc(uint64_t dev, const char* name)
{
	struct snapraid_thermal* thermal = malloc_nofail(sizeof(struct snapraid_thermal));

	thermal->device = dev;
	thermal->latest_temperature = 0;
	thermal->count = 0;
	pathcpy(thermal->name, sizeof(thermal->name), name);

	return thermal;
}

void thermal_free(struct snapraid_thermal* thermal)
{
	free(thermal);
}

/*
 * Fit exponential heating model to data using least squares
 */
struct snapraid_thermal_params fit_thermal_model(const struct snapraid_thermal_point* points, int n_points, double t_ambient)
{
	struct snapraid_thermal_params model;
	double t_steady_try;
	double k_try;

	memset(&model, 0, sizeof(model));

	model.t_ambient = t_ambient;

	/* at least four points to have a result */
	if (n_points < 4)
		return model;

	double last_temp = points[n_points - 1].temperature;

	/* iterative refinement to find best k_heat and t_steady */
	double best_error = 1e10;
	double best_k = 0;
	double best_t_steady = 0;

	/* grid search for parameters */
	for (t_steady_try = last_temp + 2.0; t_steady_try <= last_temp + 25.0; t_steady_try += 0.5) {
		for (k_try = 0.00001; k_try <= 0.001; k_try *= 1.2) {
			double error = 0.0;
			int i;

			/* calculate error for this parameter set */
			for (i = 0; i < n_points; i++) {
				double t = points[i].time;
				double t_predicted = t_steady_try - (t_steady_try - points[0].temperature) * exp(-k_try * t);
				double diff = points[i].temperature - t_predicted;
				error += diff * diff;
			}

			if (error < best_error) {
				best_error = error;
				best_k = k_try;
				best_t_steady = t_steady_try;
			}
		}
	}

	model.k_heat = best_k;
	model.t_steady = best_t_steady;

	/* calculate quality metrics */
	double sum_squared_residuals = 0.0;
	double sum_total = 0.0;
	double mean_temp = 0.0;
	model.max_error = 0.0;
	int i;

	/* calculate mean temperature */
	for (i = 0; i < n_points; i++)
		mean_temp += points[i].temperature;
	mean_temp /= n_points;

	/* calculate R-squared and errors */
	for (i = 0; i < n_points; i++) {
		double t = points[i].time;
		double t_predicted = model.t_steady - (model.t_steady - points[0].temperature) * exp(-model.k_heat * t);
		double residual = points[i].temperature - t_predicted;

		sum_squared_residuals += residual * residual;
		sum_total += (points[i].temperature - mean_temp) * (points[i].temperature - mean_temp);

		double abs_error = fabs(residual);
		if (abs_error > model.max_error) {
			model.max_error = abs_error;
		}
	}

	model.rmse = sqrt(sum_squared_residuals / n_points);
	model.r_squared = 1.0 - (sum_squared_residuals / sum_total);

	return model;
}

static int smart_temp(devinfo_t* devinfo)
{
	uint64_t t = devinfo->smart[SMART_TEMPERATURE_CELSIUS];

	/* validate temperature */
	if (t == SMART_UNASSIGNED)
		return -1;
	if (t == 0)
		return -1;
	if (t > 100)
		return -1;

	return t;
}

void state_thermal(struct snapraid_state* state, time_t now)
{
	tommy_node* i;
	unsigned j;
	tommy_list high;
	tommy_list low;
	int ret;

	if (state->thermal_temperature_limit == 0)
		return;

	tommy_list_init(&high);
	tommy_list_init(&low);

