1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
Simulation
==========
First, define a set of "observations". These are the properties of our
observations: the time, bandpass and depth.
.. code:: python
import sncosmo
from astropy.table import Table
obs = Table({'time': [56176.19, 56188.254, 56207.172],
'band': ['desg', 'desr', 'desi'],
'gain': [1., 1., 1.],
'skynoise': [191.27, 147.62, 160.40],
'zp': [30., 30., 30.],
'zpsys':['ab', 'ab', 'ab']})
print obs
.. parsed-literal::
skynoise zpsys band gain time zp
-------- ----- ---- ---- --------- ----
191.27 ab desg 1.0 56176.19 30.0
147.62 ab desr 1.0 56188.254 30.0
160.4 ab desi 1.0 56207.172 30.0
Suppose we want to simulate a SN with the SALT2 model and the following
parameters:
.. code:: python
model = sncosmo.Model(source='salt2')
params = {'z': 0.4, 't0': 56200.0, 'x0':1.e-5, 'x1': 0.1, 'c': -0.1}
To get the light curve for this single SN, we'd do:
.. code:: python
lcs = sncosmo.realize_lcs(obs, model, [params])
print lcs[0]
.. parsed-literal::
time band flux fluxerr zp zpsys
--------- ---- ------------- ------------- ---- -----
56176.19 desg 96.0531272705 191.27537908 30.0 ab
56188.254 desr 456.360196623 149.22627064 30.0 ab
56207.172 desi 655.40885611 162.579572369 30.0 ab
Note that we've passed the function a one-element list, ``[params]``,
and gotten back a one-element list in return. (The ``realize_lcs``
function is designed to operate on lists of SNe for convenience.)
Generating SN parameters
------------------------
We see above that it is straightforward to simulate SNe once we already
know the parameters of each one. But what if we want to pick SN
parameters from some defined distribution?
Suppose we want to generate SN parameters for all the SNe we would find
in a given search area over a defined period of time. We start by
defining an area and time period, as well as a maximum redshift to
consider:
.. code:: python
area = 1. # area in square degrees
tmin = 56175. # minimum time
tmax = 56225. # maximum time
zmax = 0.7
First, we'd like to get the number and redshifts of all SNe that occur
over our 1 square degree and 50 day time period:
.. code:: python
redshifts = list(sncosmo.zdist(0., zmax, time=(tmax-tmin), area=area))
print len(redshifts), "SNe"
print "redshifts:", redshifts
.. parsed-literal::
9 SNe
redshifts: [0.4199710008856507, 0.3500118339133868, 0.5915676316485601, 0.5857452631151785, 0.49024466410556855, 0.5732679644841575, 0.6224436826380927, 0.5853477892182203, 0.5522300320124105]
Generate a list of SN parameters using these redshifts, drawing ``x1``
and ``c`` from normal distributions:
.. code:: python
from numpy.random import uniform, normal
params = [{'x0':1.e-5, 'x1':normal(0., 1.), 'c':normal(0., 0.1),
't0':uniform(tmin, tmax), 'z': z}
for z in redshifts]
for p in params:
print p
.. parsed-literal::
{'z': 0.4199710008856507, 'x0': 1e-05, 'x1': -0.9739877070754421, 'c': -0.1465835504611458, 't0': 56191.57686616353}
{'z': 0.3500118339133868, 'x0': 1e-05, 'x1': 0.04454878604727126, 'c': -0.04920811869083081, 't0': 56222.76963606611}
