File: examp.rb

package info (click to toggle)
snd 19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 52,736 kB
  • sloc: ansic: 390,251; lisp: 242,546; ruby: 71,383; sh: 3,284; fortran: 2,342; csh: 1,259; cpp: 294; makefile: 287; python: 47
file content (2553 lines) | stat: -rw-r--r-- 78,995 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
# examp.rb -- something from examp.scm

# Translator/Author: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: 02/09/04 18:34:00
# Changed: 17/12/24 22:01:05

# module Examp (examp.scm)
#  selection_rms
#  region_rms(n)
#  window_samples(snd, chn)
#  display_energy(snd, chn)
#  display_db(snd, chn)
#  window_rms
#  fft_peak(snd, chn, scale)
#  finfo(file)
#  display_correlate(snd, chn, y0, y1)
#
#  zoom_spectrum(snd, chn, y0, y1)
#  zoom_fft(snd, chn, y0, y1)
#  superimpose_ffts(snd, chn, y0, y1)
#  locate_zero(limit)
#  shell(cmd, *rest)
#
#  mpg(mpgfile, rawfile)
#  read_ogg(filename)
#  write_ogg(snd)
#  read_speex(filename)
#  write_speex(snd)
#  read_flac(filename)
#  write_flac(snd)
#  read_ascii(in_filename, out_filename, out_type, out_format, out_srate)
#  auto_dot(snd, chn, y0, y1)
#
#  first_mark_in_window_at_left
#  flash_selected_data(interval)
#  mark_loops
#  do_all_chans(origin) do |y| ... end
#  update_graphs
#  do_chans(*origin) do |y| ... end
#  do_sound_chans(*origin) do |y| ... end
#  every_sample? do |y| ... end
#  sort_samples(nbins)
#  place_sound(mono_snd, stereo_snd, pan_env)
#
#  fft_edit(bottom, top, snd, chn)
#  fft_squelch(squelch, snd, chn)
#  fft_cancel(lo_freq, hi_freq, snd, chn)
#
#  class Ramp < Musgen
#   initialize(size)
#   run_func(up, dummy)
#   run(up)
#
#  make_ramp(size)
#  ramp(gen, up)
#  squelch_vowels(snd, chn)
#  fft_env_data(fft_env, snd, chn)
#  fft_env_edit(fft_env, snd, chn)
#  fft_env_interp(env1, env2, interp, snd, chn)
#  fft_smoother(cutoff, start, samps, snd, chn)
#
#  comb_filter(scaler, size)
#  comb_chord(scaler, size, amp, interval_one, interval_two)
#  zcomb(scaler, size, pm)
#  notch_filter(scaler, size)
#  formant_filter(radius, freq)
#  formants(r1, f1, r2, f2, r3, f3)
#  moving_formant(radius, move)
#  osc_formants(radius, bases, amounts, freqs)
#  echo(scaler, secs)
#  zecho(scaler, secs, freq, amp)
#  flecho(scaler, secs)
#  ring_mod(freq, gliss_env)
#  am(freq)
#  vibro(speed, depth)
#  hello_dentist(freq, amp, snd, chn)
#  fp(sr, osamp, osfreq, snd, chn)
#  compand()
#  expsrc(rate, snd, chn)
#  expsnd(gr_env, snd, chn)
#  cross_synthesis(cross_snd, amp, fftsize, r)
#  voiced2unvoiced(amp, fftsize, r, temp, snd, chn)
#  pulse_voice(cosin, freq, amp, fftsize, r, snd, chn)
#  cnvtest(snd0, snd1, amp)
#
#  swap_selection_channels
#  make_sound_interp(start, snd, chn)
#  sound_interp(func, loc)
#  sound_via_sound(snd1, snd2)
#  env_sound_interp(envelope, time_scale, snd, chn)
#  granulated_sound_interp(en, time_scale, grain_len, grain_env, out_hop, s, c)
#  filtered_env(en, snd, chn)
#
#  class Mouse
#   initialize
#   press(snd, chn, button, state, x, y)
#   drag(snd, chn, button, state, x, y)
#
#  files_popup_buffer(type, position, name)
#
#  find_click(loc)
#  remove_clicks
#  search_for_click
#  zero_plus
#  next_peak
#  find_pitch(pitch)
#  file2vct(file)
#  add_notes(notes, snd, chn)
#  region_play_list(data)
#  region_play_sequence(data)
#  replace_with_selection
#  explode_sf2
#
#  class Next_file
#   initialize
#   open_next_file_in_directory
#  click_middle_button_to_open_next_file_in_directory
#
#  chain_dsps(start, dur, *dsps)
#
#  scramble_channels(*new_order)
#  scramble_channel(silence)
#
#  reverse_by_blocks(block_len, snd, chn)
#  reverse_within_blocks(block_len, snd, chn)
#  sound2segment_data(main_dir, output_file)
#  channel_clipped?(snd, chn)
#  scan_sound(func, beg, dur, snd)
#  or scan_sound_rb(beg, dur, snd) do |y, chn| ... end
#  
# class Moog_filter < Musgen (moog.scm)
#   initialize(freq, q)
#   frequency=(freq)
#   filter(insig)
#
# module Moog
#  make_moog_filter(freq, q)
#  moog_filter(moog, insig)
#  moog(freq, q)

require "clm"

module Examp
  # (ext)snd.html examples made harder to break
  #
  # this mainly involves keeping track of the current sound/channel

  add_help(:selection_rms,
           "selection_rms()  \
Returns rms of selection data using samplers.")
  def selection_rms
    if selection?
      reader = make_sampler(selection_position, false, false)
      len = selection_framples()
      sum = 0.0
      len.times do
        val = next_sample(reader)
        sum = sum + val * val
      end
      free_sampler(reader)
      sqrt(sum / len)
    else
      Snd.raise(:no_active_selection)
    end
  end

  add_help(:region_rms,
           "region_rms(n=0)  \
Returns rms of region N's data (chan 0).")
  def region_rms(n = 0)
    if region?(n)
      data = region2vct(n, 0, 0)
      sqrt(dot_product(data, data) / data.length)
    else
      Snd.raise(:no_such_region)
    end
  end

  add_help(:window_samples,
           "window_samples(snd=false, chn=false)  \
Returns samples in snd channel chn in current graph window.")
  def window_samples(snd = false, chn = false)
    wl = left_sample(snd, chn)
    wr = right_sample(snd, chn)
    channel2vct(wl, 1 + (wr - wl), snd, chn)
  end

  add_help(:display_energy,
           "display_energy(snd, chn)  \
Is a $lisp_graph_hook function to display the time domain \
data as energy (squared):
$lisp_graph_hook.add_hook!(\"display-energy\", \
&method(:display_energy).to_proc)")
  def display_energy(snd, chn)
    ls = left_sample(snd, chn)
    rs = right_sample(snd, chn)
    datal = make_graph_data(snd, chn)
    data = vct?(datal) ? datal : datal[1]
    sr = srate(snd)
    y_max = y_zoom_slider(snd, chn)
    if data and ls and rs
      vct_multiply!(data, data)
      graph(data, "energy", ls / sr, rs / sr, 0.0, y_max * y_max, snd, chn)
    end
  end

  add_help(:display_db,
           "display_db(snd, chn)  \
Is a $lisp_graph_hook function to display the time domain data in dB:
$lisp_graph_hook.add_hook!(\"display-db\", &method(:display_db).to_proc)")
  def display_db(snd, chn)
    if datal = make_graph_data(snd, chn)
      dB = lambda do |val|
        if val < 0.001
          -60.0
        else
          20.0 * log10(val)
        end
      end
      data = vct?(datal) ? datal : datal[1]
      sr = srate(snd)
      ls = left_sample(snd, chn)
      rs = right_sample(snd, chn)
      data.map! do |val| 60.0 + dB.call(val.abs) end
      graph(data, "dB", ls / sr, rs / sr, 0.0, 60.0, snd, chn)
    end
  end

  add_help(:window_rms,
           "window_rms()  \
Returns rms of data in currently selected graph window.")
  def window_rms
    ls = left_sample
    rs = right_sample
    data = channel2vct(ls, 1 + (rs - ls))
    sqrt(dot_product(data, data), data.length)
  end

  add_help(:fft_peak,
           "fft_peak(snd, chn, scale)  \
Returns the peak spectral magnitude:
$after_transform_hook.add_hook!(\"fft-peak\") do |snd, chn, scale|
  fft_peak(snd, chn, scale)
end")
  def fft_peak(snd, chn, scale)
    if transform_graph? and transform_graph_type == Graph_once
      pk = (2.0 * vct_peak(transform2vct(snd, chn))) / transform_size
      status_report(pk.to_s, snd)
      pk
    else
      false
    end
  end

  # 'info' from extsnd.html using format

  add_help(:finfo,
           "finfo(file)  \
Returns description (as a string) of FILE.")
  def finfo(file)
    chans = mus_sound_chans(file)
    sr = mus_sound_srate(file)
    format("%s: chans: %d, srate: %d, %s, %s, len: %1.3f",
           file, chans, sr,
           mus_header_type_name(mus_sound_header_type(file)),
           mus_sample_type_name(mus_sound_sample_type(file)),
           mus_sound_samples(file).to_f / (chans * sr.to_f))
  end

  # Correlation
  #
  # correlation of channels in a stereo sound

  add_help(:display_correlate,
           "display_correlate(snd, chn, y0, y1)  \
Returns the correlation of SND's 2 channels (intended for use with $graph_hook):
$graph_hook.add_hook!(\"display_correlate\") do |snd, chn, y0, y1|
  display_correlate(snd, chn, y0, y1)
end")

  def display_correlate(snd, chn, y0, y1)
    if channels(snd) == 2 and framples(snd, 0) > 1 and framples(snd, 1) > 1
      ls = left_sample(snd, 0)
      rs = right_sample(snd, 0)
      ilen = 1 + (rs - ls)
      pow2 = (log(ilen) / log(2)).ceil
      fftlen = (2 ** pow2).to_i
      fftlen2 = fftlen / 2
      fftscale = 1.0 / fftlen
      rl1 = channel2vct(ls, fftlen, snd, 0)
      rl2 = channel2vct(ls, fftlen, snd, 1)
      im1 = make_vct(fftlen)
      im2 = make_vct(fftlen)
      fft(rl1, im1, 1)
      fft(rl2, im2, 1)
      tmprl = vct_copy(rl1)
      tmpim = vct_copy(im1)
      data3 = make_vct(fftlen2)
      vct_multiply!(tmprl, rl2)
      vct_multiply!(tmpim, im2)
      vct_multiply!(im2, rl1)
      vct_multiply!(rl2, im1)
      vct_add!(tmprl, tmpim)
      vct_subtract!(im2, rl2)
      fft(tmprl, im2, -1)
      vct_add!(data3, tmprl)
      vct_scale!(data3, fftscale)
      graph(data3, "lag time", 0, fftlen2)
    else
      snd_print("correlate wants stereo input")
    end
  end

