File: dsp.rb

package info (click to toggle)
snd 25.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,016 kB
  • sloc: ansic: 291,818; lisp: 260,387; ruby: 71,134; sh: 3,293; fortran: 2,342; csh: 1,062; cpp: 294; makefile: 294; python: 87; xml: 27; javascript: 1
file content (2702 lines) | stat: -rw-r--r-- 81,332 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
# dsp.rb -- dsp.scm --> dsp.rb

# Translator: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: 2005/03/07 13:50:44
# Changed: 2018/04/15 22:52:00

# comments are taken mostly from dsp.scm
#
# module Dsp
#  src_duration(e)
#  dolph(n, gamma)
#  dolph_1(n, gamma)
#  down_oct(n, snd, chn)
#  edot_product(freq, data)
#  stretch_sound_via_dft(factor, snd, chn)
#  compute_uniform_circular_string(size, x0, x1, x2, mass, xspring, damp)
#  testunif(mass, xspring, damp)
#  test_scanned_synthesis(amp, dur, mass, xspring, damp)
#  compute_string(size, x0, x1, x2, masses, xsprings, esprings, damps, haptics)
#  freqdiv(n, snd, chn)
#  adsat(size, beg, dur, snd, chn)
#  spike(snd, chn)
#  spot_freq(samp, snd, chn)

#  class Flanger < Musgen
#   initialize(time, amount, speed)
#   inspect
#   to_s
#   run_func(val1, val2)
#   flanger(inval)

#  make_flanger(time, amount, speed)
#  flanger?(obj)
#  flanger(gen, inval)

#  chorus(size)
#  chordalize(amount, base, chord)

#  zero_phase(snd, chn)
#  rotate_phase(func, snd, chn)

#  class Asyfm < Musgen
#   initialize(*args)
#   inspect
#   to_s
#   run_func(val1, val2)
#   asyfm_J(input)
#   asyfm_I(input)

#  make_asyfm(*args)
#  asyfm?(obj)
#  asyfm_J(gen, input)
#  asyfm_I(gen, input)

#  cosine_summation(gen, r)
#  kosine_summation(gen, r, k)
#  fejer_sum(angle, n)
#  legendre_sum(angle, n)

#  sum_of_n_sines(angle, n)
#  sum_of_n_odd_sines(angle, n)
#  sum_of_n_odd_cosines(angle, n)

#  band_limited_sawtooth(x, a, n, fi)
#  brighten_slightly(amount, snd, chn)
#  brighten_slightly_1(coeffs, snd, chn)
#  spectrum2coeffs(order, spectr)
#  fltit_1(order, spectr)

#  make_hilbert_transform(len)
#  make_highpass(fc, len)
#  make_lowpass(fc, len)
#  make_bandpass(flo, fhi, len)
#  make_bandstop(flo, fhi, len)
#  make_differentiator(len)

#  make_butter_high_pass(freq)
#  make_butter_low_pass(freq)
#  make_butter_band_pass(freq, band)
#  make_butter_band_reject(freq, band)

#  make_biquad(a0, a1, a2, b1, b2)
#  make_iir_low_pass_2(fc, din)
#  make_iir_high_pass_2(fc, din)
#  make_iir_band_pass_2(f1, f2)
#  make_iir_band_stop_2(f1, f2)

#  make_eliminate_hum(hum_freq, hum_harmonics, bandwidth)
#  eliminate_hum(gens, x0)
#  make_peaking_2(f1, f2, m)
#  cascade2canonical(a)

#  make_butter_lp(m, fc)
#  make_butter_hp(m, fc)
#  make_butter_bp(m, f1, f2)
#  make_butter_bs(m, f1, f2)

#  make_notch_frequency_response(cur_srate, freqs, notch_width)
#  notch_channel(freqs, filter_order, beg, dur, snd, chn, edpos, trc, n_width)
#  notch_sound(freqs, filter_order, snd, chn, notch_width)
#  notch_selection(freqs, filter_order, snd, chn, notch_width)
#  fractional_fourier_transform(fr, fi, n, v)
#  z_transform(f, n, z)
#  dht(data)
#  find_sine(freq, beg, dur, snd)
#  goertzel(freq, beg, dur, snd)
#  make_spencer_filter

#  any_random(amount, e)
#  gaussian_distribution(s)
#  pareto_distribution(a)
#  inverse_integrate(dist, data_size, e_size)
#  gaussian_envelope(s)

#  channel_mean(snd, chn)
#  channel_total_energy(snd, chn)
#  channel_average_power(snd, chn)
#  channel_rms(snd, chn)
#  channel_variance(snd, chn)
#  channel_norm(snd, chn)
#  channel_lp(p, snd, chn)
#  channel_lp_inf(snd, chn)
#  channel2_inner_product(s1, c1, s2, c2)
#  channel2_angle(s1, c1, s2, c2)
#  channel2_orthogonal?(s1, c1, s2, c2)
#  channel2_coefficient_of_projection(s1, c1, s2, c2)
#  channel_distance(s1, c1, s2, c2)

#  periodogram(n)
#  shift_channel_pitch(freq, order, beg, dur, snd, chn, edpos)
#  hz_to_2pi(freq)
#  ssb_bank(old_freq, new_freq, pairs, order, bw, beg, dur, snd, chn, edpos)
#  ssb_bank_env(old_freq, new_freq, fq_env, pairs, ord, bw, beg, dur, s, c, ep)
#
#  vct_polynomial(v, coeffs)
#  channel_polynomial(coeffs, snd, chn)
#  spectral_polynomial(coeffs, snd, chn)
#  scentroid(file, beg, dur, db_floor, rfreq, fftsize)
#  invert_filter(fcoeffs)
#
#  class Volterra_filter < Musgen
#   initialize(acoeffs, bcoeffs)
#   inspect
#   to_s
#   run_func(val1, val2)
#   volterra_filter(x)
#
#  make_volterra_filter(acoeffs, bcoeffs)
#  volterra_filter(flt, x)
#  make_moving_sum(size)
#  moving_sum(gen, y)
#  make_moving_rms(size)
#  moving_rms(gen, y)
#  make_moving_length(size)
#  moving_length(gen, y)
#  harmonicizer(freq, coeffs, pairs, order, bw, beg, dur, snd, chn, edpos)
#  linear_src_channel(srinc, snd, chn)
#
#  class Mfilter < Musgen
#   initialize(decay, freq)
#   inspect
#   to_s
#   mfilter(x_input, y_input)
#
#  make_mfilter(*args)
#  mfilter(m, x_input, y_input)
#
#  class Display_bark_fft
#   display_bark_fft(snd, chn)
#   mark_bark_labels(snd, chn)
#   choose_bark_ticks(snd, chn, button, state, x, y, axis)
#
#  display_bark_fft(off)
#  undisplay_bark_fft

require "ws"
require "env"

module Dsp
  # src_duration (see src-channel in extsnd.html)
  add_help(:src_duration,
           "src_duration(envelope)  \
Returns the new duration of a sound after using ENVELOPE for \
time-varying sampling-rate conversion.")
  def src_duration(e)
    e.map! do |x|
      x.to_f
    end
    ex0 = e.first
    ex1 = e[-2]
    all_x = ex1 - ex0
    dur = 0.0
    0.step(e.length - 3, 2) do |i|
      x0, xy0, x1, xy1 = e[i, 4]
      y0 = xy0.zero? ? 1.0 : (1.0 / xy0)
      y1 = xy1.zero? ? 1.0 : (1.0 / xy1)
      area = if (xy0 - xy1).abs < 0.0001
               y0 * ((x1 - x0) / all_x)
             else
               ((log(y1) - log(y0)) / (xy0 - xy1)) * ((x1 - x0) / all_x)
             end
      dur += area.abs
    end
    dur
  end

  # Dolph-Chebyshev window
  # 
  # formula taken from Richard Lyons, "Understanding DSP"
  # see clm.c for C version (using either GSL's or GCC's complex trig functions)
  add_help(:dolph,
           "dolph(n, gamma)  \
Produces a Dolph-Chebyshev FFT data window of N points \
using GAMMA as the window parameter.")
  def dolph(n, gamma)
    alpha = cosh(acosh(10.0 ** gamma) / n)
    den = 1.0 / cosh(n * acosh(alpha))
    freq = PI / n
    rl = make_vct(n)
    im = make_vct(n)
    phase = 0.0
    n.times do |i|
      val = den * cos(n * acos(alpha * cos(phase)))
      rl[i] = val.real
      im[i] = val.imag
      phase += freq
    end
    fft(rl, im, -1)
    vct_scale!(rl, 1.0 / vct_peak(rl))
    j = n / 2
    n.times do |i|
      im[i] = rl[j]
      j += 1
      if j == n
        j = 0
      end
    end
    im
  end if defined? acosh

  # this version taken from Julius Smith's "Spectral Audio..." with
  # three changes it does the DFT by hand, and is independent of
  # anything from Snd (fft, vcts etc)
  add_help(:dolph_1,
           "dolph_1(n, gamma)  \
Produces a Dolph-Chebyshev FFT data window of N points \
using GAMMA as the window parameter.")
  def dolph_1(n, gamma)
    alpha = cosh(acosh(10.0 ** gamma) / n)
    den = 1.0 / cosh(n * acosh(alpha))
    freq = PI / n
    vals = make_array(n)
    w = make_array(n)
    pk = 0.0
    mult = -1.0
    phase = -HALF_PI
    n.times do |i|
      vals[i] = mult * den * cos(n * acos(alpha * cos(phase)))
      mult *= -1.0
      phase += freq
    end
    n.times do |i|
      sum = 0.0
      n.times do |j|
        sum = sum + vals[j] * exp((2.0 * Complex(0.0, 1.0) * PI * j * i) / n)
      end
      w[i] = sum.abs
      if w[i] > pk
        pk = w[i]
      end
    end
    w.map! do |val|
      val / pk
    end
  end if defined? acosh
  