{'z': 0.5915676316485601, 'x0': 1e-05, 'x1': -0.26765265677262423, 'c': -0.06456008680932701, 't0': 56211.706219411404}
{'z': 0.5857452631151785, 'x0': 1e-05, 'x1': 0.8255953341731204, 'c': 0.08520083775049729, 't0': 56209.33583211229}
{'z': 0.49024466410556855, 'x0': 1e-05, 'x1': -0.12051827966517584, 'c': -0.09490756669333822, 't0': 56189.37571007927}
{'z': 0.5732679644841575, 'x0': 1e-05, 'x1': 0.3051310078192594, 'c': -0.10967604820261241, 't0': 56198.04368422346}
{'z': 0.6224436826380927, 'x0': 1e-05, 'x1': -0.6329407028587257, 'c': -0.009789183239376284, 't0': 56179.88133113836}
{'z': 0.5853477892182203, 'x0': 1e-05, 'x1': 0.6373371286596669, 'c': 0.05151693090038232, 't0': 56212.04579735962}
{'z': 0.5522300320124105, 'x0': 1e-05, 'x1': 0.04762095339856289, 'c': -0.005018877828783951, 't0': 56182.14827040906}
So far so good. The only problem is that ``x0`` doesn't vary. We'd like
it to be randomly distributed with some scatter around the Hubble line,
so it should depend on the redshift. Here's an alternative:
.. code:: python
params = []
for z in redshifts:
mabs = normal(-19.3, 0.3)
model.set(z=z)
model.set_source_peakabsmag(mabs, 'bessellb', 'ab')
x0 = model.get('x0')
p = {'z':z, 't0':uniform(tmin, tmax), 'x0':x0, 'x1': normal(0., 1.), 'c': normal(0., 0.1)}
params.append(p)
for p in params:
print p
.. parsed-literal::
{'c': -0.060104568346581566, 'x0': 2.9920355958896461e-05, 'z': 0.4199710008856507, 'x1': -0.677121283126299, 't0': 56217.93979718883}
{'c': 0.10405991801014292, 'x0': 2.134500759148091e-05, 'z': 0.3500118339133868, 'x1': 1.6034252041294512, 't0': 56218.008314206476}
{'c': -0.14777109151711296, 'x0': 7.9108889725043354e-06, 'z': 0.5915676316485601, 'x1': -2.2082282760850993, 't0': 56218.013686428785}
{'c': 0.056034777154805086, 'x0': 6.6457371815973038e-06, 'z': 0.5857452631151785, 'x1': 0.675413080007434, 't0': 56189.03517395757}
{'c': -0.0709158052635228, 'x0': 1.2228145655148946e-05, 'z': 0.49024466410556855, 'x1': 0.5449847454420981, 't0': 56198.02895700289}
{'c': -0.22101146234021096, 'x0': 7.4299221264917702e-06, 'z': 0.5732679644841575, 'x1': -1.543245858395605, 't0': 56189.04585414441}
{'c': 0.06964843664572477, 'x0': 9.7121906557832662e-06, 'z': 0.6224436826380927, 'x1': 1.7419604610283943, 't0': 56212.827270197355}
{'c': 0.07320513053870191, 'x0': 3.22205341646521e-06, 'z': 0.5853477892182203, 'x1': -0.39658066375434153, 't0': 56200.421464066916}
{'c': 0.18555773972769227, 'x0': 7.5955258508017471e-06, 'z': 0.5522300320124105, 'x1': -0.24463691193386283, 't0': 56190.492271332616}
Now we can generate the lightcurves for these parameters:
.. code:: python
lcs = sncosmo.realize_lcs(obs, model, params)
print lcs[0]
.. parsed-literal::
time band flux fluxerr zp zpsys
--------- ---- ------------- ------------ ---- -----
56176.19 desg 6.70520005464 191.27 30.0 ab
56188.254 desr 106.739113709 147.62 30.0 ab
56207.172 desi 1489.7521011 164.62420476 30.0 ab
Note that the "true" parameters are saved in the metadata of each SN:
.. code:: python
lcs[0].meta
.. parsed-literal::
{'c': -0.060104568346581566,
't0': 56217.93979718883,
'x0': 2.9920355958896461e-05,
'x1': -0.677121283126299,
'z': 0.4199710008856507}
|