  # set transform-size based on current time domain window size
  # 
  # also zoom spectrum based on y-axis zoom slider

  add_help(:zoom_spectrum,
           "zoom_spectrum(snd, chn, y0, y1)  \
Sets the transform size to correspond to the \
time-domain window size (use with $graph_hook):
$graph_hook.add_hook!(\"zoom-spectrum\") do |snd, chn, y0, y1|
  zoom_spectrum(snd, chn, y0, y1)
end")
  def zoom_spectrum(snd, chn, y0, y1)
    if transform_graph?(snd, chn) and
       transform_graph_type(snd, chn) == Graph_once
      set_transform_size((2 **
                         (log(right_sample(snd, chn) -
                              left_sample(snd, chn))/log(2.0))).to_i, snd, chn)
      set_spectrum_end(y_zoom_slider(snd, chn), snd, chn)
    end
    false
  end

  add_help(:zoom_fft,
           "zoom_fft(snd, chn, y0, y1)  \
Sets the transform size if the time domain is \
not displayed (use with $graph_hook).  \
It also sets the spectrum display start point \
based on the x position slider---this can be confusing \
if fft normalization is on (the default):
$graph_hook.add_hook!(\"zoom-fft\") do |snd, chn, y0, y1|
  zoom_fft(snd, chn, y0, y1)
end")
  def zoom_fft(snd, chn, y0, y1)
    if transform_graph?(snd, chn) and
        (not time_graph?(snd, chn)) and
        transform_graph_type(snd, chn) == Graph_once
      set_transform_size(2 ** 
                         (log(right_sample(snd, chn) - 
                              left_sample(snd, chn)) / log(2.0)).ceil, snd, chn)
      set_spectrum_start(x_position_slider(snd, chn), snd, chn)
      set_spectrum_end(y_zoom_slider(snd, chn), snd, chn)
    end
    false
  end

  # superimpose spectra of sycn'd sounds

  add_help(:superimpose_ffts,
           "superimpose_ffts(snd, chn, y0, y1)  \
Superimposes ffts of multiple (syncd) sounds (use with $graph_hook):
$graph_hook.add_hook!(\"superimpose-ffts\") do |snd, chn, y0, y1|
  superimpose_ffts(snd, chn, y0, y1)
end")
  def superimpose_ffts(snd, chn, y0, y1)
    maxsync = Snd.sounds.map do |s| sync(s) end.max
    if sync(snd) > 0 and
        snd == Snd.sounds.map do |s|
        sync(snd) == sync(s) ? sound2integer(s) : (maxsync + 1)
      end.min
      ls = left_sample(snd, chn)
      rs = right_sample(snd, chn)
      pow2 = (log(rs - ls) / log(2)).ceil
      fftlen = (2 ** pow2).to_i
      if pow2 > 2
        ffts = []
        Snd.sounds.each do |s|
          if sync(snd) == sync(s) and channels(s) > chn
            fdr = channel2vct(ls, fftlen, s, chn)
            fdi = make_vct(fftlen)
            spectr = make_vct(fftlen / 2)
            ffts.push(spectr.add(spectrum(fdr, fdi, false, 2)))
          end
        end
        graph(ffts, "spectra", 0.0, 0.5, y0, y1, snd, chn)
      end
    end
    false
  end

  # c-g? example (Anders Vinjar)

  add_help(:locate_zero,
           "locate_zero(limit)  \
Looks for successive samples that sum to less than LIMIT, \
moving the cursor if successful.")
  def locate_zero(limit)
    start = cursor
    sf = make_sampler(start, false, false)
    val0 = sf.call.abs
    val1 = sf.call.abs
    n = start
    until sampler_at_end?(sf) or val0 + val1 < limit
      val0, val1 = val1, sf.call.abs
      n += 1
    end
    free_sampler(sf)
    set_cursor(n)
  end
  
  # make a system call from irb or snd listener
  # 
  #   shell("df") for example
  # or to play a sound whenever a file is closed:
  #   $close-hook.add_hook!() do |snd| shell("sndplay wood16.wav"); false end

  add_help(:shell,
           "shell(cmd, *rest)  \
Sends CMD to a shell (executes it as a shell command) \
and returns the result string.")
  def shell(cmd, *rest)
    str = ""
    unless cmd.null?
      IO.popen(format(cmd, *rest), "r") do |f| str = f.readlines.join end
    end
    str
  end

  # translate mpeg input to 16-bit linear and read into Snd
  # 
  # mpg123 with the -s switch sends the 16-bit (mono or stereo) representation
  #   of an mpeg file to stdout.  There's also apparently a switch to write
  #   'wave' output.

  add_help(:mpg,
           "mpg(file, tmpname)  \
Converts file from MPEG to raw 16-bit samples using mpg123: \
mpg(\"mpeg.mpg\", \"mpeg.raw\")")
  def mpg(mpgfile, rawfile)
    b0 = b1 = b2 = b3 = 0
    File.open(mpgfile, "r") do |fd|
      b0 = fd.readchar
      b1 = fd.readchar
      b2 = fd.readchar
      b3 = fd.readchar
    end
    if b0 != 255 or (b1 & 0b11100000) != 0b11100000
      Snd.display("%s is not an MPEG file (first 11 bytes: %b %b",
                  mpgfile.inspect, b0, b1 & 0b11100000)
    else
      id = (b1 & 0b11000) >> 3
      layer = (b1 & 0b110) >> 1
      srate_index = (b2 & 0b1100) >> 2
      channel_mode = (b3 & 0b11000000) >> 6
      if id == 1
        Snd.display("odd: %s is using a reserved Version ID", mpgfile)
      end
      if layer == 0
        Snd.display("odd: %s is using a reserved layer description", mpgfile)
      end
      chans = channel_mode == 3 ? 1 : 2
      mpegnum = id.zero? ? 4 : (id == 2 ? 2 : 1)
      mpeg_layer = layer == 3 ? 1 : (layer == 2 ? 2 : 3)
      srate = [44100, 48000, 32000, 0][srate_index] / mpegnum
      Snd.display("%s: %s Hz, %s, MPEG-%s",
                  mpgfile, srate, chans == 1 ? "mono": "stereo", mpeg_layer)
      system(format("mpg123 -s %s > %s", mpgfile, rawfile))
      open_raw_sound(rawfile, chans, srate,
                     little_endian? ? Mus_lshort : Mus_bshort)
    end
  end

  # read and write OGG files

  add_help(:read_ogg,
           "read_ogg(filename)  \
Read OGG files:
$open_hook.add_hook!(\"read-ogg\") do |filename|
  if mus_sound_header_type(filename) == Mus_raw
    read_ogg(filename)
  else
    false
  end
end")
  def read_ogg(filename)
    flag = false
    File.open(filename, "r") do |fd|
      flag = fd.readchar == ?O and 
      fd.readchar == ?g and 
      fd.readchar == ?g and 
      fd.readchar == ?S
    end
    if flag
      aufile = filename + ".au"
      File.unlink(aufile) if File.exist?(aufile)
      system(format("ogg123 -d au -f %s %s", aufile, filename))
      aufile
    else
      false
    end
  end

  def write_ogg(snd)
    if edits(snd)[0] > 0 or header_type(snd) != Mus_riff
      file = file_name(snd) + ".tmp"
      save_sound_as(file, snd, :header_type, Mus_riff)
      system("oggenc " + file)
      File.unlink(file)
    else
      system("oggenc " + file_name(snd))
    end
  end

  # read and write Speex files

  def read_speex(filename)
    wavfile = filename + ".wav"
    File.unlink(wavfile) if File.exist?(wavfile)
    system(format("speexdec %s %s", filename, wavfile))
    wavfile
  end

  def write_speex(snd)
    if edits(snd)[0] > 0 or header_type(snd) != Mus_riff
      file = file_name(snd) + ".wav"
      spxfile = file_name(snd) + "spx"
      save_sound_as(file, snd, :header_type, Mus_riff)
      system(format("speexenc %s %s", file, spxfile))
      File.unlink(file)
    else
      system(format("speexenc %s %s", file_name(snd), spxfile))
    end
  end

  # read and write FLAC files

  def read_flac(filename)
    system(format("flac -d %s", filename))
  end

  def write_flac(snd)
    if edits(snd)[0] > 0 or header_type(snd) != Mus_riff
      file = file_name(snd) + ".wav"
      save_sound_as(file, snd, :header_type, Mus_riff)
      system(format("flac %s", file))
      File.unlink(file)
    else
      system(format("flac %s ", file_name(snd)))
    end
  end

  # read ASCII files
  #
  # these are used by Octave (WaveLab) -- each line has one integer,
  # apparently a signed short.

  def read_ascii(in_filename,
                 out_filename = "test.snd",
                 out_type = Mus_next,
                 out_format = Mus_bshort,
                 out_srate = 44100)
    in_buffer = IO.readlines(in_filename)         # array of strings
    com = format("created by %s: %s", get_func_name, in_filename)
    out_snd = new_sound(out_filename, 1, out_srate, out_format, out_type, com)
    bufsize = 512
    data = make_vct(bufsize)
    loc = 0
    frame = 0
    short2float = 1.0 / 32768.0
    as_one_edit_rb do | |
      in_buffer.each do |line|
        line.split.each do |str_val|
          val = eval(str_val)
          data[loc] = val * short2float
          loc += 1
          if loc == bufsize
            vct2channel(data, frame, bufsize, out_snd, 0)
            frame += bufsize
            loc = 0
          end
        end
      end
      if loc > 0
        vct2channel(data, frame, loc, out_snd, 0)
      end
    end
    out_snd
  end

  # make dot size dependent on number of samples being displayed
  #
  # this could be extended to set time_graph_style to Graph_lines if
  # many samples are displayed, etc

  add_help(:auto_dot,
           "auto_dot(snd, chn, y0, y1)  \
Sets the dot size depending on the number \
of samples being displayed (use with $graph_hook):
$graph_hook.add_hook!(\"auto-dot\") do |snd, chn, y0, y1|
  auto_dot(snd, chn, y0, y1)
end")
  def auto_dot(snd, chn, y0, y1)
    dots = right_sample(snd, chn) - left_sample(snd, chn)
    case dots
    when 100
      set_dot_size(1, snd, chn)
    when 50
      set_dot_size(2, snd, chn)
    when 25
      set_dot_size(3, snd, chn)
    else
      set_dot_size(5, snd, chn)
    end
    false
  end

  # move window left edge to mark upon 'm'
  # 
  # in large sounds, it can be pain to get the left edge of the window
  # aligned with a specific spot in the sound.  In this code, we
  # assume the desired left edge has a mark, and the 'm' key (without
  # control) will move the window left edge to that mark.

  add_help(:first_mark_in_window_at_left,
           "first_mark_in_window_at_left()  \
Moves the graph so that the leftmost visible mark is at the left edge:
bind_key(?m, 0, lambda do | | first_mark_in_window_at_left end)")
  def first_mark_in_window_at_left
    keysnd = Snd.snd
    keychn = Snd.chn
    current_left_sample = left_sample(keysnd, keychn)
    chan_marks = marks(keysnd, keychn)
    if chan_marks.null?
      snd_print("no marks!")
    else
      leftmost = chan_marks.map do |m|
        mark_sample(m)
      end.detect do |m|
        m > current_left_sample
      end
      if leftmost.null?
        snd_print("no mark in window")
      else
        set_left_sample(leftmost, keysnd, keychn)
        Keyboard_no_action
      end
    end
  end
  
