1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "internal.h"
#include "gf.h"
/*
* Cauchy Matrix Construction for MDS RAID with Arbitrary Parity Levels in GF(2^8)
*
* This is a RAID implementation operating in the Galois Field GF(2^8) with
* the primitive polynomial x^8 + x^4 + x^3 + x^2 + 1 (285 decimal), supporting
* up to six parity levels.
*
* For RAID5 and RAID6, it follows the method described in H. Peter Anvin's
* paper "The mathematics of RAID-6" [1]. Please refer to this paper for a
* complete explanation.
*
* Triple parity was first evaluated using an extension of the same approach,
* with additional parity coefficients set as powers of 2^-1, defined as:
*
* P = sum(Di)
* Q = sum(2^i * Di)
* R = sum(2^-i * Di) for 0 <= i < N
*
* This approach works efficiently for triple parity because multiplications
* and divisions by 2 in GF(2^8) are very fast. It is similar to ZFS RAIDZ3,
* which uses powers of 4 instead of 2^-1.
*
* Unfortunately, this method does not extend beyond triple parity because
* no choice of power coefficients guarantees solvable equations for all
* combinations of missing disks. This is expected: a Vandermonde matrix,
* used in this method, does not ensure that all submatrices are nonsingular
* [2, Chap. 11, Problem 7], which is required for an MDS (Maximum Distance
* Separable) code [2, Chap. 11, Theorem 8].
*
* To overcome this limitation, a Cauchy matrix [3][4] is used for parity
* computation. A Cauchy matrix ensures that all square submatrices are
* nonsingular, so the linear system is always solvable for any combination
* of missing disks. This guarantees an MDS code.
*
* How the matrix is obtained:
*
* The matrix is constructed to match Linux RAID coefficients for the
* first two rows, while ensuring that all square submatrices are nonsingular.
*
* 1. Start by forming a Cauchy matrix with elements defined as 1/(x_i + y_j),
* where all x_i and y_j are distinct elements (the textbook definition
* of a Cauchy matrix).
*
* 2. For the first row (j=0), set x_i = 2^-i and y_0 = 0, resulting in:
*
* row j=0 -> 1/(x_i + y_0) = 1/(2^-i + 0) = 2^i
*
* which reproduces the RAID-6 coefficients.
*
* 3. For subsequent rows (j>0), set y_j = 2^j, yielding:
*
* rows j>0 -> 1/(x_i + y_j) = 1/(2^-i + 2^j)
*
* ensuring x_i != y_j for any i >= 0, j >= 1, and i + j < 255.
*
* 4. Place a row filled with 1 at the top of the matrix, transforming it
* into an Extended Cauchy Matrix. This preserves the nonsingularity
* of all square submatrices.
*
* This first row reproduces the RAID-5 coefficients.
*
* 5. Adjust each row with a factor so that the first column contains all 1s.
* This transformation also preserves the nonsingularity property,
* maintaining the MDS code property.
*
* Concrete example in GF(256) for k=6, m=4:
*
* First, create a 3x6 Cauchy matrix using x_i = 2^-i and y_0 = 0, y_j = 2^j for j>0:
*
* x = { 1, 142, 71, 173, 216, 108 }
* y = { 0, 2, 4 }
*
* The Cauchy matrix is:
*
* 1 2 4 8 16 32
* 244 83 78 183 118 47
* 167 39 213 59 153 82
*
* Divide row 2 by 244 and row 3 by 167. Then extend it with a row of ones
* on top, and it remains MDS. This forms the code for m=4, with RAID-6 as
* a subset:
*
* 1 1 1 1 1 1
* 1 2 4 8 16 32
* 1 245 210 196 154 113
* 1 187 166 215 199 7
*
* Extending the same computation to k=251 and m=6 gives:
*
* This results in the matrix A[row, col] defined as:
*
* 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01...
* 01 02 04 08 10 20 40 80 1d 3a 74 e8 cd 87 13 26 4c 98 2d 5a b4 75...
* 01 f5 d2 c4 9a 71 f1 7f fc 87 c1 c6 19 2f 40 55 3d ba 53 04 9c 61...
* 01 bb a6 d7 c7 07 ce 82 4a 2f a5 9b b6 60 f1 ad e7 f4 06 d2 df 2e...
