1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
|
(provide 'snd-numerics.scm)
(when (provided? 'pure-s7)
(define (make-polar mag ang)
(if (and (real? mag) (real? ang))
(complex (* mag (cos ang)) (* mag (sin ang)))
(error 'wrong-type-arg "make-polar args should be real"))))
;;; random stuff I needed at one time or another while goofing around...
;;; there are a lot more in snd-test.scm
(define factorial
(let* ((num-factorials 128)
(factorials (let ((temp (make-vector num-factorials 0)))
(set! (temp 0) 1) ; is this correct?
(set! (temp 1) 1)
temp)))
(lambda (n)
(if (> n num-factorials)
(let ((old-num num-factorials)
(old-facts factorials))
(set! num-factorials n)
(set! factorials (make-vector num-factorials 0))
(do ((i 0 (+ i 1)))
((= i old-num))
(set! (factorials i) (old-facts i)))))
(if (zero? (factorials n))
(set! (factorials n) (* n (factorial (- n 1)))))
(factorials n))))
;; (factorial 3) 6
#|
;;; maxima uses this:
;; From Richard Fateman's paper, "Comments on Factorial Programs",
;; http://www.cs.berkeley.edu/~fateman/papers/factorial.pdf
;;
;; k(n,m) = n*(n-m)*(n-2*m)*...
;;
;; (k n 1) is n!
;;
;; This is much faster (3-4 times) than the original factorial
;; function.
(define (factorial n)
(define (k n m)
(if (<= n m)
n
(* (k n (* 2 m))
(k (- n m) (* 2 m)))))
(if (zero? n)
1
(k n 1)))
|#
(define (binomial-direct n m)
(/ (factorial n)
(* (factorial m) (factorial (- n m)))))
(define n-choose-k
(let ((+documentation+ "(n-choose-k n k) computes the binomial coefficient C(N,K)"))
(lambda (n k)
(let ((mn (min k (- n k))))
(if (< mn 0)
0
(if (= mn 0)
1
(let ((mx (max k (- n k))))
(do ((cnk (+ 1 mx))
(i 2 (+ i 1)))
((> i mn) cnk)
(set! cnk (/ (* cnk (+ mx i)) i))))))))))
;; (n-choose-k 10 6) 210
;; (n-choose-k 10 9) 10
;; same for binomial-direct
;;; --------------------------------------------------------------------------------
;;; from Numerical Recipes
(define (plgndr L m x) ;Legendre polynomial P m/L (x), m and L integer
;0 <= m <= L and -1<= x <= 1 (x real)
(if (or (not (<= 0 m L))
(> (abs x) 1.0))
(error 'wrong-type-arg "invalid arguments to plgndr: ~A ~A ~A" L m x)
(let ((pmm 1.0)
(fact 0.0)
(somx2 0.0))
(if (> m 0)
(begin
(set! somx2 (sqrt (* (- 1.0 x) (+ 1.0 x))))
(set! fact 1.0)
(do ((i 1 (+ i 1)))
((> i m))
(set! pmm (* (- pmm) fact somx2))
(set! fact (+ fact 2.0)))))
(if (= L m)
pmm
(let ((pmmp1 (* x pmm (+ (* 2 m) 1))))
(if (= L (+ m 1))
pmmp1
(do ((pk 0.0) ; NR used "ll" which is unreadable
(k (+ m 2) (+ k 1)))
((> k L) pk)
(set! pk (/ (- (* x (- (* 2 k) 1) pmmp1)
(* (+ k m -1) pmm))
(- k m)))
(set! pmm pmmp1)
(set! pmmp1 pk))))))))
;;; A&S (bessel.lisp)
(define (legendre-polynomial a x) ; sum of weighted polynomials (m=0)
(let ((n (- (length a) 1)))
(if (= n 0)
(a 0)
(let ((r x)
(s 1.0)
(h 0.0)
(sum (a 0)))
(do ((k 1 (+ k 1)))
((= k n))
(set! h r)
(set! sum (+ sum (* r (a k))))
(set! r (/ (- (* r x (+ (* 2 k) 1)) (* s k)) (+ k 1)))
(set! s h))
(+ sum (* r (a n)))))))
(define (legendre n x)
(legendre-polynomial (let ((v (make-vector (+ 1 n) 0.0)))
(set! (v n) 1.0)
v)
x))
;;; (with-sound (:scaled-to 0.5) (do ((i 0 (+ i 1)) (x 0.0 (+ x .1))) ((= i 10000)) (outa i (legendre 20 (cos x)))))
;; (legendre 3 1.0) 1.0
#|
;; if l odd, there seems to be sign confusion:
(with-sound (:channels 2 :scaled-to 1.0)
(do ((i 0 (+ i 1))
(theta 0.0 (+ theta 0.01)))
((= i 10000))
(outa i (plgndr 1 1 (cos theta)))
(let ((x (sin theta)))
(outb i (- x)))))
;; this works:
(with-sound (:channels 2 :scaled-to 1.0)
(do ((i 0 (+ i 1))
(theta 0.0 (+ theta 0.01)))
((= i 10000))
(let ((x (cos theta)))
(outa i (plgndr 3 0 x))
(outb i (* 0.5 x (- (* 5 x x) 3))))))
|#
(define* (gegenbauer n x (alpha 0.0))