  # move sound down by n (a power of 2)
  # I think this is "stretch" in DSP jargon -- to interpolate in the
  # time domain we're squeezing the frequency domain the power-of-2
  # limitation is based on the underlying fft function's insistence on
  # power-of-2 data sizes see stretch-sound-via-dft below for a
  # general version
  add_help(:down_oct,
           "down_oct(n, snd=false, chn=false)  \
Moves a sound down by power of 2 N.")
  def down_oct(n, snd = false, chn = false)
    len = framples(snd, chn)
    pow2 = (log(len) / log(2)).ceil
    fftlen = (2 ** pow2).round
    fftscale = 1.0 / fftlen
    rl1 = channel2vct(0, fftlen, snd, chn)
    im1 = make_vct(fftlen)
    fft(rl1, im1, 1)
    vct_scale!(rl1, fftscale)
    vct_scale!(im1, fftscale)
    rl2 = make_vct(2 * fftlen)
    im2 = make_vct(2 * fftlen)
    k = fftlen - 1
    j = fftlen * n - 1
    (0...(fftlen / 2)).each do |i|
      vct_set!(rl2, i, rl1[i])
      vct_set!(rl2, j, rl1[k])
      vct_set!(im2, i, im1[i])
      vct_set!(im2, j, im1[k])
      k -= 1
      j -= 1
    end
    fft(rl2, im2, -1)
    vct2channel(rl2, 0, n * len, snd, chn, false,
                format("%s(%s", get_func_name, n))
  end

  add_help(:edot_product,
           "edot_product(freq, data)  \
Sum of (e^freq*i) * data[i]")
  def edot_product(freq, data)
    sum = 0.0
    data.each_with_index do |val, i|
      sum = sum + exp(i.to_f * freq) * val
    end
    sum
  end unless defined? edot_product

  add_help(:stretch_sound_via_dft,
           "stretch_sound_via_dft(factor, snd=false, chn=false)  \
Makes the given channel longer (FACTOR should be > 1.0) by \
squeezing in the frequency domain, \
then using the inverse DFT to get the time domain result.")
  def stretch_sound_via_dft(factor, snd = false, chn = false)
    factor = factor.to_f
    n = framples(snd, chn)
    n2 = (n / 2.0).floor
    out_n = (n * factor).round
    in_data = channel2vct(0, n, snd, chn)
    out_data = make_vct(out_n)
    fr = make_array(out_n, 0.0)
    freq = (PI * 2) / n
    n.times do |i|
      d = edot_product(freq * Complex(0.0, 1.0) * i, in_data)
      if i < n2
        fr[i] = d
      else
        fr[i + (out_n - n - 1)] = d
      end
    end
    freq = (PI * 2) / out_n
    out_n.times do |i|
      out_data[i] = (edot_product(freq * Complex(0.0, 1.0) * i, fr) / n).real
    end
    vct2channel(out_data, 0, out_n, snd, chn, false,
                format("%s(%s", get_func_name, factor))
  end

  # compute-uniform-circular-string
  # 
  # this is a simplification of the underlying table-filling routine
  # for "scanned synthesis".  To watch the wave, open some sound (so
  # Snd has some place to put the graph), turn off the time domain
  # display (to give our graph all the window -- to do this in a much
  # more elegant manner, see snd-motif.scm under scanned-synthesis).
  def compute_uniform_circular_string(size, x0, x1, x2, mass, xspring, damp)
    circle_vct_ref = lambda do |v, i|
      if i < 0
        v[i + size]
      elsif i >= size
        v[i - size]
      else
        v[i]
      end
    end
    dm = damp / mass.to_f
    km = xspring / mass.to_f
    denom = 1.0 + dm
    p1 = (2.0 + (dm - 2.0 * km)) / denom
    p2 = km / denom
    p3 = -1.0 / denom
    size.times do |i|
      x0[i] = p1 * x1[i] +
              p2 * (circle_vct_ref.call(x1, i - 1) +
                    circle_vct_ref.call(x1, i + 1)) +
              p3 * x2[i]
    end
    vct_fill!(x2, 0.0)
    vct_add!(x2, x1)
    vct_fill!(x1, 0.0)
    vct_add!(x1, x0)
  end

  def testunif(mass, xspring, damp)
    size = 128
    x0 = make_vct(size)
    x1 = make_vct(size)
    x2 = make_vct(size)
    12.times do |i|
      x1[i + size / 4 - 6] = sin((TWO_PI * i) / 12.0)
    end
    1024.times do |i|
      compute_uniform_circular_string(size, x0, x1, x2, mass, xspring, damp)
      graph(x0, "string", 0, 1.0, -10.0, 10.0)
    end
  end

  def test_scanned_synthesis(amp, dur, mass, xspring, damp)
    size = 256
    x0 = make_vct(size)
    gx1 = make_vct(size)
    gx2 = make_vct(size)
    12.times do |i|
      gx1[i + size / 4 - 6] = sin((TWO_PI * i) / 12.0)
    end
    gen1 = make_table_lookup(440.0, :wave, gx1)
    gen2 = make_table_lookup(440.0, :wave, gx2)
    x1 = gen1.data
    x2 = gen2.data
    recompute_samps = 30.0
    k = 0.0
    kincr = 1.0 / recompute_samps
    data = make_vct!(dur) do |i|
      if k >= 1.0
        k = 0.0
        compute_uniform_circular_string(size, x0, x1, x2, mass, xspring, damp)
      else
        k += kincr
      end
      g1 = table_lookup(gen1)
      g2 = table_lookup(gen2)
      g2 + k * (g1 - g2)
    end
    vct_scale!(data, amp / vct_peak(data))
    vct2channel(data, 0, dur)
  end

  # this is the more general form
  def compute_string(size, x0, x1, x2,
                     masses, xsprings, esprings, damps, haptics)
    circle_vct_ref = lambda do |v, i|
      if i < 0
        v[i + size]
      elsif i >= size
        v[i - size]
      else
        v[i]
      end
    end
    size.times do |i|
      dm = damps[i] / masses[i]
      km = xsprings[i] / masses[i]
      cm = esprings[i] / masses[i]
      denom = 1.0 + dm + cm
      p1 = (2.0 + (dm - 2.0 * km)) / denom
      p2 = km / denom
      p3 = -1.0 / denom
      p4 = haptics / (masses[i] * denom)
      x0[i] = p1 * x1[i] +
              p2 * (circle_vct_ref.call(x1, i - 1) +
                    circle_vct_ref.call(x1, i + 1)) +
              p3 * x2[i] +
              p4
    end
    size.times do |i|
      x2[i], x1[i] = x1[i], x0[i]
    end
  end

  # "frequency division" -- an effect from sed_sed@my-dejanews.com
  add_help(:freqdiv,
           "freqdiv(n, snd=false, chn=false)  \
Repeats each nth sample N times (clobbering the intermediate samples): \
freqdiv(8)")
  def freqdiv(n, snd = false, chn = false)
    div = 0
    curval = 0.0
    map_channel(lambda do |val|
                  curval = val if div.zero?
                  div += 1
                  div = 0 if div == n
                  curval
                end, 0, false, snd, chn, false,
                format("%s(%s", get_func_name, n))
  end

  # "adaptive saturation" -- an effect from sed_sed@my-dejanews.com
  # 
  # a more extreme effect is "saturation":
  # (map-channel (lambda (val)
  #                (if (< (abs val) .1) val (if (>= val 0.0) 0.25 -0.25))))
  add_help(:adsat,
           "adsat(size, beg=false, dur=false, snd=false, chn=false)  \
Is an 'adaptive saturation' sound effect.")
  def adsat(size, beg = false, dur = false, snd = false, chn = false)
    mn = 0.0
    mx = 0.0
    n = 0
    vals = make_vct(size)
    map_channel(lambda do |val|
                  if n == size
                    size.times do |i|
                      if vals[i] >= 0.0
                        vals[i] = mx
                      else
                        vals[i] = mn
                      end
                    end
                    n = 0
                    mx = 0.0
                    mn = 0.0
                    vals
                  else
                    vals[n] = val
                    mx = val if val > mx
                    mn = val if val < mn
                    n += 1
                    false
                  end
                end, beg, dur, snd, chn, false,
                format("%s(%s, %s, %s", get_func_name, size, beg, dur))
  end

  # spike
  # 
  # makes sound more spikey -- sometimes a nice effect
  add_help(:spike,
           "spike(snd=false, chn=false)  \
Multiplies successive samples together to make a sound more spikey.")
  def spike(snd = false, chn = false)
    x1 = x2 = 0.0
    amp = maxamp(snd, chn)
    map_channel(lambda do |x0|
                  res = (x0 / (amp * amp)) * x2.abs * x1.abs
                  x2, x1 = x1, x0
                  res
                end, 0, false, snd, chn, false, "spike(")
  end

  # easily-fooled autocorrelation-based pitch tracker
  add_help(:spot_freq,
           "spot_freq(samp=0, snd=false, chn=false)  \
Tries to determine the current pitch: spot_freq(left_sample)")
  def spot_freq(samp = 0, snd = false, chn = false)
    pow2 = (log(srate(snd) / 20.0) / log(2)).ceil
    fftlen = (2 ** pow2).round
    data = autocorrelate(channel2vct(samp, fftlen, snd, chn))
    cor_peak = vct_peak(data)
    cor_peak2 = 2.0 * cor_peak
    ret = 0.0
    (1...fftlen - 2).each do |i|
      if data[i] < data[i + 1] and data[i + 2] < data[i + 1]
        logla = log10((cor_peak + data[i])     / cor_peak2)
        logca = log10((cor_peak + data[i + 1]) / cor_peak2)
        logra = log10((cor_peak + data[i + 2]) / cor_peak2)
        offset = (0.5 * (logla - logra)) / (logla + logra + -2.0 * logca)
        ret = srate(snd) / (2.0 * (i + 1 + offset))
        break
      end
    end
    ret
  end
  # $graph_hook.add_hook!("examp-left-sample-hook") do |snd, chn, y0, y1|
  #   msg = format("(freq: %.3f)", spot_freq(left_sample(snd, chn)))
  #   status_report(msg, snd)
  # end
  #
  # or
  #
  # $mouse_click_hook.add_hook!("examp-cursor-hook") do |snd, chn,
  #                                                      button, state,
  #                                                      x, y, axis|
  #   if axis == Time_graph
  #     status_report(format("(freq: %.3f)", spot_freq(cursor(snd, chn))), snd)
  #   end
  # end

  # chorus (doesn't always work and needs speedup)
  class Flanger < Musgen
    def initialize(time = 0.05, amount = 20.0, speed = 10.0)
      super()
      @time = time
      @amount = amount
      @speed = speed
      @randind = make_rand_interp(:frequency, speed, :amplitude, amount)
      @data = @randind.data
      @length = @randind.length
      len = random(3.0 * time * mus_srate()).floor
      @flanger = make_delay(:size, len, :max_size, (len + amount + 1).to_i)
    end

    def inspect
      format("%s.new(%s, %s, %s)", self.class, @time, @amount, @speed)
    end

    def to_s
      format("#<%s time: %1.3f, amount: %1.3f, speed: %1.3f>",
             self.class, @time, @amount, @speed)
    end

    def run_func(val1 = 0.0, val2 = 0.0)
      flanger(val1)
    end

    def flanger(inval)
      inval + delay(@flanger, inval, rand_interp(@randind))
    end
  end

  def make_flanger(time = 0.05, amount = 20.0, speed = 10.0)
    Flanger.new(time, amount, speed)
  end

  def flanger?(obj)
    obj.kind_of?(Flanger)
  end
  
  def flanger(gen, inval)
    gen.flanger(inval)
  end

  add_help(:chorus,
           "chorus(size=5)  \
Tries to produce the chorus sound effect.")
  def chorus(size = 5)
    dlys = make_array(size) do
      make_flanger
    end
    sum = 0.0
    lambda do |inval|
      dlys.each do |dly|
        sum += dly.flanger(inval)
      end
      sum * 0.25
    end
  end

