1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdio.h>
#include <stdint.h>
/**
* Multiplication a*b in GF(2^8).
*/
static uint8_t gfmul(uint8_t a, uint8_t b)
{
uint8_t v;
v = 0;
while (b) {
if ((b & 1) != 0)
v ^= a;
if ((a & 0x80) != 0) {
a <<= 1;
a ^= 0x1d;
} else {
a <<= 1;
}
b >>= 1;
}
return v;
}
/**
* Inversion (1/a) in GF(2^8).
*/
uint8_t gfinv[256];
/**
* Number of parities.
* This is the number of rows of the generator matrix.
*/
#define PARITY 6
/**
* Number of disks.
* This is the number of columns of the generator matrix.
*/
#define DISK (257 - PARITY)
/**
* Setup the Cauchy matrix used to generate the parity.
*/
static void set_cauchy(uint8_t *matrix)
{
int i, j;
uint8_t inv_x, y;
/*
* The first row of the generator matrix is formed by all 1.
*
* The generator matrix is an Extended Cauchy matrix built from
* a Cauchy matrix adding at the top a row of all 1.
*
* Extending a Cauchy matrix in this way maintains the MDS property
* of the matrix.
*
* For example, considering a generator matrix of 4x6 we have now:
*
* 1 1 1 1 1 1
* - - - - - -
* - - - - - -
* - - - - - -
*/
for (i = 0; i < DISK; ++i)
matrix[0 * DISK + i] = 1;
/*
* Second row is formed with powers 2^i, and it's the first
* row of the Cauchy matrix.
*
* Each element of the Cauchy matrix is in the form 1/(x_i + y_j)
* where all x_i and y_j must be different for any i and j.
*
* For the first row with j=0, we choose x_i = 2^-i and y_0 = 0
* and we obtain a first row formed as:
*
* 1/(x_i + y_0) = 1/(2^-i + 0) = 2^i
*
* with 2^-i != 0 for any i
*
* In the example we get:
*
* x_0 = 1
* x_1 = 142
* x_2 = 71
* x_3 = 173
* x_4 = 216
* x_5 = 108
* y_0 = 0
*
* with the matrix:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* - - - - - -
* - - - - - -
*/
inv_x = 1;
for (i = 0; i < DISK; ++i) {
matrix[1 * DISK + i] = inv_x;
inv_x = gfmul(2, inv_x);
}
/*
* The rest of the Cauchy matrix is formed choosing for each row j
* a new y_j = 2^j and reusing the x_i already assigned in the first
* row obtaining :
*
* 1/(x_i + y_j) = 1/(2^-i + 2^j)
*
* with 2^-i + 2^j != 0 for any i,j with i>=0,j>=1,i+j<255
*
* In the example we get:
*
* y_1 = 2
* y_2 = 4
*
* with the matrix:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* 244 83 78 183 118 47
* 167 39 213 59 153 82
*/
y = 2;
for (j = 0; j < PARITY - 2; ++j) {
inv_x = 1;
for (i = 0; i < DISK; ++i) {
uint8_t x = gfinv[inv_x];
matrix[(j + 2) * DISK + i] = gfinv[y ^ x];
inv_x = gfmul(2, inv_x);
}
y = gfmul(2, y);
}
/*
* Finally we adjust the matrix multiplying each row for
* the inverse of the first element in the row.
*
* Also this operation maintains the MDS property of the matrix.
*
* Resulting in:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* 1 245 210 196 154 113
* 1 187 166 215 7 106
*/
for (j = 0; j < PARITY - 2; ++j) {
uint8_t f = gfinv[matrix[(j + 2) * DISK]];
for (i = 0; i < DISK; ++i)
matrix[(j + 2) * DISK + i] = gfmul(matrix[(j + 2) * DISK + i], f);
}
}
/**
* Setup the Power matrix used to generate the parity.
*/
static void set_power(uint8_t *matrix)
{
unsigned i;
uint8_t v;
v = 1;
for (i = 0; i < DISK; ++i)
matrix[0 * DISK + i] = v;
v = 1;
for (i = 0; i < DISK; ++i) {
matrix[1 * DISK + i] = v;
v = gfmul(2, v);
}
v = 1;
for (i = 0; i < DISK; ++i) {
matrix[2 * DISK + i] = v;
v = gfmul(0x8e, v);
}
}
/**
* Next power of 2.