(set! alpha (max alpha -0.5))
(cond ((= n 0) 1.0)
((= alpha 0.0) (* (/ 2.0 n) (cos (* n x)))) ; maxima and A&S 22.3.14 (gsl has bogus values here)
(else
(case n
((1) (* 2 alpha x)) ; G&R 8.93(2)
((2) (- (* 2 alpha (+ alpha 1) x x) alpha)) ; G&R 8.93(3)
(else
(let ((fn1 (* 2 x alpha))
(fn 0.0000)
(fn2 1.0000))
(if (= n 1)
fn1
(do ((k 2 (+ k 1))
(k0 2.0 (+ k0 1.0)))
((> k n) fn)
(set! fn (/ (- (* 2 x fn1 (+ k alpha -1.0)) (* fn2 (+ k (* 2 alpha) -2.0))) k0))
(set! fn2 fn1)
(set! fn1 fn)))))))))
;;; (with-sound (:scaled-to 0.5) (do ((i 0 (+ i 1)) (x 0.0 (+ x .1))) ((= i 10000)) (outa i (gegenbauer 15 (cos x) 1.0))))
;; (gegenbauer 3 1.0) -0.6599949977336302
#|
(with-sound (:scaled-to 0.5)
(do ((i 0 (+ i 1))
(theta 0.0 (+ theta 0.05)))
((= i 10000))
(let ((x (cos theta)))
(outa i (gegenbauer 20 x)))))
|#
(define* (chebyshev-polynomial a x (kind 1))
(let ((n (- (length a) 1)))
(if (= n 0)
(a 0)
(let ((r (* kind x))
(s 1.0)
(h 0.0)
(sum (a 0)))
(do ((k 1 (+ k 1)))
((= k n))
(set! h r)
(set! sum (+ sum (* r (a k))))
(set! r (- (* 2 r x) s))
(set! s h))
(+ sum (* r (a n)))))))
(define* (chebyshev n x (kind 1))
(let ((a (make-vector (+ 1 n) 0.0)))
(set! (a n) 1.0)
(chebyshev-polynomial a x kind)))
;; (chebyshev 3 1.0) 1.0
(define (hermite-polynomial a x)
(let ((n (- (length a) 1)))
(if (= n 0)
(a 0)
(let ((r (* 2 x))
(s 1.0)
(h 0.0)
(sum (a 0)))
(do ((k 1 (+ k 1))
(k2 2 (+ k2 2)))
((= k n))
(set! h r)
(set! sum (+ sum (* r (a k))))
(set! r (- (* 2 r x) (* k2 s)))
(set! s h))
(+ sum (* r (a n)))))))
(define* (hermite n x)
(let ((a (make-vector (+ 1 n) 0.0)))
(set! (a n) 1.0)
(hermite-polynomial a x)))
;; (hermite 3 1.0) -4.0
(define* (laguerre-polynomial a x (alpha 0.0))
(let ((n (- (length a) 1)))
(if (= n 0)
(a 0)
(let ((r (- (+ alpha 1.0) x))
(s 1.0)
(h 0.0)
(sum (a 0)))
(do ((k 1 (+ k 1)))
((= k n))
(set! h r)
(set! sum (+ sum (* r (a k))))
(set! r (/ (- (* r (- (+ (* 2 k) 1 alpha) x))
(* s (+ k alpha)))
(+ k 1)))
(set! s h))
(+ sum (* r (a n)))))))
(define* (laguerre n x (alpha 0.0))
(let ((a (make-vector (+ 1 n) 0.0)))
(set! (a n) 1.0)
(laguerre-polynomial a x alpha)))
;; (laguerre 3 1.0) -0.6666666666666666
#|
;;; --------------------------------------------------------------------------------
;;;
;;; just for my amusement -- apply a linear-fractional or Mobius transformation to the fft data (treated as complex)
;;;
;;; (automorph 1 0 0 1) is the identity
;;; (automorph 2 0 0 1) scales by 2
;;; (automorph 0.0+1.0i 0 0 1) rotates 90 degrees (so 4 times = identity)
;;; most cases won't work right because we're assuming real output and so on
(define* (automorph a b c d snd chn)
(let* ((len (framples snd chn))
(pow2 (ceiling (log len 2)))
(fftlen (floor (expt 2 pow2)))
(fftlen2 (/ fftlen 2))
(fftscale (/ 1.0 fftlen))
(rl (channel->float-vector 0 fftlen snd chn))
(im (make-float-vector fftlen)))
(fft rl im 1)
(float-vector-scale! rl fftscale)
(float-vector-scale! im fftscale)
;; handle 0 case by itself
(let* ((c1 (complex (rl 0) (im 0)))
(val (/ (+ (* a c1) b)
(+ (* c c1) d)))
(rval (real-part val))
(ival (imag-part val)))
(set! (rl 0) rval)
(set! (im 0) ival))
(do ((i 1 (+ i 1))
(k (- fftlen 1) (- k 1)))
((= i fftlen2))
(let* ((c1 (complex (rl i) (im i)))
(val (/ (+ (* a c1) b) ; (az + b) / (cz + d)
(+ (* c c1) d)))
(rval (real-part val))
(ival (imag-part val)))
(set! (rl i) rval)
(set! (im i) ival)
(set! (rl k) rval)
(set! (im k) (- ival))))
(fft rl im -1)
(float-vector->channel rl 0 len snd chn #f (format #f "automorph ~A ~A ~A ~A" a b c d))))
|#
#|
;;; --------------------------------------------------------------------------------
;;; these are in snd-xen.c??