  # chordalize (comb filters to make a chord using chordalize-amount
  # and chordalize-base)
  add_help(:chordalize,
           "chordalize(amount=0.95, base=100, chord=[1.00, 0.75, 1.25])  \
Uses harmonically-related comb-filters to bring out a chord in a sound.")
  def chordalize(amount = 0.95, base = 100, chord = [1.00, 0.75, 1.25])
    combs = chord.map do |interval|
      make_comb(:scaler, amount, :size, (base * interval).round)
    end
    scaler = 0.5 / chord.length
    lambda do |x|
      val = 0.0
      combs.each do |c|
        val += comb(c, x)
      end
      scaler * val
    end
  end
  
  # zero-phase, rotate-phase
  # fft games (from the "phazor" package of Scott McNab)
  add_help(:zero_phase,
           "zero_phase(snd=false, chn=false)  \
Calls fft, sets all phases to 0, and un-ffts.")
  def zero_phase(snd = false, chn = false)
    len = framples(snd, chn)
    pow2 = (log(len) / log(2)).ceil
    fftlen = (2 ** pow2).round
    fftscale = 1.0 / fftlen
    rl = channel2vct(0, fftlen, snd, chn)
    old_pk = vct_peak(rl)
    im = make_vct(fftlen)
    fft(rl, im, 1)
    rectangular2polar(rl, im)
    vct_scale!(rl, fftscale)
    vct_scale!(im, 0.0)
    fft(rl, im, -1)
    pk = vct_peak(rl)
    vct2channel(rl.scale(old_pk / pk), 0, len, snd, chn, false, "zero_phase(")
  end

  # (set_)edit_list_proc_counter is defined in clm.rb
  # It's necessary to produce a uniq method name.
  add_help(:rotate_phase,
           "rotate_phase(func, snd=false, chn=false)  \
Calls fft, applies func to each phase, then un-ffts.")
  def rotate_phase(func, snd = false, chn = false)
    func_name = format("%s_%d",
                       get_func_name,
                       set_edit_list_proc_counter).intern
    # Proc converted to Method (ie. normal function) for edit_list2function
    func.to_method(func_name)
    len = framples(snd, chn)
    pow2 = (log(len) / log(2)).ceil
    fftlen = (2 ** pow2).round
    fftlen2 = (fftlen / 2).floor
    fftscale = 1.0 / fftlen
    rl = channel2vct(0, fftlen, snd, chn)
    im = make_vct(fftlen)
    old_pk = rl.peak
    fft(rl, im, 1)
    rectangular2polar(rl, im)
    rl.scale!(fftscale)
    im[0] = 0.0
    j = fftlen - 1
    (1...fftlen2).each do |i|
      im[i] = snd_func(func_name, im[i])
      im[j] = -im[i]
      j -= 1
    end
    polar2rectangular(rl, im)
    fft(rl, im, -1)
    pk = rl.peak
    vct2channel(rl.scale(old_pk / pk), 0, len, snd, chn, false,
                format("%s(Proc.new {|val_r| %s(val_r) }",
                       get_func_name, func_name))
  end
  # rotate_phase(lambda {|x| 0.0 })  # is the same as (zero-phase)
  # rotate_phase(lambda {|x| random(PI) }) # randomizes phases
  # rotate_phase(lambda {|x| x })    # returns original
  # rotate_phase(lambda {|x| -x })   # reverses original
  #                                  # (might want to write fftlen samps here)

  # asymmetric FM (bes-i0 case)
  class Asyfm < Musgen
    def initialize(*args)
      super()
      frequency, ratio, r, index, phase = nil
      optkey(args, binding,
             [:frequency, $clm_default_frequency],
             [:ratio, 1.0],
             [:r, 1.0],
             [:index, 1.0],
             [:phase, 0.0])
      @frequency = frequency.to_f
      @ratio = ratio.to_f
      @r = r.to_f
      @index = index.to_f
      @freq = hz2radians(@frequency)
      @phase = phase.to_f
    end
    attr_accessor :ratio, :r, :index

    def inspect
      format("%s.new(:frequency, %s, :ratio, %s, :r, %s, \
:index, %s, :freq, %s, :phase, %s)",
             self.class, @frequency, @ratio, @r, @index, @freq, @phase)
    end

    def to_s
      format("#<%s freq: %1.3f, ratio: %1.3f, r: %1.3f, \
index: %1.3f, freq: %1.3f, phase: %1.3f>",
             self.class, @frequency, @ratio, @r, @index, @freq, @phase)
    end

    def run_func(val1 = 0.0, val2 = 0.0)
      asyfm_J(val1)
    end
    
    def asyfm_J(input)
      # It follows now asyfm-J in generators.scm, not dsp-asyfm-J in clm23.scm.
      r1 = 1.0 / @r
      one = ((@r > 1.0) or (@r < 0.0 and @r > -1.0)) ? -1.0 : 1.0
      modphase = @ratio * @phase
      result = exp(0.5 * @index * (@r - r1) * (one + cos(modphase))) *
               cos(@phase + 0.5 * @index * (@r + r1) * sin(modphase))
      @phase = @phase + input + @freq
      result
    end
    
    def asyfm_I(input)
      r1 = 1.0 / @r
      modphase = @ratio * @phase
      result = exp(0.5 * @index * (@r + r1) * (cos(modphase) - 1.0)) -
               cos(@phase + 0.5 * @index * (@r - r1) * sin(modphase))
      @phase = @phase + input + @freq
      result
    end
  end

  def make_asyfm(*args)
    Asyfm.new(*args)
  end

  def asyfm?(obj)
    obj.kind_of?(Asyfm)
  end
  
  def asyfm_J(gen, input)
    gen.asyfm_J(input)
  end

  def asyfm_I(gen, input)
    gen.asyfm_I(input)
  end

  # cosine-summation (a simpler version of sine-summation)
  # 
  # from Andrews, Askey, Roy "Special Functions" 5.1.16
  add_help(:cosine_summation,
           "cosine_summation(gen, r)  \
Is a variant of the CLM sine-summation generator; \
R controls successive sinusoid amplitudes.")
  def cosine_summation(gen, r)
    rr = r * r
    rrp1 = 1.0 + rr
    rrm1 = 1.0 - rr
    r2 = 2.0 * r
    ((rrm1 / (rrp1 - r2 * oscil(gen))) - 1.0) * ((1.0 - r) / r2)
  end
  alias make_cosine_summation make_oscil

  # kosine-summation
  # 
  # from Askey "Ramanujan and Hypergeometric Series" in Berndt and
  # Rankin "Ramanujan: Essays and Surveys"
  # 
  # this gives a sum of cosines of decreasing amp where the "k"
  # parameter determines the "index" (in FM nomenclature) -- higher k
  # = more cosines; the actual amount of the nth cos involves
  # hypergeometric series (looks like r^n/n! (~=e^n?) with a million
  # other terms).
  add_help(:kosine_summation,
           "kosine_summation(gen, r, k)  \
Is a variant of sum-of-cosines; \
R controls successive sinusoid amplitude; \
K controls how many sinusoids are produced.")
  def kosine_summation(gen, r, k)
    r2 = r * r
    ((1.0 + r2) - 2 * r * oscil(gen)) ** -k * ((1.0 + r2) - 2 * r) ** k
  end
  alias make_kosine_summation make_oscil

  # legendre, fejer
  def fejer_sum(angle, n)
    if angle.zero?
      1.0
    else
      val = sin(0.5 * (n + 1) * angle) / (2.0 * sin(0.5 * angle))
      2.0 * ((val * val) / (n + 1))
    end
  end

  def legendre_sum(angle, n)
    val = sin(angle * (n + 0.5)) / sin(0.5 * angle)
    val * val
  end

  # variations on sum-of-cosines
  # from "Trigonometric Delights" by Eli Maor
  def sum_of_n_sines(angle, n)
    a2 = angle * 0.5
    den = sin(a2)
    if den.zero?
      0.0
    else
      (sin(n * a2) * sin((n + 1) * a2)) / den
    end
  end

  def sum_of_n_odd_sines(angle, n)
    angle = angle.to_f
    n = n.to_f
    den = sin(angle)
    na = sin(n * angle)
    if den.zero?
      0.0
    else
      (na * na) / den
    end
  end

  def sum_of_n_odd_cosines(angle, n)
    angle = angle.to_f
    n = n.to_f
    den = 2.0 * sin(angle)
    if den.zero?
      n
    else
      sin(2.0 * n * angle) / den
    end
  end
  
  # x = current phase, a = amp (more or less), N = 1..10 or
  # thereabouts, fi = phase increment Alexander Kritov suggests
  # time-varying "a" is good (this is a translation of his code) from
  # Stilson/Smith apparently -- was named "Discrete Summation Formula"
  # which doesn't convey anything to me
  def band_limited_sawtooth(x, a, n, fi)
    s4 = 1.0 + -2.0 * a * cos(x) + a * a
    if s4.zero?
      0.0
    else
      s1 = a ** (n - 1.0) * sin((n - 1.0) * x + fi)
      s2 = a ** n * sin(n * x + fi)
      s3 = a * sin(x + fi)
      (sin(fi) + -s3 + -s2 + s1) / s4
    end
  end

  # brighten-slightly
  add_help(:brighten_slightly,
           "brighten_slightly(amount, snd=false, chn=false)  \
Is a form of contrast-enhancement (AMOUNT between ca 0.1 and 1.0).")
  def brighten_slightly(amount, snd = false, chn = false)
    mx = maxamp
    brt = (TWO_PI * amount) / mx
    map_channel(lambda do |y|
                  mx * sin(y * brt)
                end, 0, false, snd, chn, false,
                format("%s(%s", get_func_name, amount))
  end

  add_help(:brighten_slightly_1,
           "brighten_slightly_1(coeffs, snd=false, chn=false)  \
Is a form of contrast-enhancement: brighten_slightly-1([1, 0.5, 3, 1])")
  def brighten_slightly_1(coeffs, snd = false, chn = false)
    pcoeffs = partials2polynomial(coeffs)
    mx = maxamp(snd, chn)
    map_channel(lambda do |y|
                  mx * polynomial(pcoeffs, y / mx)
                end, 0, false, snd, chn, false,
                format("%s(%s", get_func_name, coeffs))
  end