	/* for all disks */
	for (i = state->disklist; i != 0; i = i->next) {
		struct snapraid_disk* disk = i->data;
		devinfo_t* entry;

		entry = calloc_nofail(1, sizeof(devinfo_t));

		entry->device = disk->device;
		pathcpy(entry->name, sizeof(entry->name), disk->name);
		pathcpy(entry->mount, sizeof(entry->mount), disk->dir);
		pathcpy(entry->smartctl, sizeof(entry->smartctl), disk->smartctl);
		memcpy(entry->smartignore, disk->smartignore, sizeof(entry->smartignore));

		tommy_list_insert_tail(&high, &entry->node, entry);
	}

	/* for all parities */
	for (j = 0; j < state->level; ++j) {
		devinfo_t* entry;
		unsigned s;

		for (s = 0; s < state->parity[j].split_mac; ++s) {
			entry = calloc_nofail(1, sizeof(devinfo_t));

			entry->device = state->parity[j].split_map[s].device;
			pathcpy(entry->name, sizeof(entry->name), lev_config_name(j));
			pathcpy(entry->mount, sizeof(entry->mount), state->parity[j].split_map[s].path);
			pathcpy(entry->smartctl, sizeof(entry->smartctl), state->parity[j].smartctl);
			memcpy(entry->smartignore, state->parity[j].smartignore, sizeof(entry->smartignore));
			pathcut(entry->mount); /* remove the parity file */

			tommy_list_insert_tail(&high, &entry->node, entry);
		}
	}

	if (state->opt.fake_device) {
		ret = devtest(&high, &low, DEVICE_SMART);
	} else {
		ret = devquery(&high, &low, DEVICE_SMART, 0 /* only disks in the array */);
	}

	/* on error, just disable thermal gathering */
	if (ret != 0)
		return;

	/* if the list is empty, it's not supported in this platform */
	if (tommy_list_empty(&low))
		return;

	/* if ambient temperature is not set, set it now with the lowest HD temperature */
	if (state->thermal_ambient_temperature == 0) {
		state->thermal_ambient_temperature = ambient_temperature();

		for (i = tommy_list_head(&low); i != 0; i = i->next) {
			devinfo_t* devinfo = i->data;

			int temp = smart_temp(devinfo);
			if (temp < 0)
				continue;

			log_tag("thermal:system:candidate:%d\n", temp);

			if (state->thermal_ambient_temperature == 0 || state->thermal_ambient_temperature > temp)
				state->thermal_ambient_temperature = temp;
		}

		log_tag("thermal:system:final:%d\n", state->thermal_ambient_temperature);
	}

	int highest_temperature = 0;
	for (i = tommy_list_head(&low); i != 0; i = i->next) {
		tommy_node* t;
		struct snapraid_thermal* found;
		devinfo_t* devinfo = i->data;
		unsigned k;

		int temperature = smart_temp(devinfo);
		if (temperature < 0)
			continue;

		/* search of the entry */
		found = 0;
		for (t = tommy_list_head(&state->thermallist); t != 0; t = t->next) {
			struct snapraid_thermal* thermal = t->data;
			if (thermal->device == devinfo->device) {
				found = thermal;
				break;
			}
		}

		/* if not found, create it */
		if (found == 0) {
			found = thermal_alloc(devinfo->device, devinfo->name);
			tommy_list_insert_tail(&state->thermallist, &found->node, found);
		}

		found->latest_temperature = temperature;

		if (highest_temperature < temperature)
			highest_temperature = temperature;

		log_tag("thermal:current:%s:%" PRIu64 ":%d\n", devinfo->name, devinfo->device, temperature);

		if (state->thermal_stop_gathering)
			continue;

		if (found->count + 1 >= THERMAL_MAX) /* keep one extra space at the end */
			continue;

		/* only monotone increasing temperature */
		if (found->count > 0 && found->data[found->count - 1].temperature >= temperature)
			continue;

		/* insert the new data point */
		found->data[found->count].temperature = temperature;
		found->data[found->count].time = now - state->thermal_first;
		++found->count;

		if (state->opt.fake_device) {
			/* fill with fake data */
			found->data[0].time = 0;
			found->data[0].temperature = 27;
			found->data[1].time = 100;
			found->data[1].temperature = 28;
			found->data[2].time = 300;
			found->data[2].temperature = 29;
			found->data[3].time = 700;
			found->data[3].temperature = 30;
			found->data[4].time = 1500;
			found->data[4].temperature = 31;
			found->count = 5;
		}