(define (bes-i1 x) ;I1(x)
(if (< (abs x) 3.75)
(let ((y (expt (/ x 3.75) 2)))
(* x (+ 0.5
(* y (+ 0.87890594
(* y (+ 0.51498869
(* y (+ 0.15084934
(* y (+ 0.2658733e-1
(* y (+ 0.301532e-2
(* y 0.32411e-3))))))))))))))
(let* ((ax (abs x))
(y (/ 3.75 ax))
(ans1 (+ 0.2282967e-1
(* y (+ -0.2895312e-1
(* y (+ 0.1787654e-1
(* y -0.420059e-2)))))))
(ans2 (+ 0.39894228
(* y (+ -0.3988024e-1
(* y (+ -0.362018e-2
(* y (+ 0.163801e-2
(* y (+ -0.1031555e-1 (* y ans1)))))))))))
(sign (if (< x 0.0) -1.0 1.0)))
(* (/ (exp ax) (sqrt ax)) ans2 sign))))
(define (bes-in n x) ;return In(x) for any integer n, real x
(if (= n 0)
(bes-i0 x)
(if (= n 1)
(bes-i1 x)
(if (= x 0.0)
0.0
(let* ((iacc 40)
(bigno 1.0e10)
(bigni 1.0e-10)
(ans 0.0)
(tox (/ 2.0 (abs x)))
(bip 0.0)
(bi 1.0)
(m (* 2 (+ n (truncate (sqrt (* iacc n))))))
(bim 0.0))
(do ((j m (- j 1)))
((= j 0))
(set! bim (+ bip (* j tox bi)))
(set! bip bi)
(set! bi bim)
(if (> (abs bi) bigno)
(begin
(set! ans (* ans bigni))
(set! bi (* bi bigni))
(set! bip (* bip bigni))))
(if (= j n) (set! ans bip)))
(if (and (< x 0.0) (odd? n)) (set! ans (- ans)))
(* ans (/ (bes-i0 x) bi)))))))
|#
;;; --------------------------------------------------------------------------------
(define (aux-f x) ;1<=x<inf
(let ((x2 (* x x)))
(/ (+ 38.102495 (* x2 (+ 335.677320 (* x2 (+ 265.187033 (* x2 (+ 38.027264 x2)))))))
(* x (+ 157.105423 (* x2 (+ 570.236280 (* x2 (+ 322.624911 (* x2 (+ 40.021433 x2)))))))))))
(define (aux-g x)
(let ((x2 (* x x)))
(/ (+ 21.821899 (* x2 (+ 352.018498 (* x2 (+ 302.757865 (* x2 (+ 42.242855 x2)))))))
(* x2 (+ 449.690326 (* x2 (+ 1114.978885 (* x2 (+ 482.485984 (* x2 (+ 48.196927 x2)))))))))))
(define (Si x)
(if (>= x 1.0)
(- (/ pi 2) (* (cos x) (aux-f x)) (* (sin x) (aux-g x)))
(do ((sum x)
(fact 2.0)
(one -1.0)
(xs x)
(x2 (* x x))
(err .000001)
(unhappy #t)
(i 3.0 (+ i 2.0)))
((not unhappy) sum)
(set! xs (/ (* one x2 xs) (* i fact)))
(set! one (- one))
(set! fact (+ 1 fact))
(set! xs (/ xs fact))
(set! unhappy (> (abs xs) err))
(set! sum (+ sum xs)))))
(define (Ci x)
(if (>= x 1.0)
(- (* (sin x) (aux-f x)) (* (cos x) (aux-g x)))
(do ((g .5772156649)
(sum 0.0)
(fact 1.0)
(one -1.0)
(xs 1.0)
(x2 (* x x))
(err .000001)
(unhappy #t)
(i 2.0 (+ i 2.0)))
((not unhappy)
(+ g (log x) sum))
(set! xs (/ (* one x2 xs) (* i fact)))
(set! one (- one))
(set! fact (+ 1 fact))
(set! xs (/ xs fact))
(set! unhappy (> (abs xs) err))
(set! sum (+ sum xs)))))
;; (Si 1.0) 0.9460830708394717
;; (Ci 1.0) 0.3374039233633503
;;; --------------------------------------------------------------------------------
(define bernoulli3
(let ((saved-values (copy #(1 -1/2 1/6 0 -1/30 0 1/42 0 -1/30 0 5/66 0 -691/2730
