File: raid.c

package info (click to toggle)
snapraid 13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: ansic: 46,018; makefile: 1,004; sh: 154
file content (625 lines) | stat: -rw-r--r-- 19,348 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 * Copyright (C) 2013 Andrea Mazzoleni
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include "internal.h"
#include "gf.h"

/*
 * Cauchy Matrix Construction for MDS RAID with Arbitrary Parity Levels in GF(2^8)
 *
 * This is a RAID implementation operating in the Galois Field GF(2^8) with
 * the primitive polynomial x^8 + x^4 + x^3 + x^2 + 1 (285 decimal), supporting
 * up to six parity levels.
 *
 * For RAID5 and RAID6, it follows the method described in H. Peter Anvin's
 * paper "The mathematics of RAID-6" [1]. Please refer to this paper for a
 * complete explanation.
 *
 * Triple parity was first evaluated using an extension of the same approach,
 * with additional parity coefficients set as powers of 2^-1, defined as:
 *
 *   P = sum(Di)
 *   Q = sum(2^i * Di)
 *   R = sum(2^-i * Di) for 0 <= i < N
 *
 * This approach works efficiently for triple parity because multiplications
 * and divisions by 2 in GF(2^8) are very fast. It is similar to ZFS RAIDZ3,
 * which uses powers of 4 instead of 2^-1.
 *
 * Unfortunately, this method does not extend beyond triple parity because
 * no choice of power coefficients guarantees solvable equations for all
 * combinations of missing disks. This is expected: a Vandermonde matrix,
 * used in this method, does not ensure that all submatrices are nonsingular
 * [2, Chap. 11, Problem 7], which is required for an MDS (Maximum Distance
 * Separable) code [2, Chap. 11, Theorem 8].
 *
 * To overcome this limitation, a Cauchy matrix [3][4] is used for parity
 * computation. A Cauchy matrix ensures that all square submatrices are
 * nonsingular, so the linear system is always solvable for any combination
 * of missing disks. This guarantees an MDS code.
 *
 * How the matrix is obtained:
 *
 *   The matrix is constructed to match Linux RAID coefficients for the
 *   first two rows, while ensuring that all square submatrices are nonsingular.
 *
 *   1. Start by forming a Cauchy matrix with elements defined as 1/(x_i + y_j),
 *      where all x_i and y_j are distinct elements (the textbook definition
 *      of a Cauchy matrix).
 *
 *   2. For the first row (j=0), set x_i = 2^-i and y_0 = 0, resulting in:
 *
 *        row j=0 -> 1/(x_i + y_0) = 1/(2^-i + 0) = 2^i
 *
 *      which reproduces the RAID-6 coefficients.
 *
 *   3. For subsequent rows (j>0), set y_j = 2^j, yielding:
 *
 *        rows j>0 -> 1/(x_i + y_j) = 1/(2^-i + 2^j)
 *
 *      ensuring x_i != y_j for any i >= 0, j >= 1, and i + j < 255.
 *
 *   4. Place a row filled with 1 at the top of the matrix, transforming it
 *      into an Extended Cauchy Matrix. This preserves the nonsingularity
 *      of all square submatrices.
 *
 *      This first row reproduces the RAID-5 coefficients.
 *
 *   5. Adjust each row with a factor so that the first column contains all 1s.
 *      This transformation also preserves the nonsingularity property,
 *      maintaining the MDS code property.
 *
 * Concrete example in GF(256) for k=6, m=4:
 *
 *   First, create a 3x6 Cauchy matrix using x_i = 2^-i and y_0 = 0, y_j = 2^j for j>0:
 *
 *     x = { 1, 142, 71, 173, 216, 108 }
 *     y = { 0, 2, 4 }
 *
 *   The Cauchy matrix is:
 *
 *     1    2    4    8   16   32
 *   244   83   78  183  118   47
 *   167   39  213   59  153   82
 *
 *   Divide row 2 by 244 and row 3 by 167. Then extend it with a row of ones
 *   on top, and it remains MDS. This forms the code for m=4, with RAID-6 as
 *   a subset:
 *
 *     1    1    1    1    1    1 
 *     1    2    4    8   16   32
 *     1  245  210  196  154  113
 *     1  187  166  215  199    7
 *
 * Extending the same computation to k=251 and m=6 gives:
 *
 *   This results in the matrix A[row, col] defined as:
 *
 * 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01...
 * 01 02 04 08 10 20 40 80 1d 3a 74 e8 cd 87 13 26 4c 98 2d 5a b4 75...
 * 01 f5 d2 c4 9a 71 f1 7f fc 87 c1 c6 19 2f 40 55 3d ba 53 04 9c 61...
 * 01 bb a6 d7 c7 07 ce 82 4a 2f a5 9b b6 60 f1 ad e7 f4 06 d2 df 2e...
 * 01 97 7f 9c 7c 18 bd a2 58 1a da 74 70 a3 e5 47 29 07 f5 80 23 e9...