  # flash selected data red and green

  add_help(:flash_selected_data,
           "flash_selected_data(millisecs)  \
Causes the selected data to flash red and green.")
  def flash_selected_data(interval)
    if selected_sound
      set_selected_data_color(selected_data_color == Red ? Green : Red)
      call_in(interval, lambda do | | flash_selected_data(interval) end)
    end
  end

  # use loop info (if any) to set marks at loop points

  add_help(:mark_loops,
           "mark_loops()  \
Places marks at loop points found in the selected sound's header.")
  def mark_loops
    loops = (sound_loop_info or mus_sound_loop_info(file_name))
    if loops and !loops.empty?
      unless loops[0].zero? and loops[1].zero?
        add_mark(loops[0])
        add_mark(loops[1])
        unless loops[2].zero? and loops[3].zero?
          add_mark(loops[2])
          add_mark(loops[3])
        end     
      end
    else
      Snd.display("%s has no loop info", short_file_name.inspect)
    end
  end

  # mapping extensions (map arbitrary single-channel function over
  # various channel collections)

  add_help(:do_all_chans,
           "do_all_chans(edhist) do |y| ... end  \
Applies func to all active channels, \
using EDHIST as the edit history indication: \
do_all_chans(\"double all samples\", do |val| 2.0 * val end)")
  def do_all_chans(origin, &func)
    Snd.sounds.each do |snd|
      channels(snd).times do |chn|
        map_channel(func, 0, false, snd, chn, false, origin)
      end
    end
  end

  add_help(:update_graphs,
           "update_graphs()  \
Updates (redraws) all graphs.")
  def update_graphs
    Snd.sounds.each do |snd|
      channels(snd).times do |chn|
        update_time_graph(snd, chn)
      end
    end
  end

  add_help(:do_chans,
           "do_chans(edhist) do |y| ... end  \
Applies func to all sync'd channels using EDHIST \
as the edit history indication.")
  def do_chans(*origin, &func)
    snc = sync
    if snc > 0
      Snd.sounds.each do |snd|
        channels(snd).times do |chn|
          if sync(snd) == snc
            map_channel(func, 0, false, snd, chn, false,
                        (origin.empty? ? "" : format(*origin)))
          end
        end
      end
    else
      snd_warning("sync not set")
    end
  end

  add_help(:do_sound_chans,
           "do_sound_chans(edhist) do |y| ... end  \
Applies func to all selected channels using EDHIST \
as the edit history indication.")
  def do_sound_chans(*origin, &func)
    if snd = selected_sound
      channels(snd).times do |chn|
        map_channel(func, 0, false, snd, chn, false,
                    (origin.empty? ? "" : format(*origin)))
      end
    else
      snd_warning("no selected sound")
    end
  end

  add_help(:every_sample?,
           "every_sample? do |y| ... end  \
Returns true if func is not false for all samples in the current channel, \
otherwise it moves the cursor to the first offending sample.")
  def every_sample?(&func)
    snd = Snd.snd
    chn = Snd.chn
    if baddy = scan_channel(lambda do |y|
                              (not func.call(y))
                            end, 0, framples(snd, chn), snd, chn)
      set_cursor(baddy[1])
    end
    (not baddy)
  end

  add_help(:sort_samples,
           "sort_samples(bins)  \
Provides a histogram in BINS bins.")
  def sort_samples(nbins)
    bins = make_array(nbins, 0)
    scan_channel(lambda do |y|
                   bin = (y.abs * nbins).floor
                   bins[bin] += 1
                   false
                 end)
    bins
  end

  # mix mono sound into stereo sound panning according to env

  add_help(:place_sound,
           "place_sound(mono_snd, stereo_snd, pan_env)  \
Mixes a mono sound into a stereo sound, splitting it into two copies \
whose amplitudes depend on the envelope PAN_ENV.  \
If PAN_ENV is a number, \
the sound is split such that 0 is all in channel 0 \
and 90 is all in channel 1.")
  def place_sound(mono_snd, stereo_snd, pan_env)
    len = framples(mono_snd)
    if number?(pan_env)
      pos = pan_env / 90.0
      rd0 = make_sampler(0, mono_snd, false)
      rd1 = make_sampler(0, mono_snd, false)
      map_channel(lambda do |y| y + pos * read_sample(rd1) end,
                  0, len, stereo_snd, 1)
      map_channel(lambda do |y| y + (1.0 - pos) * read_sample(rd0) end,
                  0, len, stereo_snd, 0)
    else
      e0 = make_env(:envelope, pan_env, :length, len)
      e1 = make_env(:envelope, pan_env, :length, len)
      rd0 = make_sampler(0, mono_snd, false)
      rd1 = make_sampler(0, mono_snd, false)
      map_channel(lambda do |y| y + env(e1) * read_sample(rd1) end,
                  0, len, stereo_snd, 1)
      map_channel(lambda do |y| y + (1.0 - env(e0)) * read_sample(rd0) end,
                  0, len, stereo_snd, 0)
    end
  end

  # FFT-based editing

  add_help(:fft_edit,
           "fft_edit(low_Hz, high_Hz)  \
Ffts an entire sound, removes all energy below low-Hz and all above high-Hz, \
then inverse ffts.")
  def fft_edit(bottom, top, snd = false, chn = false)
    sr = srate(snd).to_f
    len = framples(snd, chn)
    fsize = (2.0 ** (log(len) / log(2.0)).ceil).to_i
    rdata = channel2vct(0, fsize, snd, chn)
    idata = make_vct(fsize)
    lo = (bottom / (sr / fsize)).round
    hi = (top / (sr / fsize)).round
    fft(rdata, idata, 1)
    j = fsize - 1
    lo.times do |i|
      rdata[i] = rdata[j] = 0.0
      rdata[i] = rdata[j] = 0.0
      j -= 1
    end
    j = fsize - hi
    (hi..(fsize / 2)).each do |i|
      rdata[i] = rdata[j] = 0.0
      rdata[i] = rdata[j] = 0.0
      j -= 1
    end
    fft(rdata, idata, -1)
    vct_scale!(rdata, 1.0 / fsize)
    vct2channel(rdata, 0, len - 1, snd, chn, false,
                format("%s(%s, %s", get_func_name, bottom, top))
  end

  add_help(:fft_squelch,
           "fft_squelch(squelch, snd=false, chn=false)  \
Ffts an entire sound, sets all bins to 0.0 whose energy is below squelch, \
then inverse ffts.")
  def fft_squelch(squelch, snd = false, chn = false)
    len = framples(snd, chn)
    fsize = (2.0 ** (log(len) / log(2.0)).ceil).to_i
    rdata = channel2vct(0, fsize, snd, chn)
    idata = make_vct(fsize)
    fsize2 = fsize / 2
    fft(rdata, idata, 1)
    vr = vct_copy(rdata)
    vi = vct_copy(idata)
    rectangular2polar(vr, vi)
    scaler = vct_peak(vr)
    scl_squelch = squelch * scaler
    j = fsize - 1
    fsize2.times do |i|
      if sqrt(rdata[i] * rdata[i] + idata[i] * idata[i]) < scl_squelch
        rdata[i] = rdata[j] = 0.0
        rdata[i] = rdata[j] = 0.0
      end
      j -= 1
    end
    fft(rdata, idata, -1)
    vct_scale!(rdata, 1.0 / fsize)
    vct2channel(rdata, 0, len - 1, snd, chn, false,
                format("%s(%s", get_func_name, squelch))
    scaler
  end

  add_help(:fft_cancel,
           "fft_cancel(lo_freq, hi_freq, snd=false, chn=false)  \
Ffts an entire sound, sets the bin(s) representing lo_freq to hi_freq to 0.0, \
then inverse ffts.")
  def fft_cancel(lo_freq, hi_freq, snd = false, chn = false)
    sr = srate(snd).to_f
    len = framples(snd, chn)
    fsize = (2.0 ** (log(len) / log(2.0)).ceil).to_i
    rdata = channel2vct(0, fsize, snd, chn)
    idata = make_vct(fsize)
    fsize2 = fsize / 2
    fft(rdata, idata, 1)
    hz_bin = sr / fsize
    lo_bin = (lo_freq / hz_bin).round
    hi_bin = (hi_freq / hz_bin).round
    j = fsize - lo_bin - 1
    fsize2.times do |i|
      if i > hi_bin
        rdata[i] = rdata[j] = 0.0
        rdata[i] = rdata[j] = 0.0
      end
      j -= 1
    end
    fft(rdata, idata, -1)
    vct_scale!(rdata, 1.0 / fsize)
    vct2channel(rdata, 0, len - 1, snd, chn, false,
                format("%s(%s, %s", get_func_name, lo_freq, hi_freq))
  end

  # same idea but used to distinguish vowels (steady-state) from consonants

  class Ramp < Musgen
    def initialize(size = 128)
      super()
      @val = 0.0
      @size = size
      @incr = 1.0 / size
      @up = true
    end

    def inspect
      format("%s.new(%d)", self.class, @size)
    end

    def to_s
      format("#<%s size: %d, val: %1.3f, incr: %1.3f, up: %s>",
             self.class, @size, @val, @incr, @up)
    end

    def run_func(up = true, dummy = false)
      @up = up
      @val += (@up ? @incr : -@incr)
      @val = [1.0, [0.0, @val].max].min
    end

    def run(up = true)
      self.run_func(up, false)
    end
  end

  add_help(:make_ramp,
           "make_ramp(size=128)  \
Returns a ramp generator.")
  def make_ramp(size = 128)
    Ramp.new(size)
  end

  add_help(:ramp,
           "ramp(gen, up)  \
Is a kind of CLM generator that produces a ramp of a given length, \
then sticks at 0.0 or 1.0 until the UP argument changes.")
  def ramp(gen, up)
    gen.run_func(up, false)
  end

  add_help(:squelch_vowels,
           "squelch_vowels(snd=false, chn=false)  \
Suppresses portions of a sound that look like steady-state.")
  def squelch_vowels(snd = false, chn = false)
    fft_size = 32
    fft_mid = (fft_size / 2.0).floor
    ramper = Ramp.new(256)
    peak = maxamp(snd, chn) / fft_mid
    read_ahead = make_sampler(0, snd, chn)
    rl = Vct.new(fft_size) do
      read_sample(read_ahead)
    end
    im = Vct.new(fft_size, 0.0)
    ctr = fft_size - 1
    in_vowel = false
    map_channel(lambda do |y|
                  ctr += 1
                  if ctr == fft_size
                    ctr = 0
                    fft(rl, im, 1)
                    rl.multiply!(rl)
                    im.multiply!(im)
                    rl.add!(im)
                    im.fill(0.0)
                    in_vowel = (rl[0] + rl[1] + rl[2] + rl[3]) > peak
                    rl.map! do
                      read_sample(read_ahead)
                    end
                  end
                  y * (1.0 - ramper.run(in_vowel))
                end, 0, false, snd, chn, false, "squelch_vowels(")
  end