0 7/6 0 -3617/510 0 43867/798 0 -174611/330 0
854513/138 0 -236364091/2730 0 8553103/6 0
-23749461029/870 0 8615841276005/14322 0)
(make-vector 100 #f))))
(lambda (n)
(if (number? (saved-values n))
(saved-values n)
(let ((value (if (odd? n)
0.0
(let ((sum2 0.0)
(itmax 1000)
(tol 5.0e-7)
(close-enough #f))
(do ((i 1 (+ i 1)))
((or close-enough
(> i itmax)))
(let ((term (/ 1.0 (expt i n))))
(set! sum2 (+ sum2 term))
(set! close-enough (or (< (abs term) tol)
(< (abs term) (* tol (abs sum2)))))))
(/ (* 2.0 sum2 (factorial n)
(if (= (modulo n 4) 0) -1 1))
(expt (* 2.0 pi) n))))))
(set! (saved-values n) value))))))
(define (bernoulli-poly n x)
(let ((fact 1.0)
(value (bernoulli3 0)))
(do ((i 1 (+ i 1)))
((> i n) value)
(set! fact (* fact (/ (- (+ n 1) i) i)))
(set! value (+ (* value x)
(* fact (bernoulli3 i)))))))
#|
;; (bernoulli-poly 1 1.0) 0.5
(with-sound (:clipped #f :channels 2)
(let ((x 0.0)
(incr (hz->radians 100.0))
(N 2))
(do ((i 0 (+ i 1)))
((= i 44100))
(outa i (* (expt -1 (- N 1))
(/ 0.5 (factorial N))
(expt (* 2 pi) (+ (* 2 N) 1))
(bernoulli-poly (+ (* 2 N) 1) (/ x (* 2 pi)))))
(outb i (* (expt -1 (- N 1))
(/ 0.5 (factorial N))
(expt (* 2 pi) (+ (* 2 N) 1))
(bernoulli-poly (+ (* 2 N) 0) (/ x (* 2 pi)))))
(set! x (+ x incr))
(if (> x (* 2 pi)) (set! x (- x (* 2 pi)))))))
|#
;;; --------------------------------------------------------------------------------
(define (sin-m*pi/n m1 n1)
;; this returns an expression giving the exact value of sin(m*pi/n), m and n integer
;; if we can handle n -- currently it can be anything of the form 2^a 3^b 5^c 7^d 11^h 13^e 17^f 257^g
;; so (sin-m*pi/n 1 60) returns an exact expression for sin(pi/60).
(let ((m (numerator (/ m1 n1)))
(n (denominator (/ m1 n1))))
(set! m (modulo m (* 2 n)))
;; now it's in lowest terms without extra factors of 2*pi
(cond ((zero? m) 0)
((zero? n) (error 'divide-by-zero "divide by zero (sin-m*pi/n n = 0)"))
((= n 1) 0)
((negative? n)
(let ((val (sin-m*pi/n m (- n))))
(and val (list '- val))))
((> m n)
(let ((val (sin-m*pi/n (- m n) n)))
(and val (list '- val))))
((= n 2) (if (= m 0) 0 1))
((= n 3) `(sqrt 3/4))
((> m 1)
(let ((m1 (sin-m*pi/n (- m 1) n))
(n1 (sin-m*pi/n 1 n))
(m2 (sin-m*pi/n (- m 2) n)))
(and m1 m2 n1
`(- (* 2 ,m1 (sqrt (- 1 (* ,n1 ,n1)))) ,m2))))
((= n 5) `(/ (sqrt (- 10 (* 2 (sqrt 5)))) 4))
((= n 7) `(let ((A1 (expt (+ -7/3456 (sqrt -49/442368)) 1/3))
(A2 (expt (- -7/3456 (sqrt -49/442368)) 1/3)))
(sqrt (+ 7/12 (* -1/2 (+ A1 A2)) (* 1/2 0+i (sqrt 3) (- A1 A2))))))
((= n 17) `(let* ((A1 (sqrt (- 17 (sqrt 17))))
(A2 (sqrt (+ 17 (sqrt 17))))
(A3 (sqrt (+ 34 (* 6 (sqrt 17)) (* (sqrt 2) (- (sqrt 17) 1) A1) (* -8 (sqrt 2) A2)))))