 * 01 2b 3f cf 73 2c d6 ed cb 74 15 78 8a c1 17 c9 89 68 21 ab 76 3b...
 *
 * This matrix supports six levels of parity, one for each row, for up to 251
 * data disks, one for each column. All the 377,342,351,231 square submatrices
 * are nonsingular, verified also by brute-force testing.
 *
 * This matrix can be extended to support any number of parities by simply
 * adding additional rows and removing one column for each new row to maintain
 * the condition i + j < 255.
 * (See mktables.c for more details on how the matrix is generated.)
 *
 * The downside is that generic multiplications are required to compute the
 * parity, not only fast multiplications by 2^n or 2^-n, which negatively
 * affect performance. However, optimized parallel multiplications using SSSE3
 * or AVX2 instructions [1][5] make this approach competitive with the triple
 * parity computation using power coefficients.
 *
 * Another advantage of the Cauchy matrix is that the first two rows can
 * replicate the RAID5 and RAID6 approach, resulting in a compatible extension.
 * SSSE3 or AVX2 instructions are only needed for triple parity or beyond.
 *
 * Parity computation is as follows:
 *
 *   P = sum(Di)
 *   Q = sum(2^i * Di)
 *   R = sum(A[2,i] * Di)
 *   S = sum(A[3,i] * Di)
 *   T = sum(A[4,i] * Di)
 *   U = sum(A[5,i] * Di) for 0 <= i < N
 *
 * Recovery from six disk failures at indices x, y, z, h, v, w (0 <= x < y < z < h < v < w < N)
 * involves computing parity of the remaining N-6 disks:
 *
 *   Pa = sum(Di)
 *   Qa = sum(2^i * Di)
 *   Ra = sum(A[2,i] * Di)
 *   Sa = sum(A[3,i] * Di)
 *   Ta = sum(A[4,i] * Di)
 *   Ua = sum(A[5,i] * Di) for i != x,y,z,h,v,w
 *
 * Defining:
 *
 *   Pd = Pa + P
 *   Qd = Qa + Q
 *   Rd = Ra + R
 *   Sd = Sa + S
 *   Td = Ta + T
 *   Ud = Ua + U
 *
 * yields:
 *
 *   Pd =          Dx +          Dy +          Dz +          Dh +          Dv +          Dw
 *   Qd =    2^x * Dx +    2^y * Dy +    2^z * Dz +    2^h * Dh +    2^v * Dv +    2^w * Dw
 *   Rd = A[2,x] * Dx + A[2,y] * Dy + A[2,z] * Dz + A[2,h] * Dh + A[2,v] * Dv + A[2,w] * Dw
 *   Sd = A[3,x] * Dx + A[3,y] * Dy + A[3,z] * Dz + A[3,h] * Dh + A[3,v] * Dv + A[3,w] * Dw
 *   Td = A[4,x] * Dx + A[4,y] * Dy + A[4,z] * Dz + A[4,h] * Dh + A[4,v] * Dv + A[4,w] * Dw
 *   Ud = A[5,x] * Dx + A[5,y] * Dy + A[5,z] * Dz + A[5,h] * Dh + A[5,v] * Dv + A[5,w] * Dw
 *
 * This linear system is always solvable since the coefficient matrix is
 * nonsingular due to the properties of A[].
 *
 * Example performance on a Intel Core i7-10700 CPU @ 2.90GHz, stripe 256 KiB, 8 data disks:
 *
 *        int8   int32   int64    sse2   sse2e   ssse3  ssse3e    avx2   avx2e
 *  gen1         24995   46562   62683                           77069
 *  gen2          8243   15879   25788   27292                   44907
 *  genz          5509   10588   14485   13920                           25175
 *  gen3  1190                                   13201   14307           27268
 *  gen4   914                                   10061   11006           21328
 *  gen5   746                                    7970    8828           17040
 *  gen6   630                                    6627    7516           14584
 *
 * Values are in MiB/s of data processed by a single thread.
 * Results can be reproduced using "raid/test/speedtest.c".
 *
 * Triple parity with power coefficients "1, 2, 2^-1" is slightly faster than
 * the Cauchy matrix computation if SSSE3 or AVX2 are available:
 *
 *             int8   int32   int64   sse2    ssse3   avx2
 *   genz              2337    2874   10920           18944
 *
 * In conclusion, the use of power coefficients, specifically powers
 * of 1, 2, and 2^-1, is the best option to implement triple parity on CPUs
 * without SSSE3 and AVX2.
 * On modern CPUs with SSSE3 or AVX2, the Cauchy matrix is the best
 * option because it provides a fast and general approach that works for any
 * number of parities.
 *
 * References:
 * [1] Anvin, "The mathematics of RAID-6", 2004
 * [2] MacWilliams, Sloane, "The Theory of Error-Correcting Codes", 1977
 * [3] Blomer, "An XOR-Based Erasure-Resilient Coding Scheme", 1995
 * [4] Roth, "Introduction to Coding Theory", 2006
 * [5] Plank, "Screaming Fast Galois Field Arithmetic Using Intel SIMD Instructions", 2013
 */