		/* log the new data */
		log_tag("thermal:heat:%s:%" PRIu64 ":%u:", devinfo->name, devinfo->device, found->count);
		for (k = 0; k < found->count; ++k)
			log_tag("%s%d/%d", k > 0 ? "," : "", (int)found->data[k].temperature, (int)found->data[k].time);
		log_tag("\n");

		/* estimate parameters */
		found->params = fit_thermal_model(found->data, found->count, state->thermal_ambient_temperature);

		log_tag("thermal:params:%s:%" PRIu64 ":%g:%g:%g:%g:%g:%g\n", devinfo->name, devinfo->device,
			found->params.k_heat, found->params.t_ambient, found->params.t_steady,
			found->params.rmse, found->params.r_squared, found->params.max_error);
	}

	/* always update the highest temperature */
	state->thermal_highest_temperature = highest_temperature;

	log_tag("thermal:highest:%d\n", highest_temperature);
	log_flush();

	tommy_list_foreach(&high, free);
	tommy_list_foreach(&low, free);
}

int state_thermal_alarm(struct snapraid_state* state)
{
	/* if no limit, there is no thermal support */
	if (state->thermal_temperature_limit == 0)
		return 0;

	if (state->thermal_highest_temperature <= state->thermal_temperature_limit)
		return 0;

	return 1;
}

void state_thermal_cooldown(struct snapraid_state* state)
{
	int sleep_time = state->thermal_cooldown_time;

	if (sleep_time == 0)
		sleep_time = 5 * 60; /* default sleep time */
	if (sleep_time < 5 * 60)
		sleep_time = 5 * 60; /* minimum sleep time */

	/* from now on, stop any further data gathering as the heating is interrupted */
	state->thermal_stop_gathering = 1;

	log_tag("thermal:spindown\n");
	state_device(state, DEVICE_DOWN, 0);

	msg_progress("Cooldown...\n");

	log_tag("thermal:cooldown:%d\n", sleep_time);
	printf("Waiting for %d minutes...\n", sleep_time / 60);

	log_flush();

	/* every 30 seconds spin down any disk that was spunup */
	while (sleep_time > 0) {
		state_device(state, DEVICE_DOWNIFUP, 0);

		sleep(30);
		sleep_time -= 30;
	}

	if (!global_interrupt) { /* don't wake-up if we are interrupting */
		log_tag("thermal:spinup\n");

		/* spinup */
		state_device(state, DEVICE_UP, 0);

		/* log new thermal info */
		state_thermal(state, 0);
	}
}

int state_thermal_begin(struct snapraid_state* state, time_t now)
{
	if (state->thermal_temperature_limit == 0)
		return 1;

	/* initial thermal measure */
	state->thermal_first = now;
	state->thermal_latest = now;
	state_thermal(state, now);

	if (state->thermal_ambient_temperature != 0) {
		printf("System temperature is %u degrees\n", state->thermal_ambient_temperature);

		if (state->thermal_temperature_limit != 0 && state->thermal_temperature_limit <= state->thermal_ambient_temperature) {
			/* LCOV_EXCL_START */
			log_fatal("DANGER! System temperature of %d degrees is higher than the temperature limit of %d degrees. Unable to proceeed!\n", state->thermal_ambient_temperature, state->thermal_temperature_limit);
			log_flush();
			return 0;
			/* LCOV_EXCL_STOP */
		}
	}

	if (state_thermal_alarm(state)) {
		/* LCOV_EXCL_START */
		log_fatal("DANGER! Hard disk temperature of %d degrees is already outside the operating range. Unable to proceeed!\n", state->thermal_highest_temperature);
		log_flush();
		return 0;
		/* LCOV_EXCL_STOP */
	}

	return 1;
}