(* 1/8 (sqrt 2) (sqrt (- 17 (sqrt 17) (* (sqrt 2) (+ A1 A3)))))))
((= n 11) `(let* ((SQRT5 (* 1/2 (- (sqrt 5) 1)))
(B5 (sqrt (+ 2 (* 1/2 (+ (sqrt 5) 1)))))
(B6 (+ SQRT5 (* 0+i B5)))
(B6_2 (* B6 B6))
(B6_3 (* B6 B6 B6))
(B6_4 (* B6 B6 B6 B6))
(D1 (+ 6 (* 3/2 B6) (* 3/4 B6_2)))
(D2 (+ SQRT5 (* 0+i B5) (* 1/4 B6_2)))
(D3 (* 1/2 (- (+ 1 (* 0+i (sqrt 11))))))
(D4 (* 1/2 (- (* 0+i (sqrt 11)) 1)))
(D6 (+ 1 (* 1/4 B6_2) (* 1/8 B6_3)))
(D7 (+ (* 1/2 B6) (* 1/16 B6_4)))
(D8 (+ 2 (* 1/2 B6)))
(D9 (+ 13 (* 21 B6) (* 67/4 B6_2) (* 21/4 B6_3) (* 2 B6_4)))
(D11 (+ 129 (* 109/2 B6) (* 59/4 B6_2) (* 9/8 B6_3) (* 9/16 B6_4)))
(D13 (+ (* 3 B6) B6_2))
(D14 (+ (* 3 B6) (* 3/4 B6_2) (* 3/8 B6_3)))
(D15 (+ 79 (* 27 B6) (* 39/4 B6_2) (* 37/4 B6_3) (* 21/4 B6_4)))
(D16 (+ D11 (* D3 D9) (* D4 D15)))
(D17 (+ D11 (* D4 D9) (* D3 D15)))
(D30 (/ (* B6_2 (+ (* D3 D6) (* D4 D7))) (* 4 (expt D17 1/5))))
(D32 (* 1/2 (+ 1 (* 0+i (sqrt 11)))))
(D33 (/ (* B6_3 (+ (* D4 D6) (* D3 D7))) (* 8 (expt D16 1/5))))
(D34 (* 1/4 B6_2 (expt D16 1/5)))
(D35 (+ 2 (* 1/8 B6_4) (* 1/2 B6 D8) (* 1/8 B6_3 D2)))
(D36 (+ SQRT5 (* 0+i B5) (* 1/2 B6_2) (* 1/4 B6_3) (* 1/2 B6 D2) (* 1/4 B6_2 (+ (* 1/4 B6_3) (* 1/16 B6_4)))))
(D38 (* 1/2 (+ -1 (* 0+i (sqrt 11)))))
(D39 (* 1/8 B6_3 (expt D17 1/5)))
(D40 (+ 3 (* 3/2 B6) (* 9/4 B6_2) (* 7/8 B6_3) (* 3/16 B6_4) (* 1/2 B6 (+ 6 (* 2 B6)))
(* 1/16 B6_4 D1) (* 1/4 B6_2 D13) (* 1/8 B6_3 (+ 3 (* 3/4 B6_3) (* 3/16 B6_4)))))
(D41 (+ (* 1/4 B6_2 D1) (* 1/8 B6_3 D13) (* 1/16 B6_4 D14) (* 1/2 B6 (+ 4 (* 3/8 B6_4)))))
(D42 (+ 3 (* 3/4 B6_3) (* 3/16 B6_4) (* 1/8 B6_3 D1) (* 1/4 B6_2 D14)
(* 1/2 B6 (+ (* 3/2 B6_2) (* 3/8 B6_3) (* 3/16 B6_4))) (* 1/16 B6_4 (+ 3 (* 3/2 B6) (* 3/8 B6_4)))))
(D43 (+ (* 1/4 B6_3) (* 1/16 B6_4) (* 1/8 B6_3 D8) (* 1/4 B6_2 D2)
(* 1/2 B6 (+ (* 1/2 B6_2) (* 1/8 B6_3))) (* 1/16 B6_4 (+ 1 (* 1/8 B6_4)))))
(D44 (/ (* B6_4 (+ D42 (* D4 D40) (* D3 D41))) (* 16 (expt D16 3/5))))
(D45 (/ (* B6 (+ D42 (* D3 D40) (* D4 D41))) (* 2 (expt D17 3/5))))
(D48 (/ (* B6 (+ D43 (* D3 D35) (* D4 D36))) (* 2 (expt D16 2/5))))
(D49 (/ (* B6_4 (+ D43 (* D4 D35) (* D3 D36))) (* 16 (expt D17 2/5)))))
(* -1/2 0+i
(+ (* 1/5 (- D32 D33 D34 D48 D44))
(* 1/5 (+ D38 D30 D39 D49 D45))))))
((= n 13)
`(let* ((A1 (/ (- -1 (sqrt 13)) 2))
(A2 (/ (+ -1 (sqrt 13)) 2))
(A3 (/ (+ -1 (* 0+i (sqrt 3))) 2))
(A4 (+ -1 (* 0+i (sqrt 3))))
(A5 (* 0+i (sqrt (+ 7 (sqrt 13) A2))))
(A6 (* 0+i (sqrt (+ 7 (- (sqrt 13)) A1))))
(A8 (* 1/2 (- A2 A6)))
(A9 (* 1/2 (+ A1 A5)))
(A11 (* 1/2 (+ A2 A6)))
(A12 (* 1/2 (- A1 A5)))
(A13 (* 3/2 A4 A8))
(A14 (* 3/2 A4 A11))
(A15 (* 3/4 A4 A4 A11))
(A16 (* 3/4 A4 A4 A8))
(A17 (+ A3 (* 1/4 A4 A4))))