*/
static unsigned np(unsigned v)
{
--v;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
++v;
return v;
}
int main(void)
{
uint8_t v;
int i, j, k, p;
uint8_t matrix[PARITY * 256];
printf("/*\n");
printf(" * Copyright (C) 2013 Andrea Mazzoleni\n");
printf(" *\n");
printf(" * This program is free software: you can redistribute it and/or modify\n");
printf(" * it under the terms of the GNU General Public License as published by\n");
printf(" * the Free Software Foundation, either version 2 of the License, or\n");
printf(" * (at your option) any later version.\n");
printf(" *\n");
printf(" * This program is distributed in the hope that it will be useful,\n");
printf(" * but WITHOUT ANY WARRANTY; without even the implied warranty of\n");
printf(" * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n");
printf(" * GNU General Public License for more details.\n");
printf(" */\n");
printf("\n");
printf("#include \"internal.h\"\n");
printf("\n");
/* a*b */
printf("const uint8_t __aligned(256) raid_gfmul[256][256] =\n");
printf("{\n");
for (i = 0; i < 256; ++i) {
printf("\t{\n");
for (j = 0; j < 256; ++j) {
if (j % 8 == 0)
printf("\t\t");
v = gfmul(i, j);
if (v == 1)
gfinv[i] = j;
printf("0x%02x,", (unsigned)v);
if (j % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("\t},\n");
}
printf("};\n\n");
/* 2^a */
printf("const uint8_t __aligned(256) raid_gfexp[256] =\n");
printf("{\n");
v = 1;
for (i = 0; i < 256; ++i) {
if (i % 8 == 0)
printf("\t");
printf("0x%02x,", v);
v = gfmul(v, 2);
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("};\n\n");
/* 1/a */
printf("const uint8_t __aligned(256) raid_gfinv[256] =\n");
printf("{\n");
printf("\t/* note that the first element is not significative */\n");
for (i = 0; i < 256; ++i) {
if (i % 8 == 0)
printf("\t");
if (i == 0)
v = 0;
else
v = gfinv[i];
printf("0x%02x,", v);
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
printf("};\n\n");
/* power matrix */
set_power(matrix);
printf("/**\n");
printf(" * Power matrix used to generate parity.\n");
printf(" * This matrix is valid for up to %u parity with %u data disks.\n", 3, DISK);
printf(" *\n");
for (p = 0; p < 3; ++p) {
printf(" *");
for (i = 0; i < DISK; ++i)
printf(" %02x", matrix[p * DISK + i]);
printf("\n");
}
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfvandermonde[%u][256] =\n", 3);
printf("{\n");
for (p = 0; p < 3; ++p) {
printf("\t{\n");
for (i = 0; i < DISK; ++i) {
if (i % 8 == 0)
printf("\t\t");
printf("0x%02x,", matrix[p * DISK + i]);
if (i != DISK - 1) {
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
}
printf("\n\t},\n");
}
printf("};\n\n");
/* cauchy matrix */
set_cauchy(matrix);
printf("/**\n");
printf(" * Cauchy matrix used to generate parity.\n");
printf(" * This matrix is valid for up to %u parity with %u data disks.\n", PARITY, DISK);
printf(" *\n");
for (p = 0; p < PARITY; ++p) {
printf(" *");
for (i = 0; i < DISK; ++i)
printf(" %02x", matrix[p * DISK + i]);
printf("\n");
}
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfcauchy[%u][256] =\n", PARITY);
printf("{\n");
for (p = 0; p < PARITY; ++p) {
printf("\t{\n");
for (i = 0; i < DISK; ++i) {
if (i % 8 == 0)
printf("\t\t");
printf("0x%02x,", matrix[p * DISK + i]);
if (i != DISK - 1) {
if (i % 8 == 7)
printf("\n");
else
printf(" ");
}
}
printf("\n\t},\n");
}
printf("};\n\n");
printf("#ifdef CONFIG_X86\n");
printf("/**\n");
printf(" * PSHUFB tables for the Cauchy matrix.\n");
printf(" *\n");
printf(" * Indexes are [DISK][PARITY - 2][LH].\n");
printf(" * Where DISK is from 0 to %u, PARITY from 2 to %u, LH from 0 to 1.\n", DISK - 1, PARITY - 1);
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfcauchypshufb[%u][%u][2][16] =\n", DISK, np(PARITY - 2));
printf("{\n");
for (i = 0; i < DISK; ++i) {
printf("\t{\n");
for (p = 2; p < PARITY; ++p) {
printf("\t\t{\n");
for (j = 0; j < 2; ++j) {
printf("\t\t\t{ ");
for (k = 0; k < 16; ++k) {
v = gfmul(matrix[p * DISK + i], k);
if (j == 1)
v = gfmul(v, 16);
printf("0x%02x", (unsigned)v);
if (k != 15)
printf(", ");
}
printf(" },\n");
}
printf("\t\t},\n");
}
printf("\t},\n");
}
printf("};\n");
printf("#endif\n\n");
printf("#ifdef CONFIG_X86\n");
printf("/**\n");
printf(" * PSHUFB tables for generic multiplication.\n");
printf(" *\n");
printf(" * Indexes are [MULTIPLIER][LH].\n");
printf(" * Where MULTIPLIER is from 0 to 255, LH from 0 to 1.\n");
printf(" */\n");
printf("const uint8_t __aligned(256) raid_gfmulpshufb[256][2][16] =\n");
printf("{\n");
for (i = 0; i < 256; ++i) {
printf("\t{\n");
for (j = 0; j < 2; ++j) {
printf("\t\t{ ");
for (k = 0; k < 16; ++k) {
v = gfmul(i, k);
if (j == 1)
v = gfmul(v, 16);
printf("0x%02x", (unsigned)v);
if (k != 15)
printf(", ");
}
printf(" },\n");
}
printf("\t},\n");
}
printf("};\n");
printf("#endif\n\n");
return 0;
}
|