  add_help(:fft_env_data,
           "fft_env_data(fft-env, snd=false, chn=false)  \
Applies fft_env as spectral env to current sound, returning vct of new data.")
  def fft_env_data(fft_env, snd = false, chn = false)
    len = framples(snd, chn)
    fsize = (2 ** (log(len) / log(2.0)).ceil).to_i
    rdata = channel2vct(0, fsize, snd, chn)
    idata = make_vct(fsize)
    fsize2 = fsize / 2
    en = make_env(:envelope, fft_env, :length, fsize2)
    fft(rdata, idata, 1)
    j = fsize - 1
    fsize2.times do |i|
      val = env(en)
      rdata[i] *= val
      idata[i] *= val
      rdata[j] *= val
      idata[j] *= val
      j -= 1
    end
    fft(rdata, idata, -1)
    vct_scale!(rdata, 1.0 / fsize)
  end

  add_help(:fft_env_edit,
           "fft_env_edit(fft-env, snd=false, chn=false)  \
Edits (filters) current chan using fft_env.")
  def fft_env_edit(fft_env, snd = false, chn = false)
    vct2channel(fft_env_data(fft_env, snd, chn), 0, framples(snd, chn) - 1,
                snd, chn, false,
                format("%s(%s", get_func_name, fft_env.inspect))
  end

  add_help(:fft_env_interp,
           "fft_env_interp(env1, env2, interp, snd=false, chn=false)  \
Interpolates between two fft-filtered \
versions (env1 and env2 are the spectral envelopes) \
following interp (an env between 0 and 1).")
  def fft_env_interp(env1, env2, interp, snd = false, chn = false)
    data1 = fft_env_data(env1, snd, chn)
    data2 = fft_env_data(env2, snd, chn)
    len = framples(snd, chn)
    en = make_env(:envelope, interp, :length, len)
    new_data = make_vct!(len) do |i|
      pan = env(en)
      (1.0 - pan) * data1[i] + pan * data2[i]
    end
    vct2channel(new_data, 0, len - 1, snd, chn, false,
                format("%s(%s, %s, %s", get_func_name,
                       env1.inspect, env2.inspect, interp.inspect))
  end

  add_help(:fft_smoother,
           "fft_smoother(cutoff, start, samps, snd=false, chn=false)  \
Uses fft-filtering to smooth a section: \
vct2channel(fft_smoother(0.1, cursor, 400, 0, 0), cursor, 400)")
  def fft_smoother(cutoff, start, samps, snd = false, chn = false)
    fftpts = (2 ** (log(samps + 1) / log(2.0)).ceil).to_i
    rl = channel2vct(start, samps, snd, chn)
    im = make_vct(fftpts)
    top = (fftpts * cutoff.to_f).floor
    old0 = rl[0]
    old1 = rl[samps - 1]
    oldmax = vct_peak(rl)
    fft(rl, im, 1)
    (top...fftpts).each do |i| rl[i] = im[i] = 0.0 end
    fft(rl, im, -1)
    vct_scale!(rl, 1.0 / fftpts)
    newmax = vct_peak(rl)
    if newmax.zero?
      rl
    else
      if (scl = oldmax / newmax) > 1.5
        vct_scale!(rl, scl)
      end
      new0 = rl[0]
      new1 = rl[samps - 1]
      offset0 = old0 - new0
      offset1 = old1 - new1
      incr = offset0 == offset1 ? 0.0 : ((offset1 - offset0) / samps)
      trend = offset0 - incr
      rl.map do |val|
        trend += incr
        val += trend
      end
    end
  end

  # comb-filter 

  add_help(:comb_filter,
           "comb_filter(scaler, size)  \
Returns a comb-filter ready for map_channel etc: \
map_channel(comb_filter(0.8, 32))  \
If you're in a hurry use: clm_channel(make_comb(0.8, 32)) instead.")
  def comb_filter(scaler, size)
    cmb = make_comb(scaler, size)
    lambda do |inval| comb(cmb, inval) end
  end

  # by using filters at harmonically related sizes, we can get chords:

  add_help(:comb_chord,
           "comb_chord(scl, size, amp, interval_one=0.75, interval_two=1.2)  \
Returns a set of harmonically-related comb filters: \
map_channel(comb_chord(0.95, 100, 0.3))")
  def comb_chord(scaler, size, amp, interval_one = 0.75, interval_two = 1.2)
    c1 = make_comb(scaler, size.to_i)
    c2 = make_comb(scaler, (interval_one * size).to_i)
    c3 = make_comb(scaler, (interval_two * size).to_i)
    lambda do |inval|
      amp * (comb(c1, inval) + comb(c2, inval) + comb(c3, inval))
    end
  end

  # or change the comb length via an envelope:

  add_help(:zcomb,
           "zcomb(scaler, size, pm)  \
Returns a comb filter whose length varies according to an envelope: \
map_channel(zcomb(0.8, 32, [0, 0, 1, 10]))")
  def zcomb(scaler, size, pm)
    max_envelope_1 = lambda do |en, mx|
      1.step(en.length - 1, 2) do |i| mx = [mx, en[i]].max.to_f end
      mx
    end
    cmb = make_comb(scaler, size,
                    :max_size, (max_envelope_1.call(pm, 0.0) + size + 1).to_i)
    penv = make_env(:envelope, pm, :length, framples())
    lambda do |inval| comb(cmb, inval, env(penv)) end
  end

  add_help(:notch_filter,
           "notch_filter(scaler, size)  \
Returns a notch-filter: map_channel(notch_filter(0.8, 32))")
  def notch_filter(scaler, size)
    gen = make_notch(scaler, size)
    lambda do |inval| notch(gen, inval) end
  end

  add_help(:formant_filter,
                   "formant_filter(radius, frequency)  \
Returns a formant generator: map_channel(formant_filter(0.99, 2400))  \
Faster is: filter_sound(make_formant(2400, 0.99))")
  def formant_filter(radius, freq)
    frm = make_formant(radius, freq)
    lambda do |inval| formant(frm, inval) end
  end

  # to impose several formants, just add them in parallel:

  add_help(:formants,
           "formants(r1, f1, r2, f2, r3, f3)  \
Returns 3 formant filters in parallel: \
map_channel(formants(0.99, 900, 0.98, 1800, 0.99 2700))")
  def formants(r1, f1, r2, f2, r3, f3)
    fr1 = make_formant(f1, r1)
    fr2 = make_formant(f2, r2)
    fr3 = make_formant(f3, r3)
    lambda do |inval|
      formant(fr1, inval) + formant(fr2, inval) + formant(fr3, inval)
    end
  end

  add_help(:moving_formant,
           "moving_formant(radius, move)  \
Returns a time-varying (in frequency) formant filter: \
map_channel(moving_formant(0.99, [0, 1200, 1, 2400]))")
  def moving_formant(radius, move)
    frm = make_formant(move[1], radius)
    menv = make_env(:envelope, move, :length, framples())
    lambda do |inval|
      val = formant(frm, inval)
      frm.frequency = env(menv)
      val
    end
  end

  add_help(:osc_formants,
           "osc_formants(radius, bases, amounts, freqs)  \
Set up any number of independently oscillating formants, \
then calls map_channel: \
osc_formants(0.99, vct(400, 800, 1200), vct(400, 800, 1200), vct(4, 2, 3))")
  def osc_formants(radius, bases, amounts, freqs)
    len = bases.length
    frms = make_array(len) do |i| make_formant(bases[i], radius) end
    oscs = make_array(len) do |i| make_oscil(freqs[i]) end
    map_channel_rb() do |x|
      val = 0.0
      frms.each_with_index do |frm, i|
        val += formant(frm, x)
        set_mus_frequency(frm, bases[i] + amounts[i] * oscil(oscs[i]))
      end
      val
    end
  end

  # echo

  add_help(:echo,
           "echo(scaler, secs)  \
Returns an echo maker: map_channel(echo(0.5, 0.5), 0 44100)")
  def echo(scaler, secs)
    del = make_delay((secs * srate()).round)
    lambda do |inval|
      inval + delay(del, scaler * (tap(del) + inval))
    end
  end

  add_help(:zecho,
           "zecho(scaler, secs, freq, amp)  \
Returns a modulated echo maker: \
map_channel(zecho(0.5, 0.75, 6, 10.0), 0, 65000)")
  def zecho(scaler, secs, freq, amp)
    os = make_oscil(freq)
    len = (secs * srate()).round
    del = make_delay(len, :max_size, (len + amp + 1).to_i)
    lambda do |inval|
      inval + delay(del, scaler * (tap(del) + inval), amp * oscil(os))
    end
  end

  add_help(:flecho,
           "flecho(scaler, secs)  \
Returns a low-pass filtered echo maker: \
map_channel(flecho(0.5, 0.9), 0, 75000)" )
  def flecho(scaler, secs)
    flt = make_fir_filter(:order, 4, :xcoeffs, vct(0.125, 0.25, 0.25, 0.125))
    del = make_delay((secs * srate()).round)
    lambda do |inval|
      inval + delay(del, fir_filter(flt, scaler * (tap(del) + inval)))
    end
  end

  # ring-mod and am
  #
  # CLM instrument is ring-modulate.ins

  add_help(:ring_mod,
           "ring_mod(freq, gliss_env)  \
Returns a time-varying ring-modulation filter: \
map_channel(ring_mod(10, [0, 0, 1, hz2radians(100)]))")
  def ring_mod(freq, gliss_env)
    os = make_oscil(:frequency, freq)
    len = framples()
    genv = make_env(:envelope, gliss_env, :length, len)
    lambda do |inval| oscil(os, env(genv)) * inval end
  end

  add_help(:am,
           "am(freq)  \
returns an amplitude-modulator: map_channel(am(440))")
  def am(freq)
    os = make_oscil(freq)
    lambda do |inval| amplitude_modulate(1.0, inval, oscil(os)) end
  end

  def vibro(speed, depth)
    sine = make_oscil(speed)
    scl = 0.5 * depth
    offset = 1.0 - scl
    lambda do |inval| inval * (offset + scl * oscil(sine)) end
  end

  # hello-dentist
  #
  # CLM instrument version is in clm.html

  add_help(:hello_dentist,
           "hello_dentist(frq, amp, snd=false, chn=false)  \
Varies the sampling rate randomly, \
making a voice sound quavery: hello_dentist(40.0, 0.1)")
  def hello_dentist(freq, amp, snd = false, chn = false)
    rn = make_rand_interp(:frequency, freq, :amplitude, amp)
    i = 0
    len = framples()
    in_data = channel2vct(0, len, snd, chn)
    out_len = (len * (1.0 + 2.0 * amp)).to_i
    out_data = make_vct(out_len)
    rd = make_src(:srate, 1.0,
                  :input, lambda do |dir|
                    val = i.between?(0, len - 1) ? in_data[i] : 0.0
                    i += dir
                    val
                  end)
    vct2channel(out_data.map do |x| src(rd, rand_interp(rn)) end,
                0, len, snd, chn, false,
                format("%s(%s, %s", get_func_name, freq, amp))
  end