(* -1/6 0+i (+ (- A9 A12)
(* A4 (+ (/ (+ A8 (* A17 A12)) (* 2 (expt (+ 6 A13 A15 A9) 1/3)))
(/ (+ A11 (* A17 A9)) (* -2 (expt (+ 6 A16 A14 A12) 1/3)))
(* 1/4 A4 (- (expt (+ 6 A13 A15 A9) 1/3) (expt (+ 6 A16 A14 A12) 1/3)))))))))
((= n 257)
`(let* ((A1 (sqrt (- 514 (* 2 (sqrt 257)))))
(A2 (- 257 (* 15 (sqrt 257))))
(A3 (+ 257 (* 15 (sqrt 257))))
(A4 (- 257 (sqrt 257)))
(A5 (+ (sqrt 257) 257))
(A7 (+ 257 (* 9 (sqrt 257))))
(A8 (- 514 (* 18 (sqrt 257))))
(AA (sqrt (* 2 A5)))
(A9 (sqrt (+ A2 (* 8 A1) (* -7 AA))))
(A10 (sqrt (+ A2 (* -8 A1) (* 7 AA))))
(A11 (sqrt (+ A3 (* 7 A1) (* 8 AA))))
(A12 (sqrt (+ A3 (* -7 A1) (* -8 AA))))
(A13 (sqrt (+ A8 (* 6 A1) (* 8 A9) (* -24 A10) (* 12 A11))))
(A14 (* 4 (sqrt (+ A8 (* 6 A1) (* -8 A9) (* 24 A10) (* -12 A11)))))
(A15 (* 4 (sqrt (+ A8 (* -6 A1) (* -12 A12) (* 24 A9) (* 8 A10)))))
(A16 (* 4 (sqrt (* 2 (+ (- 257 (* 9 (sqrt 257))) (* -3 A1) (* 6 A12) (* -12 A9) (* -4 A10))))))
(A17 (sqrt (* 2 (+ A7 (* -3 AA) (* -4 A12) (* 6 A9) (* 12 A11)))))
(A18 (sqrt (* 2 (+ A7 (* 3 AA) (* 12 A12) (* -6 A10) (* 4 A11)))))
(A19 (* 4 (sqrt (* 2 (+ A7 (* 3 AA) (* -12 A12) (* 6 A10) (* -4 A11))))))
(A20 (* 4 (sqrt (* 2 (+ A7 (* -3 AA) (* 4 A12) (* -6 A9) (* -12 A11))))))
(A22 (+ A4 (* 3 A1) (* -4 AA) (* -4 A12) (* 4 A9) (* -4 A10) (* 2 A11)))
(A23 (+ A5 (* -4 A1) (* -3 AA) (* -4 A12) (* 2 A9) (* 4 A10) (* 4 A11)))
(A24 (+ A5 (* 4 A1) (* 3 AA) (* 4 A12) (* 4 A9) (* -2 A10) (* 4 A11)))
(A26 (sqrt (+ A22 (+ (- A16) (- A19) (* 4 A17) (* -6 A13)))))
(A27 (sqrt (+ A22 (+ A16 A19 (* -4 A17) (* 6 A13)))))
(A28 (+ 257 (* 7 (sqrt 257)) (* 3 A1) (* -4 A9) (* 4 A10) (* 6 A11)))
(A29 (* 8 (sqrt (+ A24 A15 (- A20) (* -6 A18) (* -4 A13)))))
(A30 (+ A28 (* -4 A18) (* -4 A17) (* -2 A13)))
(A31 (+ (* 8 (sqrt (+ A23 A15 A14 (* 4 A18) (* -6 A17)))) (* 4 A26) A29 (* -8 A27))))
(* 1/16 (sqrt (* 1/2 (+ A4 (- A1) (* -2 A11) (* -2 A13) (* -4 A26)
(* -4 (sqrt (* 2 (+ A30 (- A31)))))
(* -8 (sqrt (+ A4 (- A1) (* -2 A11) (* 6 A13) (* -4 A26) (* -8 A27)
(* 4 (sqrt (* 2 (+ A30 A31))))
(* -8 (sqrt (* 2 (+ A28 (* 4 A18) (* 4 A17) (* 2 A13) (* -8 A26) (* -4 A27)
(* -8 (sqrt (+ A23 (- A15) (- A14) (* -4 A18) (* 6 A17))))
(* -8 (sqrt (+ A24 (- A15) A20 (* 6 A18) (* 4 A13)))))))))))))))))
((or (= (modulo n 2) 0) (= (modulo n 3) 0) (= (modulo n 5) 0) (= (modulo n 7) 0)
(= (modulo n 17) 0) (= (modulo n 13) 0) (= (modulo n 257) 0) (= (modulo n 11) 0))
(let* ((divisor (cond ((= (modulo n 2) 0) 2)
((= (modulo n 3) 0) 3)
((= (modulo n 5) 0) 5)
((= (modulo n 7) 0) 7)
((= (modulo n 17) 0) 17)
((= (modulo n 13) 0) 13)
((= (modulo n 11) 0) 11)
(else 257)))
(val (sin-m*pi/n 1 (/ n divisor))))
(and val
`(let ((ex ,val))
