File: invtest.c

package info (click to toggle)
snapraid 13.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: ansic: 46,018; makefile: 1,004; sh: 154
file content (176 lines) | stat: -rw-r--r-- 3,801 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
 * Copyright (C) 2013 Andrea Mazzoleni
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

/* Matrix inversion test for the RAID library */

#include "internal.h"

#include "combo.h"
#include "gf.h"

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>

/**
 * Like raid_invert() but optimized to only check if the matrix is
 * invertible.
 */
static __always_inline int raid_invert_fast(uint8_t *M, int n)
{
	int i, j, k;

	/* for each element in the diagonal */
	for (k = 0; k < n; ++k) {
		uint8_t f;

		/* the diagonal element cannot be 0 because */
		/* we are inverting matrices with all the square */
		/* submatrices not singular */
		if (M[k * n + k] == 0)
			return -1;

		/* make the diagonal element to be 1 */
		f = inv(M[k * n + k]);
		for (j = 0; j < n; ++j)
			M[k * n + j] = mul(f, M[k * n + j]);

		/* make all the elements over and under the diagonal */
		/* to be zero */
		for (i = 0; i < n; ++i) {
			if (i == k)
				continue;
			f = M[i * n + k];
			for (j = 0; j < n; ++j)
				M[i * n + j] ^= mul(f, M[k * n + j]);
		}
	}

	return 0;
}

#define TEST_REFRESH (4 * 1024 * 1024)

/**
 * Precomputed number of square submatrices of size nr.
 *
 * It's bc(np,nr) * bc(nd,nr)
 *
 * With 1<=nr<=6 and bc(n, r) == binomial coefficient of (n over r).
 */
long long EXPECTED[RAID_PARITY_MAX] = {
	1506LL,
	470625LL,
	52082500LL,
	2421836250LL,
	47855484300LL,
	327012476050LL
};

static __always_inline int test_sub_matrix(int nr, long long *total)
{
	uint8_t M[RAID_PARITY_MAX * RAID_PARITY_MAX];
	int np = RAID_PARITY_MAX;
	int nd = RAID_DATA_MAX;
	int ip[RAID_PARITY_MAX];
	int id[RAID_DATA_MAX];
	long long count;
	long long expected;

	printf("\n%ux%u\n", nr, nr);

	count = 0;
	expected = EXPECTED[nr - 1];

	/* all combinations (nr of nd) disks */
	combination_first(nr, nd, id);
	do {
		/* all combinations (nr of np) parities */
		combination_first(nr, np, ip);
		do {
			int i, j;

			/* setup the submatrix */
			for (i = 0; i < nr; ++i)
				for (j = 0; j < nr; ++j)
					M[i * nr + j] = gfgen[ip[i]][id[j]];

			/* invert */
			if (raid_invert_fast(M, nr) != 0)
				return -1;

			if (++count % TEST_REFRESH == 0) {
				printf("\r%.3f %%", count * (double)100 / expected);
				fflush(stdout);
			}
		} while (combination_next(nr, np, ip));
	} while (combination_next(nr, nd, id));

	if (count != expected)
		return -1;

	printf("\rTested %" PRIi64 " matrix\n", count);

	*total += count;

	return 0;
}

int test_all_sub_matrix(void)
{
	long long total;

	printf("Invert all square submatrices of the %dx%d Cauchy matrix\n",
		RAID_PARITY_MAX, RAID_DATA_MAX);

	printf("\nPlease wait about 2 days...\n");

	total = 0;

	/* force inlining of everything */
	if (test_sub_matrix(1, &total) != 0)
		return -1;
	if (test_sub_matrix(2, &total) != 0)
		return -1;
	if (test_sub_matrix(3, &total) != 0)
		return -1;
	if (test_sub_matrix(4, &total) != 0)
		return -1;
	if (test_sub_matrix(5, &total) != 0)
		return -1;
	if (test_sub_matrix(6, &total) != 0)
		return -1;

	printf("\nTested in total %" PRIi64 " matrix\n", total);

	return 0;
}

int main(void)
{
	printf("Matrix inversion test for the RAID Cauchy library\n\n");

	/* required to set the gfgen table */
	raid_init();

	if (test_all_sub_matrix() != 0) {
		printf("FAILED!\n");
		exit(EXIT_FAILURE);
	}
	printf("OK\n");

	return 0;
}