* 01 97 7f 9c 7c 18 bd a2 58 1a da 74 70 a3 e5 47 29 07 f5 80 23 e9...
* 01 2b 3f cf 73 2c d6 ed cb 74 15 78 8a c1 17 c9 89 68 21 ab 76 3b...
*
* This matrix supports six levels of parity, one for each row, for up to 251
* data disks, one for each column. All the 377,342,351,231 square submatrices
* are nonsingular, verified also by brute-force testing.
*
* This matrix can be extended to support any number of parities by simply
* adding additional rows and removing one column for each new row to maintain
* the condition i + j < 255.
* (See mktables.c for more details on how the matrix is generated.)
*
* The downside is that generic multiplications are required to compute the
* parity, not only fast multiplications by 2^n or 2^-n, which negatively
* affect performance. However, optimized parallel multiplications using SSSE3
* or AVX2 instructions [1][5] make this approach competitive with the triple
* parity computation using power coefficients.
*
* Another advantage of the Cauchy matrix is that the first two rows can
* replicate the RAID5 and RAID6 approach, resulting in a compatible extension.
* SSSE3 or AVX2 instructions are only needed for triple parity or beyond.
*
* Parity computation is as follows:
*
* P = sum(Di)
* Q = sum(2^i * Di)
* R = sum(A[2,i] * Di)
* S = sum(A[3,i] * Di)
* T = sum(A[4,i] * Di)
* U = sum(A[5,i] * Di) for 0 <= i < N
*
* Recovery from six disk failures at indices x, y, z, h, v, w (0 <= x < y < z < h < v < w < N)
* involves computing parity of the remaining N-6 disks:
*
* Pa = sum(Di)
* Qa = sum(2^i * Di)
* Ra = sum(A[2,i] * Di)
* Sa = sum(A[3,i] * Di)
* Ta = sum(A[4,i] * Di)
* Ua = sum(A[5,i] * Di) for i != x,y,z,h,v,w
*
* Defining:
*
* Pd = Pa + P
* Qd = Qa + Q
* Rd = Ra + R
* Sd = Sa + S
* Td = Ta + T
* Ud = Ua + U
*
* yields:
*
* Pd = Dx + Dy + Dz + Dh + Dv + Dw
* Qd = 2^x * Dx + 2^y * Dy + 2^z * Dz + 2^h * Dh + 2^v * Dv + 2^w * Dw
* Rd = A[2,x] * Dx + A[2,y] * Dy + A[2,z] * Dz + A[2,h] * Dh + A[2,v] * Dv + A[2,w] * Dw
* Sd = A[3,x] * Dx + A[3,y] * Dy + A[3,z] * Dz + A[3,h] * Dh + A[3,v] * Dv + A[3,w] * Dw
* Td = A[4,x] * Dx + A[4,y] * Dy + A[4,z] * Dz + A[4,h] * Dh + A[4,v] * Dv + A[4,w] * Dw
* Ud = A[5,x] * Dx + A[5,y] * Dy + A[5,z] * Dz + A[5,h] * Dh + A[5,v] * Dv + A[5,w] * Dw
*
* This linear system is always solvable since the coefficient matrix is
* nonsingular due to the properties of A[].
*
* Example performance on a Intel Core i7-10700 CPU @ 2.90GHz, stripe 256 KiB, 8 data disks:
*
* int8 int32 int64 sse2 sse2e ssse3 ssse3e avx2 avx2e
* gen1 24995 46562 62683 77069
* gen2 8243 15879 25788 27292 44907
* genz 5509 10588 14485 13920 25175
* gen3 1190 13201 14307 27268
* gen4 914 10061 11006 21328
* gen5 746 7970 8828 17040
* gen6 630 6627 7516 14584
*
* Values are in MiB/s of data processed by a single thread.
* Results can be reproduced using "raid/test/speedtest.c".
*
* Triple parity with power coefficients "1, 2, 2^-1" is slightly faster than
* the Cauchy matrix computation if SSSE3 or AVX2 are available:
*
* int8 int32 int64 sse2 ssse3 avx2
* genz 2337 2874 10920 18944
*
* In conclusion, the use of power coefficients, specifically powers
* of 1, 2, and 2^-1, is the best option to implement triple parity on CPUs
* without SSSE3 and AVX2.
