1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
/*
* Copyright (C) 2013 Andrea Mazzoleni
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "internal.h"
#include "cpu.h"
#include "combo.h"
#include "memory.h"
/**
* Binomial coefficient of n over r.
*/
static int ibc(int n, int r)
{
if (r == 0 || n == r)
return 1;
else
return ibc(n - 1, r - 1) + ibc(n - 1, r);
}
/**
* Power n ^ r;
*/
static int ipow(int n, int r)
{
int v = 1;
while (r) {
v *= n;
--r;
}
return v;
}
int raid_test_combo(void)
{
int r;
int count;
int p[RAID_PARITY_MAX];
for (r = 1; r <= RAID_PARITY_MAX; ++r) {
/* count combination (r of RAID_PARITY_MAX) elements */
count = 0;
combination_first(r, RAID_PARITY_MAX, p);
do {
++count;
} while (combination_next(r, RAID_PARITY_MAX, p));
if (count != ibc(RAID_PARITY_MAX, r)) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
for (r = 1; r <= RAID_PARITY_MAX; ++r) {
/* count permutation (r of RAID_PARITY_MAX) elements */
count = 0;
permutation_first(r, RAID_PARITY_MAX, p);
do {
++count;
} while (permutation_next(r, RAID_PARITY_MAX, p));
if (count != ipow(RAID_PARITY_MAX, r)) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
return 0;
}
int raid_test_insert(void)
{
int p[RAID_PARITY_MAX];
int r;
for (r = 1; r <= RAID_PARITY_MAX; ++r) {
permutation_first(r, RAID_PARITY_MAX, p);
do {
int i[RAID_PARITY_MAX];
int j;
/* insert in order */
for (j = 0; j < r; ++j)
raid_insert(j, i, p[j]);
/* check order */
for (j = 1; j < r; ++j) {
if (i[j - 1] > i[j]) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
} while (permutation_next(r, RAID_PARITY_MAX, p));
}
return 0;
}
int raid_test_sort(void)
{
int p[RAID_PARITY_MAX];
int r;
for (r = 1; r <= RAID_PARITY_MAX; ++r) {
permutation_first(r, RAID_PARITY_MAX, p);
do {
int i[RAID_PARITY_MAX];
int j;
/* make a copy */
for (j = 0; j < r; ++j)
i[j] = p[j];
raid_sort(r, i);
/* check order */
for (j = 1; j < r; ++j) {
if (i[j - 1] > i[j]) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
}
} while (permutation_next(r, RAID_PARITY_MAX, p));
}
return 0;
}
int raid_test_rec(int mode, int nd, size_t size)
{
void (*f[RAID_PARITY_MAX][4])(
int nr, int *id, int *ip, int nd, size_t size, void **vbuf);
void *v_alloc;
void **v;
void **data;
void **parity;
void **test;
void *data_save[RAID_PARITY_MAX];
void *parity_save[RAID_PARITY_MAX];
void *waste;
int nv;
int id[RAID_PARITY_MAX];
int ip[RAID_PARITY_MAX];
int i;
int j;
int nr;
int nf[RAID_PARITY_MAX];
int np;
raid_mode(mode);
if (mode == RAID_MODE_CAUCHY)
np = RAID_PARITY_MAX;
else
np = 3;
nv = nd + np * 2 + 2;
v = raid_malloc_vector(nd, nv, size, &v_alloc);
if (!v) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
data = v;
parity = v + nd;
test = v + nd + np;
for (i = 0; i < np; ++i)
parity_save[i] = parity[i];
memset(v[nv - 2], 0, size);
raid_zero(v[nv - 2]);
waste = v[nv - 1];
/* fill with pseudo-random data with the arbitrary seed "1" */
raid_mrand_vector(1, nd, size, v);
/* setup recov functions */
for (i = 0; i < np; ++i) {
nf[i] = 0;
if (i == 0) {
f[i][nf[i]++] = raid_rec1_int8;
#ifdef CONFIG_X86
#ifdef CONFIG_SSSE3
if (raid_cpu_has_ssse3())
f[i][nf[i]++] = raid_rec1_ssse3;
#endif
#ifdef CONFIG_AVX2
if (raid_cpu_has_avx2())
f[i][nf[i]++] = raid_rec1_avx2;
#endif
#endif
} else if (i == 1) {
f[i][nf[i]++] = raid_rec2_int8;
#ifdef CONFIG_X86
#ifdef CONFIG_SSSE3
if (raid_cpu_has_ssse3())
f[i][nf[i]++] = raid_rec2_ssse3;
#endif
#ifdef CONFIG_AVX2
if (raid_cpu_has_avx2())
f[i][nf[i]++] = raid_rec2_avx2;
#endif
#endif
} else {
f[i][nf[i]++] = raid_recX_int8;
#ifdef CONFIG_X86
#ifdef CONFIG_SSSE3
if (raid_cpu_has_ssse3())
f[i][nf[i]++] = raid_recX_ssse3;
#endif
#ifdef CONFIG_AVX2
if (raid_cpu_has_avx2())
f[i][nf[i]++] = raid_recX_avx2;
#endif
#endif
}
}
/* compute the parity */