(/ (- (expt (+ (sqrt (- 1 (* ex ex))) (* 0+i ex)) (/ 1 ,divisor))
(expt (- (sqrt (- 1 (* ex ex))) (* 0+i ex)) (/ 1 ,divisor)))
0+2i)))))
(else #f))))
#|
(let ((maxerr 0.0)
(max-case #f)
(cases 0))
(do ((n 1 (+ n 1)))
((= n 10000))
(do ((m 1 (+ m 1)))
((= m 4))
(let ((val (sin (/ (* m pi) n)))
(expr (sin-m*pi/n m n)))
(if expr
(let ((err (magnitude (- val (eval expr)))))
(set! cases (+ cases 1))
(if (> err maxerr)
(begin
(set! maxerr err)
(set! max-case (/ m n)))))))))
(format () "sin-m*pi/n (~A cases) max err ~A at ~A~%" cases maxerr max-case))
:(sin (/ pi (* 257 17)))
0.00071906440440859
:(eval (sin-m*pi/n 1 (* 17 257)))
0.00071906440440875
|#
;;; --------------------------------------------------------------------------------
(define show-digits-of-pi-starting-at-digit
;; piqpr8.c
;;
;; This program implements the BBP algorithm to generate a few hexadecimal
;; digits beginning immediately after a given position id, or in other words
;; beginning at position id + 1. On most systems using IEEE 64-bit floating-
;; point arithmetic, this code works correctly so long as d is less than
;; approximately 1.18 x 10^7. If 80-bit arithmetic can be employed, this limit
;; is significantly higher. Whatever arithmetic is used, results for a given
;; position id can be checked by repeating with id-1 or id+1, and verifying
;; that the hex digits perfectly overlap with an offset of one, except possibly
;; for a few trailing digits. The resulting fractions are typically accurate
;; to at least 11 decimal digits, and to at least 9 hex digits.
;;
;; David H. Bailey 2006-09-08
;;
;; translated to Scheme 29-Dec-08
(let ((ihex (lambda (x nhx chx)
;; This returns, in chx, the first nhx hex digits of the fraction of x.
(do ((y (abs x))
(hx "0123456789ABCDEF")
(i 0 (+ i 1)))
((= i nhx) chx)
(set! y (* 16.0 (- y (floor y))))
(set! (chx i) (hx (floor y))))))
(series (lambda (m id)
;; This routine evaluates the series sum_k 16^(id-k)/(8*k+m) using the modular exponentiation technique.
(let ((expm (let ((ntp 25))
(let ((tp1 0)
(tp (make-vector ntp)))
(lambda (p ak)
;; expm = 16^p mod ak. This routine uses the left-to-right binary exponentiation scheme.
;; If this is the first call to expm, fill the power of two table tp.
(if (= tp1 0)
(begin
(set! tp1 1)
(set! (tp 0) 1.0)
(do ((i 1 (+ i 1)))
((= i ntp))
(set! (tp i) (* 2.0 (tp (- i 1)))))))
(if (= ak 1.0)
0.0
(let ((pl -1))
;; Find the greatest power of two less than or equal to p.
(do ((i 0 (+ i 1)))
((or (not (= pl -1))
(= i ntp)))
(if (> (tp i) p)
(set! pl i)))
(if (= pl -1) (set! pl ntp))
(let ((pt (tp (- pl 1)))
(p1 p)
(r 1.0))
;; Perform binary exponentiation algorithm modulo ak.