/**
 * Generator matrix currently used.
 */
const uint8_t (*raid_gfgen)[256];

void raid_mode(int mode)
{
	if (mode == RAID_MODE_VANDERMONDE) {
		raid_gen_ptr[2] = raid_genz_ptr;
		raid_gfgen = gfvandermonde;
	} else {
		raid_gen_ptr[2] = raid_gen3_ptr;
		raid_gfgen = gfcauchy;
	}
}

/**
 * Buffer filled with 0 used in recovering.
 */
static void *raid_zero_block;

void raid_zero(void *zero)
{
	raid_zero_block = zero;
}

/*
 * Forwarders for parity computation.
 *
 * These functions compute the parity blocks from the provided data.
 *
 * The number of parities to compute is implicit in the position in the
 * forwarder vector. Position at index #i, computes (#i+1) parities.
 *
 * All these functions give the guarantee that parities are written
 * in order. First parity P, then parity Q, and so on.
 * This allows to specify the same memory buffer for multiple parities
 * knowing that you'll get the latest written one.
 * This characteristic is used by the raid_delta_gen() function to
 * avoid to damage unused parities in recovering.
 *
 * @nd Number of data blocks
 * @size Size of the blocks pointed by @v. It must be a multiplier of 64.
 * @v Vector of pointers to the blocks of data and parity.
 *   It has (@nd + #parities) elements. The starting elements are the blocks
 *   for data, following with the parity blocks.
 *   Each block has @size bytes.
 */
void (*raid_gen_ptr[RAID_PARITY_MAX])(int nd, size_t size, void **vv);
void (*raid_gen3_ptr)(int nd, size_t size, void **vv);
void (*raid_genz_ptr)(int nd, size_t size, void **vv);

void raid_gen(int nd, int np, size_t size, void **v)
{
	/* enforce limit on size */
	BUG_ON(size % 64 != 0);

	/* enforce limit on number of failures */
	BUG_ON(np < 1);
	BUG_ON(np > RAID_PARITY_MAX);

	raid_gen_ptr[np - 1](nd, size, v);
}

/**
 * Inverts the square matrix M of size nxn into V.
 *
 * This is not a general matrix inversion because we assume the matrix M
 * to have all the square submatrix not singular.
 * We use Gauss elimination to invert.
 *
 * @M Matrix to invert with @n rows and @n columns.
 * @V Destination matrix where the result is put.
 * @n Number of rows and columns of the matrix.
 */
void raid_invert(uint8_t *M, uint8_t *V, int n)
{
	int i, j, k;

	/* set the identity matrix in V */
	for (i = 0; i < n; ++i)
		for (j = 0; j < n; ++j)
			V[i * n + j] = i == j;

	/* for each element in the diagonal */
	for (k = 0; k < n; ++k) {
		uint8_t f;

		/* the diagonal element cannot be 0 because */
		/* we are inverting matrices with all the square */
		/* submatrices not singular */
		BUG_ON(M[k * n + k] == 0);

		/* make the diagonal element to be 1 */
		f = inv(M[k * n + k]);
		for (j = 0; j < n; ++j) {
			M[k * n + j] = mul(f, M[k * n + j]);
			V[k * n + j] = mul(f, V[k * n + j]);
		}

		/* make all the elements over and under the diagonal */
		/* to be zero */
		for (i = 0; i < n; ++i) {
			if (i == k)
				continue;
			f = M[i * n + k];
			for (j = 0; j < n; ++j) {
				M[i * n + j] ^= mul(f, M[k * n + j]);
				V[i * n + j] ^= mul(f, V[k * n + j]);
			}
		}
	}
}