  # a very similar function uses oscil instead of rand-interp, giving
  # various "Forbidden Planet" sound effects:

  add_help(:fp,
           "fp(sr, osamp, osfrq, snd=false, chn=false)  \
Varies the sampling rate via an oscil: fp(1.0, 0.3, 20)")
  def fp(sr, osamp, osfreq, snd = false, chn = false)
    os = make_oscil(:frequency, osfreq)
    s = make_src(:srate, sr)
    len = framples(snd, chn)
    sf = make_sampler(0, snd, chn)
    out_data = make_vct!(len) do
      src(s, osamp * oscil(os),
          lambda do |dir|
            dir > 0 ? next_sample(sf) : previous_sample(sf)
          end)
    end
    free_sampler(sf)
    vct2channel(out_data, 0, len, snd, chn, false,
                format("%s(%s, %s, %s", get_func_name, sr, osamp, osfreq))
  end

  # compand

  Compand_table = vct(-1.0, -0.96, -0.9, -0.82, -0.72, -0.6, -0.45, -0.25, 
                       0.0, 0.25, 0.45, 0.6, 0.72, 0.82, 0.9, 0.96, 1.0)
  add_help(:compand,
           "compand()  \
Returns a compander: map_channel(compand())")
  def compand()
    lambda do |inval|
      array_interp(Compand_table, 8.0 + 8.0 * inval, Compand_table.length)
    end
  end

  # shift pitch keeping duration constant
  # 
  # both src and granulate take a function argument to get input
  # whenever it is needed.  in this case, src calls granulate which
  # reads the currently selected file.  CLM version is in expsrc.ins

  add_help(:expsrc,
           "expsrc(rate, snd=false, chn=false)  \
Uses sampling-rate conversion and granular synthesis to produce a sound \
at a new pitch but at the original tempo.  \
It returns a function for map_chan.")
  def expsrc(rate, snd = false, chn = false)
    gr = make_granulate(:expansion, rate)
    sr = make_src(:srate, rate)
    vsize = 1024
    vbeg = 0
    v = channel2vct(0, vsize)
    inctr = 0
    lambda do |inval|
      src(sr, 0.0, lambda do |dir|
            granulate(gr, lambda do |dr|
                        val = v[inctr]
                        inctr += dr
                        if inctr >= vsize
                          vbeg += inctr
                          inctr = 0
                          v = channel2vct(vbeg, vsize, snd, chn)
                        end
                        val
                      end)
          end)
    end
  end

  # the next (expsnd) changes the tempo according to an envelope; the
  # new duration will depend on the expansion envelope -- we integrate
  # it to get the overall expansion, then use that to decide the new
  # length.

  add_help(:expsnd,
           "expsnd(gr_env, snd=false, chn=false)  \
Uses the granulate generator to change tempo \
according to an envelope: expsnd([0, 0.5, 2, 2.0])")
  def expsnd(gr_env, snd = false, chn = false)
    dur = ((framples(snd, chn) / srate(snd)) *
           integrate_envelope(gr_env) / envelope_last_x(gr_env))
    gr = make_granulate(:expansion, gr_env[1], :jitter, 0)
    ge = make_env(:envelope, gr_env, :duration, dur)
    sound_len = (srate(snd) * dur).to_i
    len = [sound_len, framples(snd, chn)].max
    sf = make_sampler(0, snd, chn)
    out_data = make_vct!(len) do
      val = granulate(gr, lambda do |dir| next_sample(sf) end)
      gr.increment = env(ge)
      val
    end
    free_sampler(sf)
    vct2channel(out_data, 0, len, snd, chn, false,
                format("%s(%s", get_func_name, gr_env.inspect))
  end

  # cross-synthesis
  #
  # CLM version is in clm.html

  add_help(:cross_synthesis,
           "cross_synthesis(cross_snd, amp, fftsize, r)  \
Does cross-synthesis between CROSS_SND (a sound index) \
and the currently selected sound: \
map_channel(cross_synthesis(1, 0.5, 128, 6.0))")
  def cross_synthesis(cross_snd, amp, fftsize, r)
    freq_inc = fftsize / 2
    fdr = make_vct(fftsize)
    fdi = make_vct(fftsize)
    spectr = make_vct(freq_inc)
    inctr = 0
    ctr = freq_inc
    radius = 1.0 - r / fftsize.to_f
    osr = mus_srate()
    csr = srate()
    bin = csr / fftsize
    # The comment from examp.scm applies of course here as well:
    # ;; if mus-srate is 44.1k and srate is 48k, make-formant
    # ;;    thinks we're trying to go past srate/2
    # ;;    and in any case it's setting its formants incorrectly
    # ;;    for the actual output srate
    # begin of temporary mus-srate
    set_mus_srate(csr)
    fmts = make_array(freq_inc) do |i|
      make_formant(i * bin, radius)
    end
    set_mus_srate(osr)
    # end of temporary mus-srate
    formants = make_formant_bank(fmts, spectr)
    lambda do |inval|
      if ctr == freq_inc
        fdr = channel2vct(inctr, fftsize, cross_snd, 0)
        inctr += freq_inc
        spectrum(fdr, fdi, false, 2)
        vct_subtract!(fdr, spectr)
        vct_scale!(fdr, 1.0 / freq_inc)
        ctr = 0
      end
      ctr += 1
      vct_add!(spectr, fdr)
      amp * formant_bank(formants, inval)
    end
  end

  # similar ideas can be used for spectral cross-fades, etc -- for example:

  add_help(:voiced2unvoiced,
           "voiced2unvoiced(amp, fftsize, r, tempo, snd=false, chn=false)  \
Turns a vocal sound into whispering: voiced2unvoiced(1.0, 256, 2.0, 2.0)")
  def voiced2unvoiced(amp, fftsize, r, tempo, snd = false, chn = false)
    freq_inc = fftsize / 2
    fdr = make_vct(fftsize)
    fdi = make_vct(fftsize)
    spectr = make_vct(freq_inc)
    noi = make_rand(:frequency, srate(snd) / 3.0)
    inctr = 0
    ctr = freq_inc
    osr = mus_srate()
    csr = srate()
    # See cross_synthesis above.
    # begin of temporary mus-srate
    set_mus_srate(csr)
    radius = 1.0 - r.to_f / fftsize
    bin = csr / fftsize
    len = framples(snd, chn)
    outlen = (len / tempo).floor
    hop = (freq_inc * tempo).floor
    out_data = make_vct([len, outlen].max)
    fmts = make_array(freq_inc) do |i|
      make_formant(i * bin, radius)
    end
    set_mus_srate(osr)
    # end of temporary mus-srate
    formants = make_formant_bank(fmts, spectr)
    old_peak_amp = new_peak_amp = 0.0
    outlen.times do |i|
      if ctr == freq_inc
        fdr = channel2vct(inctr, fftsize, snd, chn)
        if (pk = vct_peak(fdr)) > old_peak_amp
          old_peak_amp = pk
        end
        spectrum(fdr, fdi, false, 2)
        inctr += hop
        vct_subtract!(fdr, spectr)
        vct_scale!(fdr, 1.0 / freq_inc)
        ctr = 0
      end
      ctr += 1
      vct_add!(spectr, fdr)
      if (outval = formant_bank(formants, rand(noi))).abs > new_peak_amp
        new_peak_amp = outval.abs
      end
      out_data[i] = outval
    end
    vct_scale!(out_data, amp * (old_peak_amp / new_peak_amp))
    vct2channel(out_data, 0, [len, outlen].max, snd, chn, false,
                format("%s(%s, %s, %s, %s", get_func_name,
                       amp, fftsize, r, tempo))
  end

  # very similar but use sum-of-cosines (glottal pulse train?)
  # instead of white noise

  add_help(:pulse_voice,
           "pulse_voice(cosin, freq=440.0, amp=1.0, fftsize=256, r=2.0, \
snd=false, chn=false)  \
Use ncos to manipulate speech sounds.")
  def pulse_voice(cosin, freq = 440.0, amp = 1.0,
                  fftsize = 256, r = 2.0, snd = false, chn = false)
    freq_inc = fftsize / 2
    spectr = make_vct(freq_inc)
    len = framples(snd, chn)
    osr = mus_srate()
    csr = srate(snd)
    # See cross_synthesis above.
    # begin of temporary mus-srate
    set_mus_srate(csr)
    bin = csr / fftsize
    radius = 1.0 - (r.to_f / fftsize)
    fmts = make_array(freq_inc) do |i|
      make_formant(:radius, radius, :frequency, i * bin)
    end
    formants = make_formant_bank(fmts, spectr)
    set_mus_srate(osr)
    # end of temporary mus-srate
    old_peak_amp = 0.0
    pulse = make_ncos(freq, cosin)
    fdr = nil
    inctr = 0
    fdi = make_vct(fftsize)
    inv_freq_inc = 1.0 / freq_inc
    out_data = make_vct!(len) do |i|
      if i.modulo(freq_inc) == 0
        fdr = channel2vct(inctr, fftsize, snd, chn)
        old_peak_amp = [vct_peak(fdr), old_peak_amp].max
        spectrum(fdr, fdi, false, 2)
        vct_subtract!(fdr, spectr)
        vct_scale!(fdr, inv_freq_inc)
        inctr += freq_inc
      end
      vct_add!(spectr, fdr)
      formant_bank(formants, ncos(pulse))
    end
    vct_scale!(out_data, (old_peak_amp / vct_peak(out_data)) * amp)
    vct2channel(out_data, 0, len, snd, chn)
  end
  # pulse_voice(80,   20.0, 1.0, 1024, 0.01)
  # pulse_voice(80,  120.0, 1.0, 1024, 0.2)
  # pulse_voice(30,  240.0, 1.0, 1024, 0.1)
  # pulse_voice(30,  240.0, 1.0, 2048)
  # pulse_voice( 6, 1000.0, 1.0,  512)

  # convolution example

  add_help(:cnvtest,
           "cnvtest(snd0, snd1, amp)  \
Convolves snd0 and snd1, scaling by amp, \
returns new max amp: cnvtest(0, 1, 0.1)")
  def cnvtest(snd0, snd1, amp)
    flt_len = framples(snd0)
    total_len = flt_len + framples(snd1)
    cnv = make_convolve(:filter, channel2vct(0, flt_len, snd0))
    sf = make_sampler(0, snd1, false)
    out_data = make_vct!(total_len) do
      convolve(cnv, lambda do |dir| next_sample(sf) end)
    end
    free_sampler(sf)
    vct_scale!(out_data, amp)
    max_samp = vct_peak(out_data)
    vct2channel(out_data, 0, total_len, snd1)
    if max_samp > 1.0
      set_y_bounds(snd1, [-max_samp, max_samp])
    end
    max_samp
  end