* On modern CPUs with SSSE3 or AVX2, the Cauchy matrix is the best
* option because it provides a fast and general approach that works for any
* number of parities.
*
* References:
* [1] Anvin, "The mathematics of RAID-6", 2004
* [2] MacWilliams, Sloane, "The Theory of Error-Correcting Codes", 1977
* [3] Blomer, "An XOR-Based Erasure-Resilient Coding Scheme", 1995
* [4] Roth, "Introduction to Coding Theory", 2006
* [5] Plank, "Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions", 2013
*/
/**
* Generator matrix currently used.
*/
const uint8_t (*raid_gfgen)[256];
void raid_mode(int mode)
{
if (mode == RAID_MODE_VANDERMONDE) {
raid_gen_ptr[2] = raid_genz_ptr;
raid_gfgen = gfvandermonde;
} else {
raid_gen_ptr[2] = raid_gen3_ptr;
raid_gfgen = gfcauchy;
}
}
/**
* Buffer filled with 0 used in recovering.
*/
static void *raid_zero_block;
void raid_zero(void *zero)
{
raid_zero_block = zero;
}
/*
* Forwarders for parity computation.
*
* These functions compute the parity blocks from the provided data.
*
* The number of parities to compute is implicit in the position in the
* forwarder vector. Position at index #i, computes (#i+1) parities.
*
* All these functions give the guarantee that parities are written
* in order. First parity P, then parity Q, and so on.
* This allows to specify the same memory buffer for multiple parities
* knowing that you'll get the latest written one.
* This characteristic is used by the raid_delta_gen() function to
* avoid to damage unused parities in recovering.
*
* @nd Number of data blocks
* @size Size of the blocks pointed by @v. It must be a multiplier of 64.
* @v Vector of pointers to the blocks of data and parity.
* It has (@nd + #parities) elements. The starting elements are the blocks
* for data, following with the parity blocks.
* Each block has @size bytes.
*/
void (*raid_gen_ptr[RAID_PARITY_MAX])(int nd, size_t size, void **vv);
void (*raid_gen3_ptr)(int nd, size_t size, void **vv);
void (*raid_genz_ptr)(int nd, size_t size, void **vv);
void raid_gen(int nd, int np, size_t size, void **v)
{
/* enforce limit on size */
BUG_ON(size % 64 != 0);
/* enforce limit on number of failures */
BUG_ON(np < 1);
BUG_ON(np > RAID_PARITY_MAX);
raid_gen_ptr[np - 1](nd, size, v);
}
/**
* Inverts the square matrix M of size nxn into V.
*
* This is not a general matrix inversion because we assume the matrix M
* to have all the square submatrix not singular.
* We use Gauss elimination to invert.
*
* @M Matrix to invert with @n rows and @n columns.
* @V Destination matrix where the result is put.
* @n Number of rows and columns of the matrix.
*/
void raid_invert(uint8_t *M, uint8_t *V, int n)
{
int i, j, k;
/* set the identity matrix in V */
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
V[i * n + j] = i == j;
/* for each element in the diagonal */
for (k = 0; k < n; ++k) {
uint8_t f;
/* the diagonal element cannot be 0 because */
/* we are inverting matrices with all the square */
/* submatrices not singular */
BUG_ON(M[k * n + k] == 0);
/* make the diagonal element to be 1 */
f = inv(M[k * n + k]);
for (j = 0; j < n; ++j) {
M[k * n + j] = mul(f, M[k * n + j]);
V[k * n + j] = mul(f, V[k * n + j]);
}
/* make all the elements over and under the diagonal */
/* to be zero */
for (i = 0; i < n; ++i) {
if (i == k)
continue;
f = M[i * n + k];
for (j = 0; j < n; ++j) {
M[i * n + j] ^= mul(f, M[k * n + j]);
V[i * n + j] ^= mul(f, V[k * n + j]);
}
}
}
}
/**
* Computes the parity without the missing data blocks
* and store it in the buffers of such data blocks.
*
* This is the parity expressed as Pa,Qa,Ra,Sa,Ta,Ua in the equations.