  # FIR filters

  # Snd's (very simple) spectrum->coefficients procedure is:
  add_help(:spectrum2coeffs,
           "spectrum2coeffs(order, spectr)  \
Returns FIR filter coefficients given the filter ORDER \
and desired spectral envelope (a vct).")
  def spectrum2coeffs(order, spectr)
    coeffs = make_vct(order)
    n = order
    m = ((n + 1) / 2.0).floor
    am = 0.5 * (n + 1)
    q = (PI * 2.0) / n
    jj = n - 1
    m.times do |j|
      xt = 0.5 * spectr[0]
      (1...m).each do |i|
        xt = xt + spectr[i] * cos(q * i * (am - j - 1))
      end
      coeff = 2.0 * (xt / n)
      coeffs[j] = coeff
      coeffs[jj] = coeff
      jj -= 1
    end
    coeffs
  end

  add_help(:fltit_1,
           "fltit_1(order, spectrum)  \
Creates an FIR filter from SPECTRUM and ORDER and \
returns a closure that calls it: \
map_channel(fltit_1(10, vct(0, 1.0, 0, 0, 0, 0, 0, 0, 1.0, 0)))")
  def fltit_1(order, spectr)
    flt = make_fir_filter(order, spectrum2coeffs(order, spectr))
    lambda do |x|
      fir_filter(flt, x)
    end
  end

  # Hilbert transform
  add_help(:make_hilbert_transform,
           "make_hilbert_transform(len=30)  \
Makes a Hilbert transform filter.")
  def make_hilbert_transform(len = 30)
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      denom = PI * i
      num = 1.0 - cos(denom)
      if num.zero? or i.zero?
        arr[k] = 0.0
      else
        arr[k] = (num / denom) * (0.54 + 0.46 * cos(denom / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:hilbert_transform,
           "hilbert_transform(f, in)  \
Is the generator corresponding to make_hilbert_transform.")
  alias hilbert_transform fir_filter

  # highpass filter
  add_help(:make_highpass,
           "make_highpass(fc, len=30)  \
Makes an FIR highpass filter.")
  def make_highpass(fc, len = 30)
    fc = fc.to_f
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      denom = PI * i
      num = -sin(fc * i)
      if i.zero?
        arr[k] = 1.0 - fc / PI
      else
        arr[k] = (num / denom) * (0.54 + 0.46 * cos((PI * i) / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:highpass,
           "highpass(f, in)  \
Is the generator corresponding to make_highpass.")
  alias highpass fir_filter

  # lowpass filter
  add_help(:make_lowpass,
           "make_lowpass(fc, len=30)  \
Makes an FIR lowpass filter.")
  def make_lowpass(fc, len = 30)
    fc = fc.to_f
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      denom = PI * i
      num = sin(fc * i)
      if i.zero?
        arr[k] = fc / PI
      else
        arr[k] = (num / denom) * (0.54 + 0.46 * cos((PI * i) / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:lowpass,
           "lowpass(f, in)  \
Is the generator corresponding to make_lowpass.")
  alias lowpass fir_filter

  # bandpass filter
  add_help(:make_bandpass,
           "make_bandpass(flo, fhi, len=30)  \
Makes an FIR bandpass filter.")
  def make_bandpass(flo, fhi, len = 30)
    flo = flo.to_f
    fhi = fhi.to_f
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      denom = PI * i
      num = sin(fhi * i) - sin(flo * i)
      if i.zero?
        arr[k] = (fhi - flo) / PI
      else
        arr[k] = (num / denom) * (0.54 + 0.46 * cos((PI * i) / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:bandpass,
           "bandpass(f, in)  \
Is the generator corresponding to make_bandpass.")
  alias bandpass fir_filter

  # bandstop filter
  add_help(:make_bandstop,
           "make_bandstop(flo, fhi, len=30)  \
Makes an FIR bandstop (notch) filter.")
  def make_bandstop(flo, fhi, len = 30)
    flo = flo.to_f
    fhi = fhi.to_f
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      denom = PI * i
      num = sin(flo * i) - sin(fhi * i)
      if i.zero?
        arr[k] = 1.0 - (fhi - flo) / PI
      else
        arr[k] = (num / denom) * (0.54 + 0.46 * cos((PI * i) / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:bandstop,
           "bandstop(f, in)  \
Is the generator corresponding to make_bandstop.")
  alias bandstop fir_filter

  # differentiator
  add_help(:make_differentiator,
           "make_differentiator(len=30)  \
Makes an FIR differentiator (highpass) filter.")
  def make_differentiator(len = 30)
    arrlen = len * 2 + 1
    arr = make_vct(arrlen)
    (-len...len).each do |i|
      k = i + len
      if i.zero?
        arr[k] = 0.0
      else
        arr[k] = (cos(PI * i) / i - sin(PI * i) / (PI * i * i)) *
          (0.54 + 0.46 * cos((PI * i) / len))
      end
    end
    make_fir_filter(arrlen, arr)
  end

  add_help(:differentiator,
           "differentiator(f, in)  \
Is the generator corresponding to make_differentiator.")
  alias differentiator fir_filter

  # IIR filters
  #
  # Butterworth filters (see also further below -- make-butter-lp et al)
  #
  # translated from CLM butterworth.cl:
  #
  # Sam Heisz, January 1998
  # inspired by some unit generators written for Csound by Paris
  # Smaragdis who based his work on formulas from Charles Dodge,
  # Computer music: synthesis, composition, and performance.

  add_help(:butter,
           "butter(b, sig)  \
Is the generator side for the various make_butter procedure.")
  alias butter filter
  add_help(:make_butter_high_pass,
           "make_butter_high_pass(freq)  \
Makes a Butterworth filter with high pass cutoff at FREQ.")
  def make_butter_high_pass(freq)
    r = tan(PI * freq / srate())
    r2 = r * r
    c1 = 1.0 / (1.0 + r * sqrt(2.0) + r2)
    c2 = -2.0 * c1
    c3 = c1
    c4 = 2.0 * (r2 - 1.0) * c1
    c5 = ((1.0 - r * sqrt(2.0)) + r2) * c1
    make_filter(3, vct(c1, c2, c3), vct(0.0, c4, c5))
  end
  
  add_help(:make_butter_low_pass,
           "make_butter_low_pass(freq)  \
Makes a Butterworth filter with high pass cutoff at FREQ.  \
The result can be used directly: \
filter_sound(make_butter_low_pass(500.0)), or via the 'butter' generator.")
  def make_butter_low_pass(freq)
    r = 1.0 / tan(PI * freq / srate())
    r2 = r * r
    c1 = 1.0 / (1.0 + r * sqrt(2.0) + r2)
    c2 = 2.0 * c1
    c3 = c1
    c4 = 2.0 * (1.0 - r2) * c1
    c5 = ((1.0 - r * sqrt(2.0)) + r2) * c1
    make_filter(3, vct(c1, c2, c3), vct(0.0, c4, c5))
  end
  
  add_help(:make_butter_band_pass,
           "make_butter_band_pass(freq, band)  \
Makes a bandpass Butterworth filter with low edge at FREQ and width BAND.")
  def make_butter_band_pass(freq, band)
    d = 2.0 * cos(2.0 * PI * freq / srate())
    c = 1.0 / tan(PI * band / srate())
    c1 = 1.0 / (1.0 + c)
    c2 = 0.0
    c3 = -c1
    c4 = -c * d * c1
    c5 = (c - 1.0) * c1
    make_filter(3, vct(c1, c2, c3), vct(0.0, c4, c5))
  end

  add_help(:make_butter_band_reject,
           "make_butter_band_reject(freq, band)  \
Makes a band-reject Butterworth filter with low edge at FREQ and width BAND.")
  def make_butter_band_reject(freq, band)
    d = 2.0 * cos(2.0 * PI * freq / srate())
    c = tan(PI * band / srate())
    c1 = 1.0 / (1.0 + c)
    c2 = -d * c1
    c3 = c1
    c4 = c2
    c5 = (1.0 - c) * c1
    make_filter(3, vct(c1, c2, c3), vct(0.0, c4, c5))
  end

  # from "DSP Filter Cookbook" by Lane et al, Prompt Pubs, 2001
  # 
  # use with the filter generator
  #   (define gen (make-iir-high-pass-2 1000))
  #   (filter gen 1.0)
  #   etc
  add_help(:make_biquad,
           "make_biquad(a0, a1, a2, b1, b2)  \
Returns a biquad filter (use with the CLM filter gen).")
  def make_biquad(a0, a1, a2, b1, b2)
    make_filter(3, vct(a0, a1, a2), vct(0.0, b1, b2))
  end

  # din=(sqrt 2.0) for example (suggested range 0.2...10)
  def make_iir_low_pass_2(fc, din = false)
    fc = fc.to_f
    theta = (TWO_PI * fc) / mus_srate()
    d = (din or sqrt(2.0))
    beta = 0.5 * ((1.0 - (d / 2.0) * sin(theta)) /
                  (1.0 + (d / 2.0) * sin(theta)))
    gamma = (0.5 + beta) * cos(theta)
    alpha = 0.5 * (0.5 + beta + -gamma)
    make_filter(3,
                vct(alpha, 2.0 * alpha, alpha),
                vct(0.0, -2.0 * gamma, 2.0 * beta))
  end

  def make_iir_high_pass_2(fc, din = false)
    fc = fc.to_f
    theta = (TWO_PI * fc) / mus_srate()
    d = (din or sqrt(2.0))
    beta = 0.5 * ((1.0 - (d / 2.0) * sin(theta)) /
                  (1.0 + (d / 2.0) * sin(theta)))
    gamma = (0.5 + beta) * cos(theta)
    alpha = 0.5 * (0.5 + beta + gamma)
    make_filter(3,
                vct(alpha, -2.0 * alpha, alpha),
                vct(0.0, -2.0 * gamma, 2.0 * beta))
  end

  def make_iir_band_pass_2(f1, f2)
    f1 = f1.to_f
    f2 = f2.to_f
    theta = (TWO_PI * sqrt(f1 * f2)) / mus_srate()
    q = sqrt(f1 * f2) / (f2 - f1)
    t2 = tan(theta / (2 * q))
    beta = 0.5 * ((1.0 - t2) / (1.0 + t2))
    gamma = (0.5 + beta) * cos(theta)
    alpha = 0.5 - beta
    make_filter(3,
                vct(alpha, 0.0, -alpha),
                vct(0.0, -2.0 * gamma, 2.0 * beta))
  end

  def make_iir_band_stop_2(f1, f2)
    f1 = f1.to_f
    f2 = f2.to_f
    theta = (TWO_PI * sqrt(f1 * f2)) / mus_srate()
    q = sqrt(f1 * f2) / (f2 - f1)
    t2 = tan(theta / (2 * q))
    beta = 0.5 * ((1.0 - t2) / (1.0 + t2))
    gamma = (0.5 + beta) * cos(theta)
    alpha = 0.5 + beta
    make_filter(3,
                vct(alpha, -2.0 * gamma, alpha),
                vct(0.0, -2.0 * gamma, 2.0 * beta))
  end

  def make_eliminate_hum(hum_freq = 60.0, hum_harmonics = 5, bandwidth = 10)
    b2 = 0.5 * bandwidth
    make_array(hum_harmonics) do |i|
      center = (i + 1.0) * hum_freq
      make_iir_band_stop_2(center - b2, center + b2)
    end
  end

  def eliminate_hum(gens, x0)
    val = x0
    gens.each do |gen|
      val = filter(gen, val)
    end
    val
  end

