1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __RAID_CPU_H
#define __RAID_CPU_H
#ifdef CONFIG_X86
static inline void raid_cpuid(uint32_t func_eax, uint32_t sub_ecx, uint32_t *reg)
{
asm volatile (
#if defined(__i386__) && defined(__PIC__)
/* allow compilation in PIC mode saving ebx */
"xchgl %%ebx, %1\n"
"cpuid\n"
"xchgl %%ebx, %1\n"
: "=a" (reg[0]), "=r" (reg[1]), "=c" (reg[2]), "=d" (reg[3])
: "0" (func_eax), "2" (sub_ecx)
#else
"cpuid\n"
: "=a" (reg[0]), "=b" (reg[1]), "=c" (reg[2]), "=d" (reg[3])
: "0" (func_eax), "2" (sub_ecx)
#endif
);
}
static inline void raid_xgetbv(uint32_t* reg)
{
/* get the value of the Extended Control Register ecx=0 */
asm volatile (
/* uses a direct encoding of the XGETBV instruction as only recent */
/* assemblers support it. */
/* the next line is equivalent at: "xgetbv\n" */
".byte 0x0f, 0x01, 0xd0\n"
: "=a" (reg[0]), "=d" (reg[3])
: "c" (0)
);
}
#define CPU_VENDOR_MAX 13
static inline void raid_cpu_info(char *vendor, unsigned *family, unsigned *model)
{
uint32_t reg[4];
unsigned f, ef, m, em;
raid_cpuid(0, 0, reg);
((uint32_t*)vendor)[0] = reg[1];
((uint32_t*)vendor)[1] = reg[3];
((uint32_t*)vendor)[2] = reg[2];
vendor[12] = 0;
raid_cpuid(1, 0, reg);
f = (reg[0] >> 8) & 0xF;
ef = (reg[0] >> 20) & 0xFF;
m = (reg[0] >> 4) & 0xF;
em = (reg[0] >> 16) & 0xF;
if (strcmp(vendor, "AuthenticAMD") == 0) {
if (f < 15) {
*family = f;
*model = m;
} else {
*family = f + ef;
*model = m + (em << 4);
}
} else {
*family = f + ef;
*model = m + (em << 4);
}
}
static inline int raid_cpu_match_sse(uint32_t cpuid_1_ecx, uint32_t cpuid_1_edx)
{
uint32_t reg[4];
raid_cpuid(1, 0, reg);
if ((reg[2] & cpuid_1_ecx) != cpuid_1_ecx)
return 0;
if ((reg[3] & cpuid_1_edx) != cpuid_1_edx)
return 0;
return 1;
}
static inline int raid_cpu_match_avx(uint32_t cpuid_1_ecx, uint32_t cpuid_7_ebx, uint32_t xcr0)
{
uint32_t reg[4];
raid_cpuid(1, 0, reg);
if ((reg[2] & cpuid_1_ecx) != cpuid_1_ecx)
return 0;
raid_xgetbv(reg);
if ((reg[0] & xcr0) != xcr0)
return 0;
raid_cpuid(7, 0, reg);
if ((reg[1] & cpuid_7_ebx) != cpuid_7_ebx)
return 0;
return 1;
}
static inline int raid_cpu_has_sse2(void)
{
/*
* Intel 64 and IA-32 Architectures Software Developer's Manual
* 325462-048US September 2013
*
* 11.6.2 Checking for SSE/SSE2 Support
* Before an application attempts to use the SSE and/or SSE2 extensions, it should check
* that they are present on the processor:
* 1. Check that the processor supports the CPUID instruction. Bit 21 of the EFLAGS
* register can be used to check processor's support the CPUID instruction.
* 2. Check that the processor supports the SSE and/or SSE2 extensions (true if
* CPUID.01H:EDX.SSE[bit 25] = 1 and/or CPUID.01H:EDX.SSE2[bit 26] = 1).
*/
return raid_cpu_match_sse(
0,
1 << 26); /* SSE2 */
}
static inline int raid_cpu_has_ssse3(void)
{
/*
* Intel 64 and IA-32 Architectures Software Developer's Manual
* 325462-048US September 2013
*
* 12.7.2 Checking for SSSE3 Support
* Before an application attempts to use the SSSE3 extensions, the application should
* follow the steps illustrated in Section 11.6.2, "Checking for SSE/SSE2 Support."
* Next, use the additional step provided below:
* Check that the processor supports SSSE3 (if CPUID.01H:ECX.SSSE3[bit 9] = 1).
*/
return raid_cpu_match_sse(
1 << 9, /* SSSE3 */
1 << 26); /* SSE2 */
}
static inline int raid_cpu_has_crc32(void)
{
/*
* Intel 64 and IA-32 Architectures Software Developer's Manual
* 325462-048US September 2013
*
* 12.12.3 Checking for SSE4.2 Support
* ...
* Before an application attempts to use the CRC32 instruction, it must check
* that the processor supports SSE4.2 (if CPUID.01H:ECX.SSE4_2[bit 20] = 1).
*/
return raid_cpu_match_sse(
1 << 20, /* CRC32 */
0);
}
static inline int raid_cpu_has_avx2(void)
{
/*
* Intel Architecture Instruction Set Extensions Programming Reference
* 319433-022 October 2014
*
* 14.3 Detection of AVX instructions
* 1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
* 2) Issue XGETBV and verify that XCR0[2:1] = `11b' (XMM state and YMM state are enabled by OS).
* 3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
* (Step 3 can be done in any order relative to 1 and 2)
*
* 14.7.1 Detection of AVX2
* Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.