raid_gen_ref(nd, np, size, v);
/* set all the parity to the waste v */
for (i = 0; i < np; ++i)
parity[i] = waste;
/* all parity levels */
for (nr = 1; nr <= np; ++nr) {
/* all combinations (nr of nd) disks */
combination_first(nr, nd, id);
do {
/* all combinations (nr of np) parities */
combination_first(nr, np, ip);
do {
/* for each recover function */
for (j = 0; j < nf[nr - 1]; ++j) {
/* set */
for (i = 0; i < nr; ++i) {
/* remove the missing data */
data_save[i] = data[id[i]];
data[id[i]] = test[i];
/* set the parity to use */
parity[ip[i]] = parity_save[ip[i]];
}
/* recover */
f[nr - 1][j](nr, id, ip, nd, size, v);
/* check */
for (i = 0; i < nr; ++i) {
if (memcmp(test[i], data_save[i], size) != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
}
/* restore */
for (i = 0; i < nr; ++i) {
/* restore the data */
data[id[i]] = data_save[i];
/* restore the parity */
parity[ip[i]] = waste;
}
}
} while (combination_next(nr, np, ip));
} while (combination_next(nr, nd, id));
}
free(v_alloc);
free(v);
return 0;
bail:
/* LCOV_EXCL_START */
free(v_alloc);
free(v);
return -1;
/* LCOV_EXCL_STOP */
}
int raid_test_par(int mode, int nd, size_t size)
{
void (*f[64])(int nd, size_t size, void **vbuf);
void *v_alloc;
void **v;
int nv;
int i, j;
int nf;
int np;
raid_mode(mode);
if (mode == RAID_MODE_CAUCHY)
np = RAID_PARITY_MAX;
else
np = 3;
nv = nd + np * 2;
v = raid_malloc_vector(nd, nv, size, &v_alloc);
if (!v) {
/* LCOV_EXCL_START */
return -1;
/* LCOV_EXCL_STOP */
}
/* check memory */
if (raid_mtest_vector(nv, size, v) != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
/* fill with pseudo-random data with the arbitrary seed "2" */
raid_mrand_vector(2, nv, size, v);
/* compute the parity */
raid_gen_ref(nd, np, size, v);
/* copy in back buffers */
for (i = 0; i < np; ++i)
memcpy(v[nd + np + i], v[nd + i], size);
/* load all the available functions */
nf = 0;
f[nf++] = raid_gen1_int32;
f[nf++] = raid_gen1_int64;
f[nf++] = raid_gen2_int32;
f[nf++] = raid_gen2_int64;
#ifdef CONFIG_X86
#ifdef CONFIG_SSE2
if (raid_cpu_has_sse2()) {
f[nf++] = raid_gen1_sse2;
f[nf++] = raid_gen2_sse2;
#ifdef CONFIG_X86_64
f[nf++] = raid_gen2_sse2ext;
#endif
}
#endif
#ifdef CONFIG_AVX2
if (raid_cpu_has_avx2()) {
f[nf++] = raid_gen1_avx2;
f[nf++] = raid_gen2_avx2;
}
#endif
#endif /* CONFIG_X86 */
if (mode == RAID_MODE_CAUCHY) {
f[nf++] = raid_gen3_int8;
f[nf++] = raid_gen4_int8;
f[nf++] = raid_gen5_int8;
f[nf++] = raid_gen6_int8;
#ifdef CONFIG_X86
#ifdef CONFIG_SSSE3
if (raid_cpu_has_ssse3()) {
f[nf++] = raid_gen3_ssse3;
f[nf++] = raid_gen4_ssse3;
f[nf++] = raid_gen5_ssse3;
f[nf++] = raid_gen6_ssse3;
#ifdef CONFIG_X86_64
f[nf++] = raid_gen3_ssse3ext;
f[nf++] = raid_gen4_ssse3ext;
f[nf++] = raid_gen5_ssse3ext;
f[nf++] = raid_gen6_ssse3ext;
#endif
}
#endif
#ifdef CONFIG_AVX2
#ifdef CONFIG_X86_64
if (raid_cpu_has_avx2()) {
f[nf++] = raid_gen3_avx2ext;
f[nf++] = raid_gen4_avx2ext;
f[nf++] = raid_gen5_avx2ext;
f[nf++] = raid_gen6_avx2ext;
}
#endif
#endif
#endif /* CONFIG_X86 */
} else {
f[nf++] = raid_genz_int32;
f[nf++] = raid_genz_int64;
#ifdef CONFIG_X86
#ifdef CONFIG_SSE2
if (raid_cpu_has_sse2()) {
f[nf++] = raid_genz_sse2;
#ifdef CONFIG_X86_64
f[nf++] = raid_genz_sse2ext;
#endif
}
#endif
#ifdef CONFIG_AVX2
#ifdef CONFIG_X86_64
if (raid_cpu_has_avx2())
f[nf++] = raid_genz_avx2ext;
#endif
#endif
#endif /* CONFIG_X86 */
}
/* check all the functions */
for (j = 0; j < nf; ++j) {
/* compute parity */
f[j](nd, size, v);
/* check it */
for (i = 0; i < np; ++i) {
if (memcmp(v[nd + np + i], v[nd + i], size) != 0) {
/* LCOV_EXCL_START */
goto bail;
/* LCOV_EXCL_STOP */
}
}
}
free(v_alloc);
free(v);
return 0;
bail:
/* LCOV_EXCL_START */
free(v_alloc);
free(v);
return -1;
/* LCOV_EXCL_STOP */
}
|