  # bandpass, m is gain at center of peak
  # use map-channel with this one (not clm-channel or filter)
  def make_peaking_2(f1, f2, m)
    f1 = f1.to_f
    f2 = f2.to_f
    theta = (TWO_PI * sqrt(f1 * f2)) / mus_srate()
    q = sqrt(f1 * f2) / (f2 - f1)
    t2 = (4.0 / (m + 1.0)) * tan(theta / (2 * q))
    beta = 0.5 * ((1.0 - t2) / (1.0 + t2))
    gamma = (0.5 + beta) * cos(theta)
    alpha = 0.5 - beta
    flt = make_filter(3,
                      vct(alpha, 0.0, -alpha),
                      vct(0.0, -2.0 * gamma, 2.0 * beta))
    lambda do |x|
      x + (m - 1.0) * filter(flt, x)
    end
  end

  # convert cascade coeffs to canonical form
  # from Orfanidis "Introduction to Signal Processing
  def c2c_conv(m, h, l, x, y)
    (l + m).times do |i|
      y[i] = 0.0
      ([0, i - (1 + l)].max..[i, m].min).each do |j|
        y[i] = y[i] + h[j] * x[i - j]
      end
    end
  end

  add_help(:cascade2canonical,
           "cascade2canonical(a)  \
Converts a list of cascade coeffs (vcts with 3 entries) to canonical form.")
  def cascade2canonical(a)
    k = a.length
    d = make_vct(2 * k + 1)
    a1 = make_vct(2 * k + 1)
    a1[0] = 1.0
    k.times do |i|
      c2c_conv(2, a[i], 2 * i + 1, a1, d)
      (2 * i + 3).times do |j|
        a1[j] = d[j]
      end
    end
    a1
  end

  # order is M*2, fc is cutoff freq (Hz)
  add_help(:make_butter_lp,
           "make_butter_lp(m, fc)  \
Returns a butterworth low-pass filter; \
its order is M * 2, FC is the cutoff frequency in Hz.")
  def make_butter_lp(m, fc)
    fc = fc.to_f
    xcoeffs = make_array(m)
    ycoeffs = make_array(m)
    theta = (TWO_PI * fc) / mus_srate()
    st = sin(theta)
    ct = cos(theta)
    m.times do |k|
      d = 2.0 * sin((PI * (2.0 * (k + 1.0) - 1.0)) / (4.0 * m))
      beta = 0.5 * ((1.0 - 0.5 * d * st) / (1.0 + 0.5 * d * st))
      gamma = ct * (0.5 + beta)
      alpha = 0.25 * (0.5 + beta + -gamma)
      xcoeffs[k] = vct(2.0 * alpha, 4.0 * alpha, 2.0 * alpha)
      ycoeffs[k] = vct(1.0, -2.0 * gamma, 2.0 * beta)
    end
    make_filter(2 * m + 1,
                cascade2canonical(xcoeffs), cascade2canonical(ycoeffs))
  end

  # order is M*2, fc is cutoff freq (Hz)
  add_help(:make_butter_hp,
           "make_butter_hp(m, fc)  \
Returns a butterworth high-pass filter; \
its order is M * 2, FC is the cutoff frequency in Hz.")
  def make_butter_hp(m, fc)
    fc = fc.to_f
    xcoeffs = make_array(m)
    ycoeffs = make_array(m)
    theta = (TWO_PI * fc) / mus_srate()
    st = sin(theta)
    ct = cos(theta)
    m.times do |k|
      d = 2.0 * sin((PI * (2.0 * (k + 1.0) - 1.0)) / (4.0 * m))
      beta = 0.5 * ((1.0 - 0.5 * d * st) / (1.0 + 0.5 * d * st))
      gamma = ct * (0.5 + beta)
      alpha = 0.25 * (0.5 + beta + gamma)
      xcoeffs[k] = vct(2.0 * alpha, -4 * alpha, 2.0 * alpha)
      ycoeffs[k] = vct(1.0, -2.0 * gamma, 2.0 * beta)
    end
    make_filter(2 * m + 1,
                cascade2canonical(xcoeffs), cascade2canonical(ycoeffs))
  end

  # order is M*2, f1 and f2 are band edge freqs (Hz)
  add_help(:make_butter_bp,
           "make_butter_bp(m, f1, f2)  \
Returns a butterworth band-pass filter; \
its order is M * 2, F1 and F2 are the band edge frequencies in Hz.")
  def make_butter_bp(m, f1, f2)
    f1 = f1.to_f
    f2 = f2.to_f
    xcoeffs = make_array(m)
    ycoeffs = make_array(m)
    f0 = sqrt(f1 * f2)
    q = f0 / (f2 - f1)
    theta0 = (TWO_PI * f0) / mus_srate()
    de = (2.0 * tan(theta0 / (2.0 * q))) / sin(theta0)
    de2 = de / 2.0
    tn0 = tan(theta0 * 0.5)
    k = j = 1
    m.times do |i|
      dk = 2.0 * sin((PI * (2.0 * k - 1.0)) / (2.0 * m))
      ak = (1.0 + de2 * de2) / (dk * de2)
      dk1 = sqrt((de * dk) / (ak + sqrt(ak * ak - 1.0)))
      bk = de2 * (dk / dk1)
      wk = (bk + sqrt(bk * bk - 1.0)).real
      thetajk = ((j == 1) ? (2.0 * atan(tn0 / wk)) : (2.0 * atan(tn0 * wk)))
      betajk = 0.5 * ((1.0 - 0.5 * dk1 * sin(thetajk)) /
                      (1.0 + 0.5 * dk1 * sin(thetajk)))
      gammajk = (0.5 + betajk) * cos(thetajk)
      wk2 = (wk - 1.0 / wk) / dk1
      alphajk = 0.5 * (0.5 - betajk) * sqrt(1.0 + wk2 * wk2)
      xcoeffs[i] = vct(2.0 * alphajk, 0.0, -2.0 * alphajk)
      ycoeffs[i] = vct(1.0, -2.0 * gammajk, 2.0 * betajk)
      if j == 1
        j = 2
      else
        k += 1
        j = 1
      end
    end
    make_filter(2 * m + 1,
                cascade2canonical(xcoeffs), cascade2canonical(ycoeffs))
  end

  # order is M*2, f1 and f2 are band edge freqs (Hz)
  add_help(:make_butter_bs,
           "make_butter_bs(m, f1, f2)  \
Returns a butterworth band-stop filter; \
its order is M * 2, F1 and F2 are the band edge frequencies in Hz.")
  def make_butter_bs(m, f1, f2)
    f1 = f1.to_f
    f2 = f2.to_f
    xcoeffs = make_array(m)
    ycoeffs = make_array(m)
    f0 = sqrt(f1 * f2)
    q = f0 / (f2 - f1)
    theta0 = (TWO_PI * f0) / mus_srate()
    de = (2.0 * tan(theta0 / (2.0 * q))) / sin(theta0)
    de2 = de / 2.0
    ct = cos(theta0)
    tn0 = tan(theta0 * 0.5)
    k = j = 1
    m.times do |i|
      dk = 2.0 * sin((PI * (2.0 * k - 1.0)) / (2.0 * m))
      ak = (1.0 + de2 * de2) / (dk * de2)
      dk1 = sqrt((de * dk) / (ak + sqrt(ak * ak - 1.0)))
      bk = de2 * (dk / dk1)
      wk = (bk + sqrt(bk * bk - 1.0)).real
      thetajk = ((j == 1) ? (2.0 * atan(tn0 / wk)) : (2.0 * atan(tn0 * wk)))
      betajk = 0.5 * ((1.0 - 0.5 * dk1 * sin(thetajk)) /
                      (1.0 + 0.5 * dk1 * sin(thetajk)))
      gammajk = (0.5 + betajk) * cos(thetajk)
      alphajk = 0.5 * (0.5 + betajk) * ((1.0 - cos(thetajk)) / (1.0 - ct))
      xcoeffs[i] = vct(2.0 * alphajk, -4.0 * ct * alphajk, 2.0 * alphajk)
      ycoeffs[i] = vct(1.0, -2.0 * gammajk, 2.0 * betajk)
      if j == 1
        j = 2
      else
        k += 1
        j = 1
      end
    end
    make_filter(2 * m + 1,
                cascade2canonical(xcoeffs), cascade2canonical(ycoeffs))
  end

  # notch filters
  def make_notch_frequency_response(cur_srate, freqs, notch_width = 2)
    cur_srate = cur_srate.to_f
    notch_width = notch_width.to_f
    freq_response = [0.0, 1.0]
    freqs.each do |f|
      # left upper y hz
      freq_response.push((2.0 * (f - notch_width)) / cur_srate)
      # left upper y resp
      freq_response.push(1.0)
      # left bottom y hz
      freq_response.push((2.0 * (f - notch_width / 2.0)) / cur_srate)
      # left bottom y resp
      freq_response.push(0.0)
      # right bottom y hz
      freq_response.push((2.0 * (f + notch_width / 2.0)) / cur_srate)
      # right bottom y resp
      freq_response.push(0.0)
      # right upper y hz
      freq_response.push((2.0 * (f + notch_width)) / cur_srate)
      # right upper y resp
      freq_response.push(1.0)
    end
    freq_response.push(1.0, 1.0) 
  end

  add_help(:notch_channel,
           "notch_channel(freqs, order=false, beg=false, dur=false, \
snd=false, chn=false, edpos=false, trunc=true, notch_width=2)  \
Returns notch filter removing freqs.")
  def notch_channel(freqs,
                    filter_order = false,
                    beg = false,
                    dur = false,
                    snd = false,
                    chn = false,
                    edpos = false,
                    truncate = true,
                    notch_width = 2)
    sr = srate(snd).to_f
    lm = [framples(snd, chn), 2 ** (log(sr / notch_width) / log(2.0)).floor].min
    filter_channel(make_notch_frequency_response(sr, freqs, notch_width),
                   (filter_order or lm),
                   beg, dur, snd, chn, edpos, truncate,
                   format("%s(%p, %s, %s, %s",
                          get_func_name, freqs, filter_order, beg, dur))
  end

  add_help(:notch_sound,
           "notch_sound(freqs, order=false, \
snd=false, chn=false, notch_width=2)  \
Returns notch filter removing freqs.")
  def notch_sound(freqs, filter_order = false,
                  snd = false, chn = false, notch_width = 2)
    sr = srate(snd).to_f
    lm = [framples(snd, chn), 2 ** (log(sr / notch_width) / log(2.0)).floor].min
    filter_sound(make_notch_frequency_response(sr, freqs, notch_width),
                 (filter_order or lm),
                 snd, chn, false,
                 format("%s(%p, %s, 0, false",
                        get_func_name, freqs, filter_order))
  end

  add_help(:notch_selection,
           "notch_selection(freqs, order=false, notch_width=2)  \
Returns notch filter removing freqs.")
  def notch_selection(freqs, filter_order = false,
                      snd = false, chn = false, notch_width = 2)
    if selection?
      sr = selection_srate.to_f
      fr = selection_framples()
      lm = [fr, 2 ** (log(sr / notch_width) / log(2.0)).floor].min
      filter_selection(make_notch_frequency_response(sr, freqs, notch_width),
                       (filter_order or lm))
    end
  end