  # swap selection chans

  add_help(:swap_selection_channels,
           "swap_selection_channels()  \
Swaps the currently selected data's channels.")
  def swap_selection_channels
    if (not selection?)
      Snd.raise(:no_active_selection)
    end
    if selection_chans != 2
      Snd.raise(:wrong_number_of_channels, "need a stereo selection")
    end  
    beg = selection_position()
    len = selection_framples()
    snd_chn0 = snd_chn1 = nil
    Snd.sounds.each do |snd|
      channels(snd).times do |chn|
        if selection_member?(snd, chn)
          if snd_chn0.nil?
            snd_chn0 = [snd, chn]
          elsif snd_chn1.nil?
            snd_chn1 = [snd, chn]
            break
          end
        end
      end
    end
    if snd_chn1.nil?
      Snd.raise(:wrong_number_of_channels, "need two channels to swap")
    end
    swap_channels(snd_chn0[0], snd_chn0[1], snd_chn1[0], snd_chn1[1], beg, len)
  end

  # sound interp
  # 
  # make-sound-interp sets up a sound reader that reads a channel at
  # an arbitary location, interpolating between samples if necessary,
  # the corresponding "generator" is sound-interp

  add_help(:make_sound_interp,
           "make_sound_interp(start, snd=false, chn=false)  \
An interpolating reader for SND's channel CHN.")
  def make_sound_interp(start, snd = false, chn = false)
    data = channel2vct(0, false, snd, chn)
    size = data.length
    lambda do |loc|
      array_interp(data, loc, size)
    end
  end

  add_help(:sound_interp,
           "sound_interp(func, loc)  \
Sample at LOC (interpolated if necessary) from FUNC \
created by make_sound_interp.")
  def sound_interp(func, loc)
    func.call(loc)
  end

  def sound_via_sound(snd1, snd2)
    intrp = make_sound_interp(0, snd1, 0)
    len = framples(snd1, 0) - 1
    rd = make_sampler(0, snd2, 0)
    mx = maxamp(snd2, 0)
    map_channel(lambda do |val|
                  sound_interp(intrp,
                               (len * 0.5 * 
                               (1.0 + (read_sample(rd) / mx))).floor)
                end)
  end
  
  # env_sound_interp takes an envelope that goes between 0 and 1
  # (y-axis), and a time-scaler (1.0 = original length) and returns a
  # new version of the data in the specified channel that follows that
  # envelope (that is, when the envelope is 0 we get sample 0, when
  # the envelope is 1 we get the last sample, envelope = 0.5 we get
  # the middle sample of the sound and so on. env_sound_interp([0, 0,
  # 1, 1]) will return a copy of the current sound;
  # env_sound_interp([0, 0, 1, 1, 2, 0], 2.0) will return a new sound
  # with the sound copied first in normal order, then reversed.
  # src_sound with an envelope could be used for this effect, but it
  # is much more direct to apply the envelope to sound sample
  # positions.

  add_help(:env_sound_interp,
           "env_sound_interp(env, time_scale=1.0, snd=false, chn=false)  \
Reads SND's channel CHN according to ENV and TIME_SCALE.")
  def env_sound_interp(envelope, time_scale = 1.0, snd = false, chn = false)
    len = framples(snd, chn)
    newlen = (time_scale.to_f * len).floor
    read_env = make_env(:envelope, envelope, :length, newlen + 1, :scaler, len)
    data = channel2vct(0, false, snd, chn)
    new_snd = Vct.new(newlen) do
      array_interp(data, env(read_env), len)
    end
    set_samples(0, newlen, new_snd, snd, chn, true,
                format("%s(%p, %s", get_func_name, envelope, time_scale),
                0, Current_edit_position, true)
  end
  # env_sound_interp([0, 0, 1, 1, 2, 0], 2.0)

  add_help(:granulated_sound_interp,
           "granulated_sound_interp(env, time_scale=1.0, grain_len=0.1, \
grain_env=[0, 0, 1, 1, 2, 1, 3, 0], out_hop=0.05, snd=false, chn=false)  \
Reads the given channel following ENV (as in env_sound_interp), \
using grains to create the re-tempo'd read.")
  def granulated_sound_interp(envelope,
                              time_scale = 1.0,
                              grain_length = 0.1,
                              grain_envelope = [0, 0, 1, 1, 2, 1, 3, 0],
                              output_hop = 0.05,
                              snd = false,
                              chn = false)
    len = framples(snd, chn)
    newlen = (time_scale.to_f * len).floor
    read_env = make_env(envelope, :length, newlen, :scaler, len)
    sr = srate(snd).to_f
    grain_frames = (grain_length * sr).to_i
    hop_frames = (output_hop * sr).to_i
    num_readers = (grain_length.to_f / output_hop).ceil
    cur_readers = 0
    next_reader = 0
    jitter = sr * 0.005
    readers = Array.new(num_readers, false)
    grain_envs = Array.new(num_readers) do
      make_env(grain_envelope, :length, grain_frames)
    end
    new_snd = Vct.new(newlen, 0.0)
    0.step(newlen, hop_frames) do |i|
      stop = [newlen, hop_frames + i].min
      read_env.location = i
      position_in_original = env(read_env)
      mx = [0, (position_in_original + mus_random(jitter)).round].max
      readers[next_reader] = make_sampler(mx, snd, chn)
      grain_envs[next_reader].reset
      next_reader += 1
      next_reader %= num_readers
      if cur_readers < next_reader
        cur_readers = next_reader
      end
      (0...cur_readers).each do |j|
        en = grain_envs[j]
        rd = readers[j]
        (i...stop).each do |k|
          new_snd[k] = env(en) * rd.call()
        end
      end
    end
    set_samples(0, newlen, new_snd, snd, chn, true,
                format("%s(%p, %s, %s, %p, %s",
                       get_func_name,
                       envelope,
                       time_scale,
                       grain_length,
                       grain_envelope,
                       output_hop), 0, Current_edit_position, true)
  end
  # granulated_sound_interp([0, 0, 1, 0.1, 2, 1], 1.0, 0.2, [0, 0, 1, 1, 2, 0])
  # granulated_sound_interp([0, 0, 1, 1], 2.0)
  # granulated_sound_interp([0, 0, 1, 0.1, 2, 1], 1.0, 0.2, [0, 0, 1, 1, 2, 0],
  #                         0.02)
  
  # filtered-env 

  add_help(:filtered_env,
           "filtered_env(env, snd=false, chn=false)  \
Is a time-varying one-pole filter: when ENV is at 1.0, no filtering, \
as ENV moves to 0.0, low-pass gets more intense; \
amplitude and low-pass amount move together.")
  def filtered_env(en, snd = false, chn = false)
    flt = make_one_pole(1.0, 0.0)
    amp_env = make_env(:envelope, en, :length, framples())
    map_channel(lambda do |val|
                  env_val = env(amp_env)
                  set_mus_xcoeff(flt, 0, env_val)
                  set_mus_ycoeff(flt, 1, env_val - 1.0)
                  one_pole(flt, env_val * val)
                end, 0, false, snd, chn, false,
                format("%s(%s", get_func_name, en.inspect))
  end

  # lisp graph with draggable x axis

  class Mouse
    def initialize
      @down = 0
      @pos = 0.0
      @x1 = 1.0
    end

    def press(snd, chn, button, state, x, y)
      @pos = x / @x1
      @down = @x1
    end

    def drag(snd, chn, button, state, x, y)
      xnew = x / @x1
      @x1 = [1.0, [0.1, @down + (@pos - xnew)].max].min
      graph(make_vct!((100 * @x1).floor) do |i| i * 0.01 end, "ramp", 0.0, @x1)
    end
  end

=begin  
  let(Mouse.new) do |mouse|
    $mouse_drag_hook.add_hook!("Mouse") do |snd, chn, button, state, x, y|
      mouse.drag(snd, chn, button, state, x, y)
    end
    $mouse_press_hook.add_hook!("Mouse") do |snd, chn, button, state, x, y|
      mouse.press(snd, chn, button, state, x, y)
    end
  end
=end

  # pointer focus within Snd
  # 
  # $mouse_enter_graph_hook.add_hook!("focus") do |snd, chn|
  #   focus_widget(channel_widgets(snd, chn)[0])
  # end
  # $mouse_enter_listener_hook.add_hook!("focus") do |widget|
  #   focus_widget(widget)
  # end
  # $mouse_enter_text_hook.add_hook!("focus") do |widget|
  #   focus_widget(widget)
  # end

  # View: Files dialog chooses which sound is displayed
  #
  # by Anders Vinjar

  add_help(:files_popup_buffer,
           "files_popup_buffer(type, position, name)  \
Hides all sounds but the one the mouse touched in the current files list.  \
Use with $mouse_enter_label_hook.
$mouse_enter_label_hook.add_hook!(\"files-popup\") do |type, position, name|
  files_popup_buffer(type, position, name)
end")
  def files_popup_buffer(type, position, name)
    if snd = find_sound(name)
      curr_buffer = Snd.snd
      vals = widget_size(sound_widgets(curr_buffer)[0])
      height = vals[1]
      Snd.sounds.each do |s| hide_widget(sound_widgets(s)[0]) end
      show_widget(sound_widgets(snd)[0])
      set_widget_size(sound_widgets(snd)[0], [widht, height])
      select_sound(snd)
    end
  end

  # remove-clicks

  add_help(:find_click,
           "find_click(loc)  \
Finds the next click starting at LOC.")
  def find_click(loc)
    reader = make_sampler(loc, false, false)
    samp0 = samp1 = samp2 = 0.0
    samps = make_vct(10)
    len = framples()
    samps_ctr = 0
    (loc...len).each do |ctr|
      samp0, samp1, samp2 = samp1, samp2, next_sample(reader)
      samps[samps_ctr] = samp0
      if samps_ctr < 9
        samps_ctr += 1
      else
        samps_ctr = 0
      end
      local_max = [0.1, vct_peak(samps)].max
      if ((samp0 - samp1).abs > local_max) and
          ((samp1 - samp2).abs > local_max) and
          ((samp0 - samp2).abs < (local_max / 2))
        return ctr - 1
      end
    end
    false
  end

  add_help(:remove_clicks,
           "remove_clicks()  \
Tries to find and smooth-over clicks.")
  def remove_clicks
    loc = 0
    while (click = find_click(loc))
      smooth_sound(click - 2, 4)
      loc = click + 2
    end
  end