*/
void raid_delta_gen(int nr, int *id, int *ip, int nd, size_t size, void **v)
{
void *p[RAID_PARITY_MAX];
void *pa[RAID_PARITY_MAX];
int i, j;
int np;
void *latest;
/* total number of parities we are going to process */
/* they are both the used and the unused ones */
np = ip[nr - 1] + 1;
/* latest missing data block */
latest = v[id[nr - 1]];
/* setup pointers for delta computation */
for (i = 0, j = 0; i < np; ++i) {
/* keep a copy of the original parity vector */
p[i] = v[nd + i];
if (ip[j] == i) {
/*
* Set used parities to point to the missing
* data blocks.
*
* The related data blocks are instead set
* to point to the "zero" buffer.
*/
/* the latest parity to use ends the for loop and */
/* then it cannot happen to process more of them */
BUG_ON(j >= nr);
/* buffer for missing data blocks */
pa[j] = v[id[j]];
/* set at zero the missing data blocks */
v[id[j]] = raid_zero_block;
/* compute the parity over the missing data blocks */
v[nd + i] = pa[j];
/* check for the next used entry */
++j;
} else {
/*
* Unused parities are going to be rewritten with
* not significative data, because we don't have
* functions able to compute only a subset of
* parities.
*
* To avoid this, we reuse parity buffers,
* assuming that all the parity functions write
* parities in order.
*
* We assign the unused parity block to the same
* block of the latest used parity that we know it
* will be written.
*
* This means that this block will be written
* multiple times and only the latest write will
* contain the correct data.
*/
v[nd + i] = latest;
}
}
/* all the parities have to be processed */
BUG_ON(j != nr);
/* recompute the parity, note that np may be smaller than the */
/* total number of parities available */
raid_gen(nd, np, size, v);
/* restore data buffers as before */
for (j = 0; j < nr; ++j)
v[id[j]] = pa[j];
/* restore parity buffers as before */
for (i = 0; i < np; ++i)
v[nd + i] = p[i];
}
/**
* Recover failure of one data block for PAR1.
*
* Starting from the equation:
*
* Pd = Dx
*
* and solving we get:
*
* Dx = Pd
*/
void raid_rec1of1(int *id, int nd, size_t size, void **v)
{
void *p;
void *pa;
/* for PAR1 we can directly compute the missing block */
/* and we don't need to use the zero buffer */
p = v[nd];
pa = v[id[0]];
/* use the parity as missing data block */
v[id[0]] = p;
/* compute the parity over the missing data block */
v[nd] = pa;
/* compute */
raid_gen(nd, 1, size, v);
/* restore as before */
v[id[0]] = pa;
v[nd] = p;
}
/**
* Recover failure of two data blocks for PAR2.
*
* Starting from the equations:
*
* Pd = Dx + Dy
* Qd = 2^id[0] * Dx + 2^id[1] * Dy
*
* and solving we get:
*
* 1 2^(-id[0])
* Dy = ------------------- * Pd + ------------------- * Qd
* 2^(id[1]-id[0]) + 1 2^(id[1]-id[0]) + 1
*
* Dx = Dy + Pd
*
* with conditions:
*
* 2^id[0] != 0
* 2^(id[1]-id[0]) + 1 != 0
*
* That are always satisfied for any 0<=id[0]<id[1]<255.
*/
void raid_rec2of2_int8(int *id, int *ip, int nd, size_t size, void **vv)
{
uint8_t **v = (uint8_t **)vv;
size_t i;
uint8_t *p;
uint8_t *pa;
uint8_t *q;
uint8_t *qa;
const uint8_t *T[2];
/* get multiplication tables */
T[0] = table(inv(pow2(id[1] - id[0]) ^ 1));
T[1] = table(inv(pow2(id[0]) ^ pow2(id[1])));
/* compute delta parity */
raid_delta_gen(2, id, ip, nd, size, vv);
p = v[nd];
q = v[nd + 1];
pa = v[id[0]];
qa = v[id[1]];
for (i = 0; i < size; ++i) {
/* delta */
uint8_t Pd = p[i] ^ pa[i];
uint8_t Qd = q[i] ^ qa[i];
/* reconstruct */
uint8_t Dy = T[0][Pd] ^ T[1][Qd];
uint8_t Dx = Pd ^ Dy;
/* set */
pa[i] = Dx;
qa[i] = Dy;
}
}
/*
* Forwarders for data recovery.