  # fractional Fourier Transform, z transform
  #
  # translated from the fxt package of Joerg Arndt
  add_help(:fractional_fourier_transform,
           "fractional_fourier_transform(real, imaginary, n, angle)  \
Performs a fractional Fourier transform on data; \
if angle=1.0, you get a normal Fourier transform.")
  def fractional_fourier_transform(fr, fi, n, v)
    hr = make_vct(n)
    hi = make_vct(n)
    ph0 = (v * TWO_PI) / n
    n.times do |w|
      sr = 0.0
      si = 0.0
      n.times do |k|
        phase = ph0 * k * w
        c = cos(phase)
        s = sin(phase)
        x = fr[k]
        y = fi[k]
        r = x * c - y * s
        i = y * c + x * s
        sr += r
        si += i
        hr[w] = sr
        hi[w] = si
      end
    end
    [hr, hi]
  end

  # using vector to allow complex sums (z=e^2*pi*i/n -> fourier transform)
  # z_transform(data, n, exp(Complex(0.0, (2.0 / n) * PI)))
  add_help(:z_transform,
           "z_transform(data, n, z)  \
Performs a Z transform on data; \
if z=e^2*pi*j/n you get a Fourier transform; \
complex results in returned vector.")
  def z_transform(f, n, z)
    make_array(n) do |w|
      sum = 0.0
      t = 1.0
      m = z ** w
      n.times do |k|
        sum = sum + f[k] * t
        t *= m
      end
      sum
    end
  end

  # slow Hartley transform
  #
  # taken from Perry Cook's SignalProcessor.m (the slow version of the
  # Hartley transform)
  add_help(:dht,
           "dht(data)  \
Returns the Hartley transform of DATA.")
  def dht(data)
    len = data.length
    arr = make_vct(len)
    w = TWO_PI / len
    len.times do |i|
      data.each_with_index do |val, j|
        arr[i] = arr[i] + val * (cos(i * j * w) + sin(i * j * w))
      end
    end
    arr
  end

  add_help(:find_sine,
           "find_sine(freq, beg, dur, snd=false)  \
Returns the amplitude and initial-phase (for sin) at FREQ between BEG and DUR.")
  def find_sine(freq, beg, dur, snd = false)
    incr = (TWO_PI * freq) / srate(snd)
    sw = 0.0
    cw = 0.0
    reader = make_sampler(beg, snd)
    dur.times do |i|
      samp = next_sample(reader)
      inc = i * incr
      sw = sw + samp * sin(inc)
      cw = cw + samp * cos(inc)
    end
    [2.0 * (sqrt(sw * sw + cw * cw) / dur), atan2(cw, sw)]
  end

# this is a faster version of find-sine using the "Goertzel algorithm"
# taken from R Lyons "Understanding DSP" p 529
# it returns the same result as find_sine above if you take (* 2 (/
# (goertzel...) dur)) -- see snd-test.rb examples

  add_help(:goertzel,
           "goertzel(freq, beg=0, dur=false, snd=false)  \
Returns the amplitude of the FREQ spectral component.")
  def goertzel(freq, beg = 0, dur = false, snd = false)
    y0 = 0.0
    y1 = 0.0
    y2 = 0.0
    rfreq = (TWO_PI * freq) / srate(snd)
    cs = 2.0 * cos(rfreq)
    scan_channel(lambda do |y|
                   y2, y1 = y1, y0
                   y0 = (y1 * cs - y2) + y
                   false
                 end, beg, (dur or framples(snd)), snd)
    (y0 - y1 * exp(Complex(0.0, -rfreq))).abs
  end

  add_help(:make_spencer_filter,
           "make_spencer_filter()  \
Is a version of make_fir_filter; \
it returns one of the standard smoothing filters from \
the era when computers were human beings.")
  def make_spencer_filter
    data = vct(-3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3)
    data.map! do |n|
      n / 320.0
    end
    make_fir_filter(data.length, data)
  end

  # any-random
  #
  # arbitrary random number distributions via the "rejection method"
  def any_random(amount, e = false)
    if amount.zero?
      0.0
    else
      unless e
        random(amount)
      else
        next_random = lambda do | |
          len = e.length
          x = random(e[len - 2].to_f)
          y = random(1.0)
          if y <= envelope_interp(x, e)
            x
          else
            next_random.call
          end
        end.call
      end
    end
  end

  def gaussian_distribution(s)
    e = []
    den = 2.0 * s * s
    x = 0.0
    y = -4.0
    21.times do |i|
      e.push(exp(-((y * y) / den)))
      e.push(x)
      x += 0.05
      y += 0.4
    end
    e
  end

  def pareto_distribution(a)
    e = []
    scl = 1.0 ** (a + 1.0) / a
    x = 0.0
    y = 1.0
    21.times do |i|
      e.push(scl * (a / y ** (a + 1.0)))
      e.push(x)
      x += 0.05
      y += 0.2
    end
    e
  end
  # uniform distribution
  # map_channel(lambda do |y| any_random(1.0, [0, 1, 1, 1]))
  # mostly toward 1.0
  # map_channel(lambda do |y| any_random(1.0, [0, 0, 0.95, 0.1, 1, 1]))
  # let(gaussian-distribution(1.0)) do |g|
  #   map_channel(lambda do |y| any_random(1.0, g))
  # end
  # let(pareto-distribution(1.0)) do |g|
  #   map_channel(lambda do |y| any_random(1.0, g))
  # end

  # this is the inverse integration function used by CLM to turn a
  # distribution function into a weighting function
  def inverse_integrate(dist, data_size = 512, e_size = 50)
    first_sum = sum = dist[1].to_f
    x0 = dist[0].to_f
    x1 = dist[-2].to_f
    xincr = (x1 - x0) / e_size.to_f
    x = x0
    e = make_array(e_size * 2)
    0.step(e_size * 2 - 1, 2) do |i|
      e[i + 1] = x
      e[i] = sum
      sum += envelope_interp(x, dist)
      x += xincr
    end
    incr = (e[-2] - first_sum) / (data_size - 1)
    x = first_sum - incr
    make_vct!(data_size) do
      x += incr
      envelope_interp(x, e)
    end
  end

  def gaussian_envelope(s)
    den = 2.0 * s * s
    x = -1.0
    y = -4.0
    e = make_array(42)
    0.step(41, 2) do |i|
      e[i] = x
      e[i + 1] = exp(-((y * y) / den))
      x += 0.1
      y += 0.4
    end
    e
  end
  # make_rand(:envelope, gaussian-envelope(1.0))

  # Julius Smith stuff
  #
  # these are from "Mathematics of the DFT", W3K Pubs
  add_help(:channel_mean,
           "channel_mean(snd, chn)  \
Returns the average of the samples in the given channel: <f,1>/n")
  def channel_mean(snd, chn)
    sum = 0.0
    n = framples(snd, chn)
    scan_channel(lambda do |y|
                   sum += y
                   false
                 end, 0, n, snd, chn)
    sum / n
  end

  add_help(:channel_total_energy,
           "channel_total_energy(snd, chn)  \
Returns the sum of the squares of all the samples in the given channel: <f,f>")
  def channel_total_energy(snd, chn)
    sum = 0.0
    scan_channel(lambda do |y|
                   sum = sum + y * y
                   false
                 end, 0, framples(snd, chn), snd, chn)
    sum
  end

  add_help(:channel_average_power,
           "channel_average_power(snd, chn)  \
Returns the average power in the given channel: <f,f>/n")
  def channel_average_power(snd, chn)
    channel_total_energy(snd, chn) / framples(snd, chn)
  end

  add_help(:channel_rms,
           "channel_rms(snd, chn)  \
Returns the RMS value of the samples in the given channel: sqrt(<f,f>/n)")
  def channel_rms(snd, chn)
    sqrt(channel_average_power(snd, chn))
  end

  add_help(:channel_variance,
           "channel_variance(snd, chn)  \
Returns the sample variance in the given channel: <f,f>-((<f,1>/ n)^2")
  def channel_variance(snd, chn)
    n = framples(snd, chn).to_f
    mu = (n / (n - 1.0)) * channel_mean(snd, chn)
    p = channel_total_energy(snd, chn)
    p - mu * mu
  end

  add_help(:channel_norm,
           "channel_norm(snd, chn)  \
Returns the norm of the samples in the given channel: sqrt(<f,f>)")
  def channel_norm(snd, chn)
    sqrt(channel_total_energy(snd, chn))
  end

  add_help(:channel_lp,
           "channel_lp(p, snd, chn)  \
Returns the Lp norm of the samples in the given channel.")
  def channel_lp(lp, snd, chn)
    sum = 0.0
    scan_channel(lambda do |y|
                   sum = sum + y.abs ** lp
                   false
                 end, 0, framples(snd, chn), snd, chn)
    sum ** (1.0 / lp)
  end

  add_help(:channel_lp_inf,
           "channel_lp_inf(snd, chn)  \
Returns the maxamp in the given channel (the name is \
just math jargon for maxamp).")
  def channel_lp_inf(snd, chn)
    mx = 0.0
    scan_channel(lambda do |y|
                   mx = [mx, y.abs].max
                   false
                 end, 0, framples(snd, chn), snd, chn)
    mx
  end

  add_help(:channel2_inner_product,
           "channel2_inner_product(s1, c1, s2, c2)  \
Returns the inner-product of the two channels: <f,g>")
  def channel2_inner_product(s1, c1, s2, c2)
    sum = 0.0
    r1 = make_sampler(0, s1, c1)
    r2 = make_sampler(0, s2, c2)
    framples(s1, c1).times do |i|
      sum = sum + r1.call * r2.call
    end
    sum
  end

  add_help(:channel2_angle,
           "channel2_angle(s1, c1, s2, c2)  \
Treats the two channels as vectors, \
returning the ANGLE between them: acos(<f,g>/(sqrt(<f,f>)*sqrt(<g,g>)))")
  def channel2_angle(s1, c1, s2, c2)
    inprod = channel2_inner_product(s1, c1, s2, c2)
    norm1 = channel_norm(s1, c1)
    norm2 = channel_norm(s2, c2)
    acos(inprod / (norm1 * norm2))
  end if defined? acos

  add_help(:channel2_orthogonal?,
           "channel2_orthogonal?(s1, c1, s2, c2)  \
Returns true if the two channels' inner-product is 0: <f,g>==0")
  def channel2_orthogonal?(s1, c1, s2, c2)
    channel2_inner_product(s1, c1, s2, c2).zero?
  end

  add_help(:channel2_coefficient_of_projection,
           "channel2_coefficient_of_projection(s1, c1, s2, c2) \
Returns <f,g>/<f,f>")
  def channel2_coefficient_of_projection(s1, c1, s2, c2)
    channel2_inner_product(s1, c1, s2, c2) / channel_total_energy(s1, c1)
  end