  # searching examples (zero+, next-peak)

  add_help(:search_for_click,
           "search_for_click()  \
Looks for the next click (for use with C-s).")
  def search_for_click
    samp0 = samp1 = samp2 = 0.0
    samps = Vct.new(10)
    sctr = 0
    lambda do |val|
      samp0, samp1, samp2 = samp1, samp2, val
      samps[sctr] = val
      sctr += 1
      if sctr >= 10 then sctr = 0 end
      local_max = [0.1, samps.peak].max
      if ((samp0 - samp1).abs >= local_max) and
          ((samp1 - samp2).abs >= local_max) and
          ((samp0 - samp2).abs <= (local_max / 2))
        -1
      else
        false
      end
    end
  end

  add_help(:zero_plus,
           "zero_plus()  \
Finds the next positive-going \
zero crossing (if searching forward) (for use with C-s).")
  def zero_plus
    lastn = 0.0
    lambda do |n|
      rtn = lastn < 0.0 and n >= 0.0 and -1
      lastn = n
      rtn
    end
  end

  add_help(:next_peak,
           "next_peak()  \
Finds the next max or min point \
in the time-domain waveform (for use with C-s).")
  def next_peak
    last0 = last1 = false
    lambda do |n|
      rtn = number?(last0) and
        ((last0 < last1 and last1 > n) or (last0 > last1 and last1 < n)) and -1
      last0, last1 = last1, n
      rtn
    end
  end

  add_help(:find_pitch,
           "find_pitch(pitch)  \
Finds the point in the current sound where PITCH (in Hz) \
predominates -- C-s find_pitch(300).  \
In most cases, \
this will be slightly offset from the true beginning of the note.")
  def find_pitch(pitch)
    interpolated_peak_offset = lambda do |la, ca, ra|
      pk = 0.001 + [la, ca, ra].max
      logla = log([la, 0.0000001].max / pk) / log(10)
      logca = log([ca, 0.0000001].max / pk) / log(10)
      logra = log([ra, 0.0000001].max / pk) / log(10)
      0.5 * (logla - logra) / ((logla + logra) - 2 * logca)
    end
    data = make_vct(transform_size)
    data_loc = 0
    lambda do |n|
      data[data_loc] = n
      data_loc += 1
      rtn = false
      if data_loc == transform_size
        data_loc = 0
        if vct_peak(data) > 0.001
          spectr = snd_spectrum(data, Rectangular_window, transform_size)
          pk = 0.0
          pkloc = 0
          (transform_size / 2).times do |i|
            if spectr[i] > pk
              pk = spectr[i]
              pkloc = i
            end
          end
          pit = (pkloc + (pkloc > 0 ?
                 interpolated_peak_offset.call(*spectr[pkloc - 1, 3]) :
                 0.0) * srate()) / transform_size
          if (pitch - pit).abs < srate / (2 * transform_size)
            rtn = -(transform_size / 2)
          end
        end
        vct_fill!(data, 0.0)
      end
      rtn
    end
  end

  # file2vct and a sort of cue-list, I think

  add_help(:file2vct,
           "file2vct(file)  \
Returns a vct with FILE's data.")
  def file2vct(file)
    len = mus_sound_framples(file)
    reader = make_sampler(0, file)
    data = make_vct!(len) do next_sample(reader) end
    free_sampler(reader)
    data
  end

  add_help(:add_notes,
           "add_notes(notes, snd=false, chn=false)  \
Adds (mixes) NOTES which is a list of lists of the form: \
[file, offset=0.0, amp=1.0] starting at the cursor in the \
currently selected channel: \
add_notes([[\"oboe.snd\"], [\"pistol.snd\", 1.0, 2.0]])")
  def add_notes(notes, snd = false, chn = false)
    start = cursor(snd, chn)
    as_one_edit_rb("%s(%s", get_func_name, notes.inspect) do
      (notes or []).each do |note|
        file, offset, amp = note
        beg = start + (srate(snd) * (offset or 0.0)).floor
        if amp and amp != 1.0
          mix_vct(vct_scale!(file2vct(file), amp), beg, snd, chn, false,
                  format("%s(%s", get_func_name, notes.inspect))
        else
          mix(file, beg, 0, snd, chn, false)
        end
      end
    end
  end

  add_help(:region_play_list,
           "region_play_list(data)  \
DATA is list of lists [[time, reg], ...], time in secs, \
setting up a sort of play list: \
region_play_list([[0.0, 0], [0.5, 1], [1.0, 2], [1.0, 0]])")
  def region_play_list(data)
    (data or []).each do |tm, rg|
      tm = (1000.0 * tm).floor
      if region?(rg)
        call_in(tm, lambda do | | play(rg) end)
      end
    end
  end

  add_help(:region_play_sequence,
           "region_play_sequence(data)  \
DATA is list of region ids which will be played one after the other: \
region_play_sequence([0, 2, 1])")
  def region_play_sequence(data)
    time = 0.0
    region_play_list(data.map do |id|
                       cur = time
                       time = time + region_framples(id) / region_srate(id)
                       [cur, id]
                     end)
  end

  # replace-with-selection

  add_help(:replace_with_selection,
           "replace_with_selection()  \
Replaces the samples from the cursor with the current selection.")
  def replace_with_selection
    beg = cursor
    len = selection_framples()
    delete_samples(beg, len)
    insert_selection(beg)
  end

  # explode-sf2

  add_help(:explode_sf2,
           "explode_sf2()  \
Turns the currently selected soundfont file into \
a bunch of files of the form sample-name.aif.")
  def explode_sf2
    (soundfont_info() or []).each do |name, start, loop_start, loop_end|
      filename = name + ".aif"
      if selection?
        set_selection_member?(false, true)
      end
      set_selection_member?(true)
      set_selection_position(start)
      set_selection_framples(framples() - start)
      save_selection(filename, selection_srate(), Mus_bshort, Mus_aifc)
      temp = open_sound(filename)
      set_sound_loop_info([loop_start, loop_end], temp)
      close_sound(temp)
    end
  end

  # open-next-file-in-directory

  class Next_file
    def initialize
      @last_file_opened = ""
      @current_directory = ""
      @current_sorted_files = []
    end

    def open_next_file_in_directory
      unless $open_hook.member?("open-next-file-in-directory")
        $open_hook.add_hook!("open-next-file-in-directory") do |fname|
          self.get_current_directory(fname)
        end
      end
      if @last_file_opened.empty? and sounds
        @last_file_opened = file_name(Snd.snd)
      end
      if @current_directory.empty?
        unless sounds
          get_current_files(Dir.pwd)
        else
          get_current_files(File.split(@last_file_opened).first)
        end
      end
      if @current_sorted_files.empty?
        Snd.raise(:no_such_file)
      else
        next_file = find_next_file
        if find_sound(next_file)
          Snd.raise(:file_already_open, next_file)
        else
          sounds and close_sound(Snd.snd)
          open_sound(next_file)
        end
      end
      true
    end

    private
    def find_next_file
      choose_next = @last_file_opened.empty?
      just_filename = File.basename(@last_file_opened)
      f = callcc do |ret|
        @current_sorted_files.each do |file|
          ret.call(file) if choose_next
          if file == just_filename
            choose_next = true
          end
        end
        @current_sorted_files[0] # wrapped around
      end
      @current_directory + "/" + f
    end

    def get_current_files(dir)
      @current_directory = dir
      @current_sorted_files = sound_files_in_directory(dir).sort
    end

    def get_current_directory(filename)
      Snd.display(@last_file_opened = filename)
      new_path = File.split(mus_expand_filename(filename)).first
      if @current_directory.empty? or @current_directory != new_path
        get_current_files(new_path)
      end
      false
    end
  end

  def click_middle_button_to_open_next_file_in_directory
    nf = Next_file.new
    $mouse_click_hook.add_hook!("next-file") do |s, c, button, st, x, y, ax|
      if button == 2
        nf.open_next_file_in_directory
      end
    end
  end

  # chain-dsps

  def chain_dsps(start, dur, *dsps)
    dsp_chain = dsps.map do |gen|
      if array?(gen)
        make_env(:envelope, gen, :duration, dur)
      else
        gen
      end
    end
    run_instrument(start, dur) do
      val = 0.0
      dsp_chain.each do |gen|
        if env?(gen)
          val *= gen.run
        elsif readin?(gen)
          val += gen.run
        else
          val = gen.run(val)
        end
      end
      val
    end
  end

=begin
  with_sound() do
    chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0],
               make_oscil(:frequency, 440))
    chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0],
               make_one_pole(0.5), make_readin("oboe.snd"))
    chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0],
               let(make_oscil(:frequency, 220),
                   make_oscil(:frequency, 440)) do |osc1, osc2|
                  lambda do |val|
                    osc1.run(val) + osc2.run(2.0 * val)
                  end
               end)
  end
=end

  # re-order channels

  def scramble_channels(*new_order)
    len = new_order.length
    swap_once = lambda do |current, desired, n|
      if n != len
        cur_orig, cur_cur = current[n][0, 2]
        dst = desired[n]
        if cur_orig != dst
          swap_channels(false, cur_cur, false, dst)
          current[dst][0] = cur_orig
        end
        swape_once.call(current, desired, n + 1)
      end
    end
    swap_once.call(make_array(len) do |i| [i, i] end, new_order, 0)
  end

  def scramble_channel(silence)
    buffer = make_moving_average(128)
    silence = silence / 128.0
    edges = []
    in_silence = true
    old_max = max_regions
    old_tags = with_mix_tags
    set_max_regions(1024)
    set_with_mix_tags(false)
    rd = make_sampler()
    framples().times do |i|
      y = next_sample(rd)
      sum_of_squares = moving_average(buffer, y * y)
      now_silent = (sum_of_squares < silence)
      if now_silent != in_silence
        edges.push(i)
      end
      in_silence = now_silent
    end
    edges.push(framples())
    len = edges.length
    start = 0
    pieces = Array.new(len) do |i|
      en = edges[i]
      re = make_region(start, en)
      start = en
      re
    end
    start = 0
    fnc = lambda do | |
      scale_by(0.0)
      len.times do |i|
        this = random(len)
        reg = pieces[this]
        pieces[this] = false
        unless reg
          (this + 1).upto(len - 1) do |j|
            reg = pieces[j]
            if reg
              pieces[j] = false
              break
            end
          end
          unless reg
            (this - 1).downto(0) do |j|
              reg = pieces[j]
              if reg
                pieces[j] = false
                break
              end
            end
          end
        end
        mix_region(reg, start)
        start += framples(reg)
        forget_region(reg)
      end
    end
    as_one_edit(fnc)
    set_max_regions(old_max)
    set_with_mix_tags(old_tags)
  end
  # scramble_channel(0.01)