(do ((j 1 (+ j 1)))
((> j pl) r)
(if (>= p1 pt)
(begin
(set! r (* 16.0 r))
(set! r (- r (* ak (floor (/ r ak)))))
(set! p1 (- p1 pt))))
(set! pt (* 0.5 pt))
(if (>= pt 1.0)
(begin
(set! r (* r r))
(set! r (- r (* ak (floor (/ r ak)))))))))))))))
(eps 1e-17)
(s 0.0))
(do ((k 0 (+ k 1)))
((= k id))
(let* ((ak (+ (* 8 k) m))
(t (expm (- id k) ak)))
(set! s (+ s (/ t ak)))
(set! s (- s (floor s)))))
;; Compute a few terms where k >= id.
(do ((happy #f)
(k id (+ k 1)))
((or (> k (+ id 100)) happy) s)
(let ((t (/ (expt 16.0 (- id k)) (+ (* 8 k) m))))
(set! happy (< t eps))
(set! s (+ s t))
(set! s (- s (floor s)))))))))
(lambda (id)
;; id is the digit position. Digits generated follow immediately after id.
(let ((chx (make-string 17))
(pid (let ((s1 (series 1 id))
(s2 (series 4 id))
(s3 (series 5 id))
(s4 (series 6 id)))
(- (+ (* 4.0 s1) (* -2.0 s2)) s3 s4))))
(set! pid (- (+ 1.0 pid) (floor pid)))
(ihex pid 10 chx)
(format #f " position = ~D~% fraction = ~,15F~% hex digits = ~S~%" id pid chx)))))
#|
(show-digits-of-pi-starting-at-digit 0)
" position = 0
fraction = 1.141592653589793
hex digits = \"243F6A8885 \"
"
(show-digits-of-pi-starting-at-digit 1000)
" position = 1000
fraction = 1.288845098351256
hex digits = \"49F1C09B07 \"
"
|#
#|
;;; from the CL bboard, perhaps written by Justin Grant
;;; requires gmp (bignums)
(define (machin-pi digits)
(define (arccot-minus xsq n xpower)
(let ((term (floor (/ xpower n))))
(if (= term 0)
0
(- (arccot-plus xsq (+ n 2) (floor (/ xpower xsq)))
term))))
(define (arccot-plus xsq n xpower)
(let ((term (floor (/ xpower n))))
(if (= term 0)
0
(+ (arccot-minus xsq (+ n 2) (floor (/ xpower xsq)))
term))))
(define (arccot x unity)
(let ((xpower (floor (/ unity x))))
(arccot-plus (* x x) 1 xpower)))
(let* ((unity (expt 10 (+ digits 10)))
(thispi (* 4 (- (* 4 (arccot 5 unity)) (arccot 239 unity)))))
(floor (/ thispi (expt 10 10)))))
|#
;;; --------------------------------------------------------------------------------
(define* (sin-nx-peak n (err 1e-12))
;; return the min peak amp and its location for sin(x)+sin(nx+a)
(let ((size (* n 100)))
(let ((incr (/ (* 2 pi) size))
(peak 0.0)
(location 0.0)
(offset (if (= (modulo n 4) 3) 0 pi)))
(do ((i 0 (+ i 1))
(x 0.0 (+ x incr)))
((= i size))
(let ((val (abs (+ (sin x) (sin (+ offset (* n x)))))))
(if (> val peak)
(begin
(set! peak val)
(set! location x)))))
;; now narrow it by zigzagging around the peak
(do ((x location)
(zig-size (* incr 2) (/ zig-size 2)))
((< zig-size err)
(list (abs (+ (sin x) (sin (+ (* n x) offset)))) x))
(let ((cur (abs (+ (sin x) (sin (+ offset (* n x))))))
(left (abs (+ (sin (- x zig-size)) (sin (+ (* n (- x zig-size)) offset))))))
(if (< left cur)
(let ((right (abs (+ (sin (+ x zig-size)) (sin (+ (* n (+ x zig-size)) offset))))))
(if (> right cur)
(set! x (+ x zig-size))))
(set! x (- x zig-size))))))))
;; (sin-nx-peak 100) (1.999876644816418 1.555089933857112)
;; (sin-nx-peak 1) (5.551115123125783e-16 2.576105496457603)
;;; --------------------------------------------------------------------------------
#|
;;; built-in as an experiment
(define (exptmod a b n) ; from the net somewhere: (modulo (expt a b) n)
(cond ((zero? b) 1)
((even? b) (exptmod (modulo (* a a) n) (quotient b 2) n))
(else (modulo (* a (exptmod (modulo (* a a) n) (quotient b 2) n)) n))))
;; (exptmod 3 100 5) 1
;; (exptmod 3 101 5) 3
;; (exptmod 3 100 3) 0
|#
|