  # end of JOS stuff

  add_help(:channel_distance,
           "channel_distance(s1, c1, s2, c2)  \
Returns the euclidean distance between the two channels: sqrt(<f-g,f-g>)")
  def channel_distance(s1, c1, s2, c2)
    r1 = make_sampler(0, s1, c1)
    r2 = make_sampler(0, s2, c2)
    sum = 0.0
    [framples(s1, c1), framples(s2, c2)].min.times do
      diff = r1.call - r2.call
      sum = sum + diff * diff
    end
    sqrt(sum)
  end

  add_help(:periodogram,
           "periodogram(n)  \
Displays an N point Bartlett periodogram of the samples in the current channel")
  def periodogram(n)
    len = framples()
    average_data = make_vct(n)
    rd = make_sampler(0)
    n2 = n * 2
    rl = make_vct(n2)
    im = make_vct(n2)
    len.times do
      vct_scale!(rl, 0.0)
      vct_scale!(im, 0.0)
      n.times do |k|
        rl[k] = rd.call
      end
      mus_fft(rl, im)
      n.times do |k|
        average_data[k] = average_data[k] + rl[k] * rl[k] + im[k] * im[k]
      end
    end
    graph(vct_scale!(average_data, 1.0 / (len.to_f / n).ceil))
  end

  # ssb-am friends

  add_help(:shift_channel_pitch,
           "shift_channel_pitch(freq, order=40, beg=0, dur=false, \
snd=false, chn=false, edpos=false)  \
Uses the ssb-am CLM generator to shift the given channel \
in pitch without changing its length.  \
The higher ORDER, the better usually.")
  def shift_channel_pitch(freq, order = 40, beg = 0, dur = false,
                          snd = false, chn = false, edpos = false)
    gen = make_ssb_am(freq, order)
    map_channel(lambda do |y|
                  ssb_am(gen, y)
                end,
                beg, dur, snd, chn, edpos,
                format("%s(%s, %s, %s, %s",
                       get_func_name, freq, order, beg, dur))
  end

  add_help(:hz_to_2pi,
           "hz_to_2pi(freq)  \
Is like hz2radians but uses the current sound's srate, not mus_srate.")
  def hz_to_2pi(freq)
    (TWO_PI * freq) / srate()
  end
  
  def ssb_bank(old_freq, new_freq, pairs,
               order = 40, bw = 50.0, beg = 0, dur = false,
               snd = false, chn = false, edpos = false)
    factor = (new_freq - old_freq.to_f) / old_freq
    mx = maxamp
    ssbs = make_array(pairs)
    bands = make_array(pairs) do |i|
      aff = (i + 1.0) * old_freq
      bwf = bw * (1.0 + (i + 1.0) / (2.0 * pairs))
      ssbs[i] = make_ssb_am((i + 1.0) * factor * old_freq)
      make_bandpass(hz_to_2pi(aff - bwf), hz_to_2pi(aff + bwf), order)
    end
    as_one_edit_rb("%s(%s, %s, %s, %s, %s, %s, %s",
                   get_func_name, old_freq, new_freq,
                   pairs, order, bw, beg, dur) do | |
      nmx = 0.0
      map_channel_rb(beg, dur, snd, chn, edpos) do |y|
        sum = 0.0
        ssbs.zip(bands) do |sbs, bds|
          sum += ssb_am(sbs, bandpass(bds, y))
        end
        nmx = [nmx, sum.abs].max
        sum
      end
      scale_channel(mx / nmx, beg, dur, snd, chn)
    end
  end

  # this version adds a frequency envelope
  # ssb_bank_env(557, 880, [0, 0, 1, 100.0], 7)
  def ssb_bank_env(old_freq, new_freq, freq_env, pairs,
                   order = 40, bw = 50.0, beg = 0, dur = false,
                   snd = false, chn = false, edpos = false)
    factor = (new_freq - old_freq.to_f) / old_freq
    mx = maxamp
    ssbs = make_array(pairs)
    frenvs = make_array(pairs)
    bands = make_array(pairs) do |i|
      aff = (i + 1.0) * old_freq
      bwf = bw * (1.0 + (i + 1.0) / (2.0 * pairs))
      ssbs[i] = make_ssb_am((i + 1.0) * factor * old_freq)
      frenvs[i] = make_env(:envelope, freq_env,
                           :scaler, hz2radians(i.to_f),
                           :length, framples(snd, chn) - 1)
      make_bandpass(hz_to_2pi(aff - bwf), hz_to_2pi(aff + bwf), order)
    end
    as_one_edit_rb("%s(%s, %s, %s, %s, %s, %s, %s, %s",
                   get_func_name, old_freq, new_freq, freq_env.inspect,
                   pairs, order, bw, beg, dur) do | |
      nmx = 0.0
      map_channel_rb(beg, dur, snd, chn, edpos) do |y|
        sum = 0.0
        ssbs.each_with_index do |sbs, i|
          sum += ssb_am(sbs, bandpass(bands[i], y), env(frenvs[i]))
        end
        nmx = [nmx, sum.abs].max
        sum
      end
      scale_channel(mx / nmx, beg, dur, snd, chn)
    end
  end

  #vct|channel|spectral-polynomial
  def vct_polynomial(v, coeffs)
    new_v = Vct.new(v.length, coeffs.last)
    (coeffs.length - 2).downto(0) do |i|
      new_v.multiply!(v).offset!(coeffs[i])
    end
    new_v
  end

  def channel_polynomial(coeffs, snd = false, chn = false)
    len = framples(snd, chn)
    v = channel2vct(0, len, snd, chn)
    vct2channel(vct_polynomial(v, coeffs), 0, len, snd, chn, false,
                format("%s(%s", get_func_name, coeffs.to_str))
  end

  # channel_polynomial(vct(0.0, 0.5)) = x*0.5
  # channel_polynomial(vct(0.0, 1.0, 1.0, 1.0)) = x*x*x + x*x + x
  # 
  # convolution -> * in freq

  def spectral_polynomial(coeffs, snd = false, chn = false)
    len = framples(snd, chn)
    sound = channel2vct(0, len, snd, chn)
    num_coeffs = coeffs.length
    fft_len = if num_coeffs < 2
                len
              else
                (2.0 ** (log((num_coeffs - 1.0) * len) / log(2.0)).ceil).to_i
              end
    rl1 = make_vct(fft_len)
    rl2 = make_vct(fft_len)
    new_sound = make_vct(fft_len)
    if coeffs[0] > 0.0
      new_sound.map! do
        mus_random(coeffs[0])
      end
    end
    if num_coeffs > 1
      new_sound.add!(sound.scale(coeffs[1]))
      if num_coeffs > 2
        peak = maxamp(snd, chn)
        rl1.scale!(0.0).add!(sound)
        (2...num_coeffs).each do |i|
          convolution(rl1, rl2.scale!(0.0).add(sound), fft_len)
          new_sound.add!(rl1.scale((coeffs[i] * peak) / rl1.peak))
        end
        new_sound.scale!(peak / new_sound.peak)
      end
    end
    vct2channel(new_sound, 0, [len, len * (num_coeffs - 1)].max,
                snd, chn, false,
                format("%s(%s", get_func_name, coeffs.to_str))
  end

  # SCENTROID
  # 
  # by Bret Battey
  # Version 1.0 July 13, 2002
  # translated to Snd/Scheme Bill S 19-Jan-05
  # 
  # Returns the continuous spectral centroid envelope of a sound.  The
  # spectral centroid is the "center of gravity" of the spectrum, and it
  # has a rough correlation to our sense of "brightness" of a sound.
  # 
  # [Beauchamp, J., "Synthesis by spectral amplitude and 'brightness' matching
  # analyzed musical sounds".
  # Journal of Audio Engineering Society 30(6), 396-406]
  # 
  # The formula used is:
  #    C = [SUM<n=1toj>F(n)A(n)] / [SUM<n=1toj>A(n)]
  #    Where j is the number of bins in the analysis, 
  #    F(n) is the frequency of a given bin,
  #    A(n) is the magnitude of the given bin.
  # 
  # If a pitch envelope for the analyzed sound is available, the results
  # of SCENTROID can be used with the function NORMALIZE-CENTROID,
  # below, to provide a "normalized spectral centroid".
  # 
  # DB-FLOOR -- Frames below this decibel level (0 dB = max) will be
  # discarded and returned with spectral centroid = 0
  # 
  # RFREQ -- Rendering frequency. Number of measurements per second.
  # 
  # FFTSIZE -- FFT window size. Must be a power of 2. 4096 is
  # recommended.

  add_help(:scentroid,
           "scentroid(file, beg=0, dur=false, db_floor=-40, \
rfreq=100, fftsize=4096)  \
Returns the spectral centroid envelope of a sound; \
RFREQ is the rendering frequency, the number of measurements per second; \
DB_FLOOR is the level below which data will be ignored.")
  def scentroid(file, beg = 0.0, dur = false, db_floor = -40,
                rfreq = 100.0, fftsize = 4096)
    assert_type(File.exist?(file), file, 0, "an existing file")
    fsr = srate(file)
    incrsamps = (fsr / rfreq).floor
    start = (beg * fsr).floor
    ende = (start + (dur ? (dur * fsr).floor : (framples(file) - beg))).floor
    fdr = make_vct(fftsize)
    fdi = make_vct(fftsize)
    windows = ((ende - start) / incrsamps).floor + 1
    results = make_vct(windows)
    fft2 = (fftsize / 2.0).floor
    binwidth = fsr / fftsize.to_f
    rd = make_readin(file)
    loc = 0
    start.step(ende, incrsamps) do |i|
      rd.location = i
      sum_of_squares = 0.0
      fdr.map! do
        val = readin(rd)
        sum_of_squares = sum_of_squares + val * val
        val
      end
      if linear2db(sqrt(sum_of_squares / fftsize.to_f)) >= db_floor
        numsum = 0.0
        densum = 0.0
        fdi.map! do |x|
          0.0
        end
        mus_fft(fdr, fdi, fftsize)
        rectangular2polar(fdr, fdi)
        fft2.times do |j|
          numsum = numsum + j * binwidth * fdr[j]
          densum += fdr[j]
        end
        results[loc] = numsum / densum
      end
      loc += 1
    end
    results
  end
  