  # reorder blocks within channel

  add_help(:reverse_by_blocks,
           "reverse_by_blocks(block_len, snd=false, chn=false)  \
Divide sound into block-len blocks, recombine blocks in reverse order.")
  def reverse_by_blocks(block_len, snd = false, chn = false)
    len = framples(snd, chn)
    num_blocks = (len / (srate(snd).to_f * block_len)).floor
    if num_blocks > 1
      actual_block_len = len / num_blocks
      rd = make_sampler(len - actual_block_len, snd, chn)
      beg = 0
      ctr = 1
      map_channel(lambda do |y|
                    val = read_sample(rd)
                    if beg < 10
                      val = val * beg * 0.1
                    else
                      if beg > actual_block_len - 10
                        val = val * (actual_block_len - beg) * 0.1
                      end
                    end
                    beg += 1
                    if beg == actual_block_len
                      ctr += 1
                      beg = 0
                      rd = make_sampler([len - ctr * actual_block_len, 0].max,
                                        snd, chn)
                    end
                    val
                  end, 0, false,
                  snd, chn, false, format("%s(%s", get_func_name, block_len))
    end
  end

  add_help(:reverse_within_blocks,
           "reverse_within_blocks(block_len, snd=false, chn=false)  \
Divide sound into blocks, recombine in order, \
but each block internally reversed.")
  def reverse_within_blocks(block_len, snd = false, chn = false)
    len = framples(snd, chn)
    num_blocks = (len / (srate(snd).to_f * block_len)).floor
    if num_blocks > 1
      actual_block_len = len / num_blocks
      no_clicks_env = [0.0, 0.0, 0.01, 1.0, 0.99, 1.0, 1.0, 0.0]
      as_one_edit(lambda do | |
                    0.step(len, actual_block_len) do |beg|
                      reverse_channel(beg, actual_block_len, snd, chn)
                      env_channel(no_clicks_env, beg, actual_block_len,
                                  snd, chn)
                    end
                  end, format("%s(%s", get_func_name, block_len))
    else
      reverse_channel(0, false, snd, chn)
    end
  end

  def segment_maxamp(name, beg, dur)
    mx = 0.0
    rd = make_sampler(beg, name)
    dur.times do mx = [mx, next_sample(rd).abs].max end
    free_sampler(rd)
    mx
  end

  def segment_sound(name, high, low)
    len = mus_sound_framples(name)
    reader = make_sampler(0, name)
    avg = make_moving_average(:size, 128)
    lavg = make_moving_average(:size, 2048)
    segments = Vct.new(100)
    segctr = 0
    possible_end = 0
    in_sound = false
    len.times do |i|
      samp = next_sample(reader).abs
      val = moving_average(avg, samp)
      lval = moving_average(lavg, samp)
      if in_sound
        if val < low
          possible_end = i
          if lval < low
            segments[segctr] = possible_end + 128
            segctr += 1
            in_sound = false
          end
        else
          if val > high
            segments[segctr] = i - 128
            segctr += 1
            in_sound = true
          end
        end
      end
    end
    free_sampler(reader)
    if in_sound
      segments[segctr] = len
      [segctr + 1, segments]
    else
      [segctr, segments]
    end
  end

  def do_one_directory(fd, dir_name, ins_name, high = 0.01, low = 0.001)
    snd_print("# #{dir_name}")
    sound_files_in_directory(dir_name).each do |sound|
      sound_name = dir_name + "/" + sound
      boundary_data = segment_sound(sound_name, high, low)
      segments, boundaries = boundary_data
      fd.printf("\n\n#    ", sound)
      fd.printf("(%s %s", ins_name, sound_name.inspect)
      0.step(segments, 2) do |bnd|
        segbeg = boundaries[bnd].to_i
        segbeg = boundaries[bnd + 1].to_i
        fd.printf("(%s %s %s)", segbeg, segdur,
                  segment_maxamp(sound_name, segbeg, segdur))
        fd.printf(")")
      end
      mus_sound_forget(sound_name)
    end
  end
  
  def sound2segment_data(main_dir, output_file = "sounds.data")
    File.open(output_file, "w") do |fd|
      old_fam = with_file_monitor
      set_with_file_monitor(false)
      fd.printf("# sound data from %s", main_dir.inspect)
      if main_dir[-1] != "/" then main_dir += "/" end
      Dir[main_dir].each do |dir|
        ins_name = dir.downcase.tr(" ", "")
        fd.printf("\n\n# ---------------- %s ----------------", dir)
        if dir == "Piano"
          Dir[main_dir + dir].each do |inner_dir|
            do_one_directory(fd, main_dir + dir + "/" + inner_dir,
                             ins_name, 0.001, 0.0001)
          end
        else
          do_one_directory(fd, main_dir + dir, ins_name)
        end
      end
      set_with_file_monitor(old_fam)
    end
  end
  # sounds2segment_data(ENV['HOME'] + "/.snd.d/iowa/sounds/", "iowa.data")

  add_help(:channel_clipped?,
           "channel_clipped?(snd=false, chn=false)  \
Returns true and a sample number if it finds clipping.")
  def channel_clipped?(snd = false, chn = false)
    last_y = 0.0
    scan_channel(lambda do |y|
                   result = (y.abs >= 0.9999 and last_y.abs >= 0.9999)
                   last_y = y
                   result
                 end, 0, false, snd, chn)
  end

  # scan-sound
  
  def scan_sound(func, beg = 0, dur = false, snd = false)
    if sound?(index = Snd.snd(snd))
      if (chns = channels(index)) == 1
        scan_channel(lambda do |y| func.call(y, 0) end, beg, dur, index, 0)
      else
        len = framples(index)
        fin = (dur ? [len, beg + dur].min : len)
        readers = make_array(chns) do |chn| make_sampler(beg, index, chn) end
        result = false
        beg.upto(fin) do |i|
          local_result = true
          readers.each_with_index do |rd, chn|
            local_result = (func.call(rd.call, chn) and local_result)
          end
          if local_result
            result = [true, i]
            break
          end
        end
        result
      end
    else
      Snd.raise(:no_such_sound, get_func_name, snd)
    end
  end

  def scan_sound_rb(beg = 0, dur = false, snd = false, &func)
    scan_sound(func, beg, dur, snd)
  end
end

include Examp

module Moog
  class Moog_filter < Musgen
    Gaintable = vct(0.999969, 0.990082, 0.980347, 0.970764, 0.961304, 0.951996,
                    0.94281, 0.933777, 0.924866, 0.916077, 0.90741, 0.898865,
                    0.890442, 0.882141, 0.873962, 0.865906, 0.857941, 0.850067,
                    0.842346, 0.834686, 0.827148, 0.819733, 0.812378, 0.805145,
                    0.798004, 0.790955, 0.783997, 0.77713, 0.770355, 0.763672,
                    0.75708, 0.75058, 0.744141, 0.737793, 0.731537, 0.725342,
                    0.719238, 0.713196, 0.707245, 0.701355, 0.695557, 0.689819,
                    0.684174, 0.678558, 0.673035, 0.667572, 0.66217, 0.65686,
                    0.651581, 0.646393, 0.641235, 0.636169, 0.631134, 0.62619,
                    0.621277, 0.616425, 0.611633, 0.606903, 0.602234, 0.597626,
                    0.593048, 0.588531, 0.584045, 0.579651, 0.575287, 0.570953,
                    0.566681, 0.562469, 0.558289, 0.554169, 0.550079, 0.546051,
                    0.542053, 0.538116, 0.53421, 0.530334, 0.52652, 0.522736,
                    0.518982, 0.515289, 0.511627, 0.507996, 0.504425, 0.500885,
                    0.497375, 0.493896, 0.490448, 0.487061, 0.483704, 0.480377,
                    0.477081, 0.473816, 0.470581, 0.467377, 0.464203, 0.46109,
                    0.457977, 0.454926, 0.451874, 0.448883, 0.445892, 0.442932,
                    0.440033, 0.437134, 0.434265, 0.431427, 0.428619, 0.425842,
                    0.423096, 0.42038, 0.417664, 0.415009, 0.412354, 0.409729,
                    0.407135, 0.404572, 0.402008, 0.399506, 0.397003, 0.394501,
                    0.392059, 0.389618, 0.387207, 0.384827, 0.382477, 0.380127,
                    0.377808, 0.375488, 0.37323, 0.370972, 0.368713, 0.366516,
                    0.364319, 0.362122, 0.359985, 0.357849, 0.355713, 0.353607,
                    0.351532, 0.349457, 0.347412, 0.345398, 0.343384, 0.34137,
                    0.339417, 0.337463, 0.33551, 0.333588, 0.331665, 0.329773,
                    0.327911, 0.32605, 0.324188, 0.322357, 0.320557, 0.318756,
                    0.316986, 0.315216, 0.313446, 0.311707, 0.309998, 0.308289,
                    0.30658, 0.304901, 0.303223, 0.301575, 0.299927, 0.298309,
                    0.296692, 0.295074, 0.293488, 0.291931, 0.290375, 0.288818,
                    0.287262, 0.285736, 0.284241, 0.282715, 0.28125, 0.279755,
                    0.27829, 0.276825, 0.275391, 0.273956, 0.272552, 0.271118,
                    0.269745, 0.268341, 0.266968, 0.265594, 0.264252, 0.262909,
                    0.261566, 0.260223, 0.258911, 0.257599, 0.256317, 0.255035,
                    0.25375)
    Freqtable = [0, -1,
      0.03311111, -0.9,
      0.06457143, -0.8,
      0.0960272, -0.7,
      0.127483, -0.6,
      0.1605941, -0.5,
      0.1920544, -0.4,
      0.22682086, -0.3,
      0.2615873, -0.2,
      0.29801363, -0.1,
      0.33278003, -0.0,
      0.37086168, 0.1,
      0.40893877, 0.2,
      0.4536417, 0.3,
      0.5, 0.4,
      0.5463583, 0.5,
      0.5943719, 0.6,
      0.6556281, 0.7,
      0.72185487, 0.8,
      0.8096009, 0.9,
      0.87913835, 0.95,
      0.9933787, 1,
      1, 1]

    def initialize(freq, q)
      super()
      @frequency = freq
      @Q = q
      @state = make_vct(4)
      @A = 0.0
      @freqtable = envelope_interp(freq / (srate() * 0.5), Freqtable)
    end
    attr_reader :frequency, :state, :freqtable, :A
    attr_accessor :Q

    def inspect
      format("%s.new(%s, %s)", self.class, @frequency, @Q)
    end

    def to_s
      format("#<%s freq: %1.3f, Q: %s>", self.class, @frequency, @Q)
    end

    def run_func(val1 = 0.0, val2 = 0.0)
      filter(val1)
    end

    def frequency=(freq)
      @freqtable = envelope_interp(freq / (srate() * 0.5), Freqtable)
      @frequency = freq
    end
    
    def filter(insig)
      a = 0.25 * (insig - @A)
      @state.map! do |st|
        new_a = saturate(a + @freqtable * (a - st))
        a = saturate(new_a + st)
        new_a
      end
      ix = @freqtable * 99.0
      ixint = ix.floor
      ixfrac = ix - ixint
      @A = a * @Q * 
           ((1.0 - ixfrac) * Gaintable[ixint + 99] + 
            ixfrac * Gaintable[ixint + 100])
      a
    end

    private
    def saturate(x)
      [[x, -0.95].max, 0.95].min
    end
  end

  add_help(:make_moog_filter,
           "make_moog_filter(freq=440.0, Q=0)  \
Makes a new moog_filter generator. \
FREQUENCY is the cutoff in Hz, \
Q sets the resonance: 0 = no resonance, 1: oscillates at FREQUENCY.")
  def make_moog_filter(freq = 440.0, q = 0)
    Moog_filter.new(freq, q)
  end

  add_help(:moog_filter,
           "moog_filter(moog, insig=0.0)  \
Is the generator associated with make_moog_filter.")
  def moog_filter(mg, insig = 0.0)
    mg.filter(insig)
  end

  def moog(freq, q)
    mg = Moog_filter.new(freq, q)
    lambda do |inval| mg.filter(inval) end
  end
end

include Moog

# examp.rb ends here