/**
 * Computes the parity without the missing data blocks
 * and store it in the buffers of such data blocks.
 *
 * This is the parity expressed as Pa,Qa,Ra,Sa,Ta,Ua in the equations.
 */
void raid_delta_gen(int nr, int *id, int *ip, int nd, size_t size, void **v)
{
	void *p[RAID_PARITY_MAX];
	void *pa[RAID_PARITY_MAX];
	int i, j;
	int np;
	void *latest;

	/* total number of parities we are going to process */
	/* they are both the used and the unused ones */
	np = ip[nr - 1] + 1;

	/* latest missing data block */
	latest = v[id[nr - 1]];

	/* setup pointers for delta computation */
	for (i = 0, j = 0; i < np; ++i) {
		/* keep a copy of the original parity vector */
		p[i] = v[nd + i];

		if (ip[j] == i) {
			/*
			 * Set used parities to point to the missing
			 * data blocks.
			 *
			 * The related data blocks are instead set
			 * to point to the "zero" buffer.
			 */

			/* the latest parity to use ends the for loop and */
			/* then it cannot happen to process more of them */
			BUG_ON(j >= nr);

			/* buffer for missing data blocks */
			pa[j] = v[id[j]];

			/* set at zero the missing data blocks */
			v[id[j]] = raid_zero_block;

			/* compute the parity over the missing data blocks */
			v[nd + i] = pa[j];

			/* check for the next used entry */
			++j;
		} else {
			/*
			 * Unused parities are going to be rewritten with
			 * not significative data, because we don't have
			 * functions able to compute only a subset of
			 * parities.
			 *
			 * To avoid this, we reuse parity buffers,
			 * assuming that all the parity functions write
			 * parities in order.
			 *
			 * We assign the unused parity block to the same
			 * block of the latest used parity that we know it
			 * will be written.
			 *
			 * This means that this block will be written
			 * multiple times and only the latest write will
			 * contain the correct data.
			 */
			v[nd + i] = latest;
		}
	}

	/* all the parities have to be processed */
	BUG_ON(j != nr);

	/* recompute the parity, note that np may be smaller than the */
	/* total number of parities available */
	raid_gen(nd, np, size, v);

	/* restore data buffers as before */
	for (j = 0; j < nr; ++j)
		v[id[j]] = pa[j];

	/* restore parity buffers as before */
	for (i = 0; i < np; ++i)
		v[nd + i] = p[i];
}

/**
 * Recover failure of one data block for PAR1.
 *
 * Starting from the equation:
 *
 * Pd = Dx
 *
 * and solving we get:
 *
 * Dx = Pd
 */
void raid_rec1of1(int *id, int nd, size_t size, void **v)
{
	void *p;
	void *pa;

	/* for PAR1 we can directly compute the missing block */
	/* and we don't need to use the zero buffer */
	p = v[nd];
	pa = v[id[0]];

	/* use the parity as missing data block */
	v[id[0]] = p;

	/* compute the parity over the missing data block */
	v[nd] = pa;

	/* compute */
	raid_gen(nd, 1, size, v);

	/* restore as before */
	v[id[0]] = pa;
	v[nd] = p;
}

/**
 * Recover failure of two data blocks for PAR2.
 *
 * Starting from the equations:
 *
 * Pd = Dx + Dy
 * Qd = 2^id[0] * Dx + 2^id[1] * Dy
 *
 * and solving we get:
 *
 *               1                     2^(-id[0])
 * Dy = ------------------- * Pd + ------------------- * Qd
 *      2^(id[1]-id[0]) + 1        2^(id[1]-id[0]) + 1
 *
 * Dx = Dy + Pd
 *
 * with conditions:
 *
 * 2^id[0] != 0
 * 2^(id[1]-id[0]) + 1 != 0
 *
 * That are always satisfied for any 0<=id[0]<id[1]<255.
 */
void raid_rec2of2_int8(int *id, int *ip, int nd, size_t size, void **vv)
{
	uint8_t **v = (uint8_t **)vv;
	size_t i;
	uint8_t *p;
	uint8_t *pa;
	uint8_t *q;
	uint8_t *qa;
	const uint8_t *T[2];

	/* get multiplication tables */
	T[0] = table(inv(pow2(id[1] - id[0]) ^ 1));
	T[1] = table(inv(pow2(id[0]) ^ pow2(id[1])));

	/* compute delta parity */
	raid_delta_gen(2, id, ip, nd, size, vv);

	p = v[nd];
	q = v[nd + 1];
	pa = v[id[0]];
	qa = v[id[1]];

	for (i = 0; i < size; ++i) {
		/* delta */
		uint8_t Pd = p[i] ^ pa[i];
		uint8_t Qd = q[i] ^ qa[i];