* Application Software must identify that hardware supports AVX, after that it must
* also detect support for AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5].
*/
return raid_cpu_match_avx(
(1 << 27) | (1 << 28), /* OSXSAVE and AVX */
1 << 5, /* AVX2 */
3 << 1); /* OS saves XMM and YMM registers */
}
static inline int raid_cpu_has_avx512bw(void)
{
/*
* Intel Architecture Instruction Set Extensions Programming Reference
* 319433-022 October 2014
*
* 2.2 Detection of 512-bit Instruction Groups of Intel AVX-512 Family
* 1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use)
* 2) Execute XGETBV and verify that XCR0[7:5] = `111b' (OPMASK state, upper 256-bit of
* ZMM0-ZMM15 and ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = `11b'
* (XMM state and YMM state are enabled by OS).
* 3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512BW[bit 30] = 1.
*/
/* note that intentionally we don't check for AVX and AVX2 */
/* because the documentation doesn't require that */
return raid_cpu_match_avx(
1 << 27, /* XSAVE/XGETBV */
(1 << 16) | (1 << 30), /* AVX512F and AVX512BW */
(3 << 1) | (7 << 5)); /* OS saves XMM, YMM and ZMM registers */
}
/**
* Check if it's an Intel Atom CPU.
*/
static inline int raid_cpu_is_atom(unsigned family, unsigned model)
{
if (family != 6)
return 0;
/*
* x86 Architecture CPUID
* http://www.sandpile.org/x86/cpuid.htm
*
* Intel Atom
* 1C (28) Atom (45 nm) with 512 KB on-die L2
* 26 (38) Atom (45 nm) with 512 KB on-die L2
* 36 (54) Atom (32 nm) with 512 KB on-die L2
* 27 (39) Atom (32 nm) with 512 KB on-die L2
* 35 (53) Atom (?? nm) with ??? KB on-die L2
* 4A (74) Atom 2C (22 nm) 1 MB L2 + PowerVR (TGR)
* 5A (90) Atom 4C (22 nm) 2 MB L2 + PowerVR (ANN)
* 37 (55) Atom 4C (22 nm) 2 MB L2 + Intel Gen7 (BYT)
* 4C (76) Atom 4C (14 nm) 2 MB L2 + Intel Gen8 (BSW)
* 5D (93) Atom 4C (28 nm TSMC) 1 MB L2 + Mali (SoFIA)
* 4D (77) Atom 8C (22 nm) 4 MB L2 (AVN)
* ?? Atom ?C (14 nm) ? MB L2 (DVN)
*/
return model == 28 || model == 38 || model == 54
|| model == 39 || model == 53 || model == 74
|| model == 90 || model == 55 || model == 76
|| model == 93 || model == 77;
}
/**
* Check if the processor has a slow MULT implementation.
* If yes, it's better to use a hash not based on multiplication.
*/
static inline int raid_cpu_has_slowmult(void)
{
char vendor[CPU_VENDOR_MAX];
unsigned family;
unsigned model;
/*
* In some cases Murmur3 based on MUL instruction,
* is a LOT slower than Spooky2 based on SHIFTs.
*/
raid_cpu_info(vendor, &family, &model);
if (strcmp(vendor, "GenuineIntel") == 0) {
/*
* Intel Atom (Model 28)
* murmur3:378 MB/s, spooky2:3413 MB/s (x86)
*
* Intel Atom (Model 77)
* murmur3:1311 MB/s, spooky2:4056 MB/s (x64)
*/
if (raid_cpu_is_atom(family, model))
return 1;
}
return 0;
}
/**
* Check if the processor has a slow extended set of SSE registers.
* If yes, it's better to limit the unroll to the firsrt 8 registers.
*/
static inline int raid_cpu_has_slowextendedreg(void)
{
char vendor[CPU_VENDOR_MAX];
unsigned family;
unsigned model;
/*
* In some cases the PAR2 implementation using 16 SSE registers
* is a LITTLE slower than the one using only the first 8 registers.
* This doesn't happen for PARZ.
*/
raid_cpu_info(vendor, &family, &model);
if (strcmp(vendor, "AuthenticAMD") == 0) {
/*
* AMD Bulldozer
* par2_sse2:4922 MB/s, par2_sse2e:4465 MB/s
*/
if (family == 21)
return 1;
}
if (strcmp(vendor, "GenuineIntel") == 0) {
/*
* Intel Atom (Model 77)
* par2_sse2:5686 MB/s, par2_sse2e:5250 MB/s
* parz_sse2:3100 MB/s, parz_sse2e:3400 MB/s
* par3_sse3:1921 MB/s, par3_sse3e:1813 MB/s
* par4_sse3:1175 MB/s, par4_sse3e:1113 MB/s
* par5_sse3:876 MB/s, par5_sse3e:675 MB/s
* par6_sse3:705 MB/s, par6_sse3e:529 MB/s
*
* Intel Atom (Model 77) "Avoton C2750"
* par2_sse2:5661 MB/s, par2_sse2e:5382 MB/s
* parz_sse2:3110 MB/s, parz_sse2e:3450 MB/s
* par3_sse3:1769 MB/s, par3_sse3e:1856 MB/s
* par4_sse3:1221 MB/s, par4_sse3e:1141 MB/s
* par5_sse3:910 MB/s, par5_sse3e:675 MB/s
* par6_sse3:720 MB/s, par6_sse3e:534 MB/s
*/
if (raid_cpu_is_atom(family, model))
return 1;
}
return 0;
}
#endif
#endif
|