*
* These functions recover data blocks using the specified parity
* to recompute the missing data.
*
* Note that the format of vectors @id/@ip is different than raid_rec().
* For example, in the vector @ip the first parity is represented with the
* value 0 and not @nd.
*
* @nr Number of failed data blocks to recover.
* @id[] Vector of @nr indexes of the data blocks to recover.
* The indexes start from 0. They must be in order.
* @ip[] Vector of @nr indexes of the parity blocks to use in the recovering.
* The indexes start from 0. They must be in order.
* @nd Number of data blocks.
* @np Number of parity blocks.
* @size Size of the blocks pointed by @v. It must be a multiplier of 64.
* @v Vector of pointers to the blocks of data and parity.
* It has (@nd + @np) elements. The starting elements are the blocks
* for data, following with the parity blocks.
* Each block has @size bytes.
*/
void (*raid_rec_ptr[RAID_PARITY_MAX])(
int nr, int *id, int *ip, int nd, size_t size, void **vv);
void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
{
int nrd; /* number of data blocks to recover */
int nrp; /* number of parity blocks to recover */
/* enforce limit on size */
BUG_ON(size % 64 != 0);
/* enforce limit on number of failures */
BUG_ON(nr > np);
BUG_ON(np > RAID_PARITY_MAX);
/* enforce order in index vector */
BUG_ON(nr >= 2 && ir[0] >= ir[1]);
BUG_ON(nr >= 3 && ir[1] >= ir[2]);
BUG_ON(nr >= 4 && ir[2] >= ir[3]);
BUG_ON(nr >= 5 && ir[3] >= ir[4]);
BUG_ON(nr >= 6 && ir[4] >= ir[5]);
/* enforce limit on index vector */
BUG_ON(nr > 0 && ir[nr-1] >= nd + np);
/* count the number of data blocks to recover */
nrd = 0;
while (nrd < nr && ir[nrd] < nd)
++nrd;
/* all the remaining are parity */
nrp = nr - nrd;
/* enforce limit on number of failures */
BUG_ON(nrd > nd);
BUG_ON(nrp > np);
/* if failed data is present */
if (nrd != 0) {
int ip[RAID_PARITY_MAX];
int i, j, k;
/* setup the vector of parities to use */
for (i = 0, j = 0, k = 0; i < np; ++i) {
if (j < nrp && ir[nrd + j] == nd + i) {
/* this parity has to be recovered */
++j;
} else {
/* this parity is used for recovering */
ip[k] = i;
++k;
}
}
/* recover the nrd data blocks specified in ir[], */
/* using the first nrd parity in ip[] for recovering */
raid_rec_ptr[nrd - 1](nrd, ir, ip, nd, size, v);
}
/* recompute all the parities up to the last bad one */
if (nrp != 0)
raid_gen(nd, ir[nr - 1] - nd + 1, size, v);
}
void raid_data(int nr, int *id, int *ip, int nd, size_t size, void **v)
{
/* enforce limit on size */
BUG_ON(size % 64 != 0);
/* enforce limit on number of failures */
BUG_ON(nr > nd);
BUG_ON(nr > RAID_PARITY_MAX);
/* enforce order in index vector for data */
BUG_ON(nr >= 2 && id[0] >= id[1]);
BUG_ON(nr >= 3 && id[1] >= id[2]);
BUG_ON(nr >= 4 && id[2] >= id[3]);
BUG_ON(nr >= 5 && id[3] >= id[4]);
BUG_ON(nr >= 6 && id[4] >= id[5]);
/* enforce limit on index vector for data */
BUG_ON(nr > 0 && id[nr-1] >= nd);
/* enforce order in index vector for parity */
BUG_ON(nr >= 2 && ip[0] >= ip[1]);
BUG_ON(nr >= 3 && ip[1] >= ip[2]);
BUG_ON(nr >= 4 && ip[2] >= ip[3]);
BUG_ON(nr >= 5 && ip[3] >= ip[4]);
BUG_ON(nr >= 6 && ip[4] >= ip[5]);
/* if failed data is present */
if (nr != 0)
raid_rec_ptr[nr - 1](nr, id, ip, nd, size, v);
}
|