		/* reconstruct */
		uint8_t Dy = T[0][Pd] ^ T[1][Qd];
		uint8_t Dx = Pd ^ Dy;

		/* set */
		pa[i] = Dx;
		qa[i] = Dy;
	}
}

/*
 * Forwarders for data recovery.
 *
 * These functions recover data blocks using the specified parity
 * to recompute the missing data.
 *
 * Note that the format of vectors @id/@ip is different than raid_rec().
 * For example, in the vector @ip the first parity is represented with the
 * value 0 and not @nd.
 *
 * @nr Number of failed data blocks to recover.
 * @id[] Vector of @nr indexes of the data blocks to recover.
 *   The indexes start from 0. They must be in order.
 * @ip[] Vector of @nr indexes of the parity blocks to use in the recovering.
 *   The indexes start from 0. They must be in order.
 * @nd Number of data blocks.
 * @np Number of parity blocks.
 * @size Size of the blocks pointed by @v. It must be a multiplier of 64.
 * @v Vector of pointers to the blocks of data and parity.
 *   It has (@nd + @np) elements. The starting elements are the blocks
 *   for data, following with the parity blocks.
 *   Each block has @size bytes.
 */
void (*raid_rec_ptr[RAID_PARITY_MAX])(
	int nr, int *id, int *ip, int nd, size_t size, void **vv);

void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
{
	int nrd; /* number of data blocks to recover */
	int nrp; /* number of parity blocks to recover */

	/* enforce limit on size */
	BUG_ON(size % 64 != 0);

	/* enforce limit on number of failures */
	BUG_ON(nr > np);
	BUG_ON(np > RAID_PARITY_MAX);

	/* enforce order in index vector */
	BUG_ON(nr >= 2 && ir[0] >= ir[1]);
	BUG_ON(nr >= 3 && ir[1] >= ir[2]);
	BUG_ON(nr >= 4 && ir[2] >= ir[3]);
	BUG_ON(nr >= 5 && ir[3] >= ir[4]);
	BUG_ON(nr >= 6 && ir[4] >= ir[5]);

	/* enforce limit on index vector */
	BUG_ON(nr > 0 && ir[nr-1] >= nd + np);

	/* count the number of data blocks to recover */
	nrd = 0;
	while (nrd < nr && ir[nrd] < nd)
		++nrd;

	/* all the remaining are parity */
	nrp = nr - nrd;

	/* enforce limit on number of failures */
	BUG_ON(nrd > nd);
	BUG_ON(nrp > np);

	/* if failed data is present */
	if (nrd != 0) {
		int ip[RAID_PARITY_MAX];
		int i, j, k;

		/* setup the vector of parities to use */
		for (i = 0, j = 0, k = 0; i < np; ++i) {
			if (j < nrp && ir[nrd + j] == nd + i) {
				/* this parity has to be recovered */
				++j;
			} else {
				/* this parity is used for recovering */
				ip[k] = i;
				++k;
			}
		}

		/* recover the nrd data blocks specified in ir[], */
		/* using the first nrd parity in ip[] for recovering */
		raid_rec_ptr[nrd - 1](nrd, ir, ip, nd, size, v);
	}

	/* recompute all the parities up to the last bad one */
	if (nrp != 0)
		raid_gen(nd, ir[nr - 1] - nd + 1, size, v);
}

void raid_data(int nr, int *id, int *ip, int nd, size_t size, void **v)
{
	/* enforce limit on size */
	BUG_ON(size % 64 != 0);

	/* enforce limit on number of failures */
	BUG_ON(nr > nd);
	BUG_ON(nr > RAID_PARITY_MAX);

	/* enforce order in index vector for data */
	BUG_ON(nr >= 2 && id[0] >= id[1]);
	BUG_ON(nr >= 3 && id[1] >= id[2]);
	BUG_ON(nr >= 4 && id[2] >= id[3]);
	BUG_ON(nr >= 5 && id[3] >= id[4]);
	BUG_ON(nr >= 6 && id[4] >= id[5]);

	/* enforce limit on index vector for data */
	BUG_ON(nr > 0 && id[nr-1] >= nd);

	/* enforce order in index vector for parity */
	BUG_ON(nr >= 2 && ip[0] >= ip[1]);
	BUG_ON(nr >= 3 && ip[1] >= ip[2]);
	BUG_ON(nr >= 4 && ip[2] >= ip[3]);
	BUG_ON(nr >= 5 && ip[3] >= ip[4]);
	BUG_ON(nr >= 6 && ip[4] >= ip[5]);

	/* if failed data is present */
	if (nr != 0)
		raid_rec_ptr[nr - 1](nr, id, ip, nd, size, v);
}