1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __RAID_COMBO_H
#define __RAID_COMBO_H
#include <assert.h>
/**
* Get the first permutation with repetition of r of n elements.
*
* Typical use is with permutation_next() in the form :
*
* int i[R];
* permutation_first(R, N, i);
* do {
* code using i[0], i[1], ..., i[R-1]
* } while (permutation_next(R, N, i));
*
* It's equivalent at the code :
*
* for(i[0]=0;i[0]<N;++i[0])
* for(i[1]=0;i[1]<N;++i[1])
* ...
* for(i[R-2]=0;i[R-2]<N;++i[R-2])
* for(i[R-1]=0;i[R-1]<N;++i[R-1])
* code using i[0], i[1], ..., i[R-1]
*/
static __always_inline void permutation_first(int r, int n, int *c)
{
int i;
(void)n; /* unused, but kept for clarity */
assert(0 < r && r <= n);
for (i = 0; i < r; ++i)
c[i] = 0;
}
/**
* Get the next permutation with repetition of r of n elements.
* Return ==0 when finished.
*/
static __always_inline int permutation_next(int r, int n, int *c)
{
int i = r - 1; /* present position */
recurse:
/* next element at position i */
++c[i];
/* if the position has reached the max */
if (c[i] >= n) {
/* if we are at the first level, we have finished */
if (i == 0)
return 0;
/* increase the previous position */
--i;
goto recurse;
}
++i;
/* initialize all the next positions, if any */
while (i < r) {
c[i] = 0;
++i;
}
return 1;
}
/**
* Get the first combination without repetition of r of n elements.
*
* Typical use is with combination_next() in the form :
*
* int i[R];
* combination_first(R, N, i);
* do {
* code using i[0], i[1], ..., i[R-1]
* } while (combination_next(R, N, i));
*
* It's equivalent at the code :
*
* for(i[0]=0;i[0]<N-(R-1);++i[0])
* for(i[1]=i[0]+1;i[1]<N-(R-2);++i[1])
* ...
* for(i[R-2]=i[R-3]+1;i[R-2]<N-1;++i[R-2])
* for(i[R-1]=i[R-2]+1;i[R-1]<N;++i[R-1])
* code using i[0], i[1], ..., i[R-1]
*/
static __always_inline void combination_first(int r, int n, int *c)
{
int i;
(void)n; /* unused, but kept for clarity */
assert(0 < r && r <= n);
for (i = 0; i < r; ++i)
c[i] = i;
}
/**
* Get the next combination without repetition of r of n elements.
* Return ==0 when finished.
*/
static __always_inline int combination_next(int r, int n, int *c)
{
int i = r - 1; /* present position */
int h = n; /* high limit for this position */
recurse:
/* next element at position i */
++c[i];
/* if the position has reached the max */
if (c[i] >= h) {
/* if we are at the first level, we have finished */
if (i == 0)
return 0;
/* increase the previous position */
--i;
--h;
goto recurse;
}
++i;
/* initialize all the next positions, if any */
while (i < r) {
/* each position start at the next value of the previous one */
c[i] = c[i - 1] + 1;
++i;
}
return 1;
}
#endif
|