  # invert_filter inverts an FIR filter
  #
  # say we previously filtered a sound via filter_channel(vct(0.5, 0.25, 0.125))
  #   and we want to undo it without using undo_edit:
  #   filter_channel(invert_filter(vct(0.5, 0.25, 0.125)))
  # 
  # there are a million gotchas here.  The primary one is that the inverse
  # filtercan "explode" -- the coefficients can grow without bound.  For
  # example, any filter returned by spectrum2coeffs above will be a problem
  # (it always returns a "linear phase" filter).

  add_help(:invert_filter,
           "invert_filter(coeffs)  \
Tries to return an inverse filter to undo the effect of the FIR filter coeffs.")
  def invert_filter(fcoeffs)
    order = fcoeffs.length + 32
    coeffs = Vct.new(order)
    fcoeffs.each_with_index do |val, i|
      coeffs[i] = val
    end
    nfilt = Vct.new(order)
    nfilt[0] = 1.0 / coeffs.first
    (1...order).each do |i|
      sum = 0.0
      k = i
      i.times do |j|
        sum = sum + nfilt[j] * coeffs[k]
        k -= 1
        nfilt[i] = sum / -coeffs.first
      end
    end
    nfilt
  end

  # Volterra filter
  #
  # one of the standard non-linear filters
  # this version is taken from Monson Hayes "Statistical DSP and Modeling"
  # it is a slight specialization of the form mentioned by J O Smith and others

  class Volterra_filter < Musgen
    def initialize(acoeffs, bcoeffs)
      super()
      @as = acoeffs
      @bs = bcoeffs
      @xs = Vct.new([acoeffs.length, bcoeffs.length].max)
    end

    def inspect
      format("%s.new(%s, %s)", self.class, @as.to_str, @bs.to_str)
    end

    def to_s
      format("#<%s acoeffs: %s, bcoeffs: %s>", self.class, @as, @bs)
    end

    def run_func(val1 = 0.0, val2 = 0.0)
      volterra_filter(val1)
    end

    def volterra_filter(x)
      xlen = @xs.length
      @xs.move!(xlen - 1, xlen - 2, true)
      @xs.first = x
      sum = dot_product(@as, @xs, @as.length)
      @bs.length.times do |i|
        @bs.length.times do |j|
          sum = sum + @bs[j] * @xs[i] * @xs[j]
        end
      end
      sum
    end
  end

  add_help(:make_volterra_filter,
           "make_volterra_filter(acoeffs, bcoeffs)  \
Returns a list for use with volterra-filter, \
producing one of the standard non-linear filters.")
  def make_volterra_filter(acoeffs, bcoeffs)
    Volterra_filter.new(acoeffs, bcoeffs)
  end

  add_help(:volterra_filter,
           "volterra_filter(flt, x)  \
Takes FLT, a Volterra_filter object returned by make_volterra_filter, \
and an input X, and returns the (non-linear filtered) result.")
  def volterra_filter(flt, x)
    flt.volterra_filter(x)
  end
  # flt = make_volterra_filter(vct(0.5, 0.1), vct(0.3, 0.2, 0.1))
  # map_channel(lambda do |y| volterra_filter(flt, y) end)

  # moving-sum generator (the sum norm or 1-norm)

  add_help(:make_moving_sum,
           "make_moving_sum(size=128)  \
Returns a moving-sum generator.  \
The generator keeps a running window of the last SIZE inputs, \
returning the sum of the absolute values of the samples in that window.")
  def make_moving_sum(size = 128)
    gen = make_moving_average(size)
    gen.increment = 1.0
    gen
  end

  add_help(:moving_sum,
           "moving_sum(gen, y)  \
Returns the sum of the absolute values in a moving \
window over the last few inputs.")
  def moving_sum(gen, y)
    moving_average(gen, y.abs)
  end

  def make_unmoving_sum()
    make_one_pole(1.0, -1.0)
  end
  alias unmoving_sum one_pole

  # moving-rms generator

  add_help(:make_moving_rms,
           "make_moving_rms(size=128)  \
Returns a moving-rms generator.  \
The generator keeps a running window of the last SIZE inputs, \
returning the rms of the samples in that window.")
  def make_moving_rms(size = 128)
    make_moving_average(size)
  end

  add_help(:moving_rms,
           "moving_rms(gen, y)  \
Returns the rms of the values in a window over the last few inputs.")
  def moving_rms(gen, y)
    sqrt([0.0, moving_average(gen, y * y)].max)
  end

  # moving-length generator (euclidean norm or 2-norm)

  add_help(:make_moving_length,
           "make_moving_length(size=128)  \
Returns a moving-length generator.  \
The generator keeps a running window of the last SIZE inputs, \
returning the euclidean length of the vector in that window.")
  alias make_moving_length make_moving_sum

  add_help(:moving_length,
           "moving_length(gen, y)  \
Returns the length of the values in a window over the last few inputs.")
  alias moving_length moving_rms

  # harmonicizer
  # (each harmonic is split into a set of harmonics via Chebyshev polynomials)
  # obviously very similar to ssb_bank above, but splits harmonics
  # individually, rather than pitch-shifting them
  add_help(:harmonicizer,
           "harmonicizer(freq, coeffs, pairs, order=40, bw=50.0, \
beg=0, dur=false, snd=false, chn=false, edpos=false)  \
Splits out each harmonic and replaces it with the spectrum given in coeffs.")
  def harmonicizer(freq, coeffs, pairs,
                   order = 40,
                   bw = 50.0,
                   beg = 0,
                   dur = false,
                   snd = false,
                   chn = false,
                   edpos = false)
    bands = make_array(pairs)
    pcoeffs = partials2polynomial(coeffs)
    avgs = make_array(pairs)
    peaks = make_array(pairs)
    flt = make_filter(2, vct(1, -1), vct(0, -0.9))
    old_mx = maxamp
    new_mx = 0.0
    ctr = 40
    1.upto(pairs) do |i|
      aff = i * freq
      bwf = bw * (1.0 + i / (2 * pairs))
      peaks[i - 1] = make_moving_max(128)
      avgs[i - 1] = make_moving_average(128)
      bands[i - 1] = make_bandpass(hz_to_2pi(aff - bwf),
                                   hz_to_2pi(aff + bwf), order)
    end
    as_one_edit_rb do
      map_channel_rb(beg, dur, snd, chn, edpos) do |y|
        sum = 0.0
        bands.zip(peaks, avgs) do |bs, ps, as|
          sig = bandpass(bs, y)
          mx = moving_max(ps, sig)
          amp = moving_average(as, mx > 0.0 ? [100.0, 1.0 / mx].min : 0.0)
          if amp > 0.0
            sum = sum + mx * polynomial(pcoeffs, amp * sig)
          end
        end
        val = filter(flt, sum)
        new_mx = [new_mx, val.abs].max
        if ctr.zero?
          val
        else
          ctr -= 1
          0.0
        end
      end
      if new_mx > 0.0
        scale_channel(old_mx / new_mx, beg, dur, snd, chn)
      end
    end
  end

  # linear sampling rate conversion

  add_help(:linear_src_channel,
          "linear_src_channel(sr, snd=false, chn=false)  \
Performs sampling rate conversion using linear interpolation.")
  def linear_src_channel(srinc, snd = false, chn = false)
    rd = make_sampler(0, snd, chn)
    last = rd.call
    nxt = rd.call
    intrp = 0.0
    tempfile = with_sound(:clm, true,
                          :output, snd_tempnam,
                          :srate, srate(snd)) do
      samp = 0
      until sampler_at_end?(rd)
        if (pos = intrp) >= 1.0
          pos.floor.times do |i|
            last, nxt = nxt, rd.call
          end
          pos -= pos.floor
        end
        intrp = pos + pos.floor
        out_any(samp, last + pos * (nxt - last), 0, $output)
        samp += 1
      end
    end.output
    len = mus_sound_framples(tempfile)
    set_samples(0, len - 1, tempfile, snd, chn, true,
                "%s(%s", get_func_name, srinc, 0, false, true)
    # first true=truncate to new length, false=at current edpos,
    # true=auto delete temp file
  end

  # Mathews/Smith High-Q filter as described in
  #   http://ccrma.stanford.edu/~jos/smac03maxjos/

  class Mfilter < Musgen
    def initialize(decay, freq)
      super()
      @decay = decay.to_f
      @frequency = freq.to_f
      @eps = 2.0 * sin((PI * freq) / mus_srate())
      @xn = @yn = 0.0
    end
    attr_accessor :decay, :eps

    def inspect
      format("%s.new(%0.3f, %0.3f)", self.class, @decay, @frequency)
    end

    def to_s
      format("#<%s decay: %0.3f, frequency: %0.3f>",
             self.class, @decay, @frequency)
    end
    
    def mfilter(x_input = 0.0, y_input = 0.0)
      @xn = x_input + @decay * (@xn - @eps * @yn)
      @yn = y_input + @decay * (@eps * @xn + @yn)
    end
  end

  def make_mfilter(*args)
    Mfilter.new(get_args(args, :decay, 0.99),
                get_args(args, :frequency, 1000.0))
  end

  def mfilter(m, x_input = 0.0, y_input = 0.0)
    m.mfilter(x_input, y_input)
  end
=begin
  with_sound(:clm, true) do
    rd = make_sampler(0, "now.snd")
    m = make_mfilter
    10000.times do |i| outa(i, mfilter(m, 0.1 * rd.call), $output) end
  end
=end
  #
  # sweep center freq:
=begin
  with_sound(:clm, true) do
    rd = make_sampler(0, "oboe.snd")
    m = make_mfilter(:decay, 0.99, :frequency, 1000)
    e = make_env([0, 100, 1, 2000], :length, 10000)
    10000.times do |i|
      outa(i, mfilter(m, 0.1 * rd.call), $output)
      m.eps = 2.0 * sind((PI * env(e)) / mus_srate())
    end
  end
=end
  #
  # harmonics:
=begin
  with_sound(:clm, true, :statistics, true) do
    noi = make_rand(10000)
    filters = make_array(9) do
      make_mfilter(:decay, 0.999, :frequency, 400.0 * (i + 1))
    end
    10000.times do |i|
      sum = 0.0
      input = 0.01 * rand(noi)
      filters.each do |f| sum = sum + (1.0 / (j + 1)) * mfilter(f, input) end
      outa(i, sum $output)
    end
  end
=end
  
  #
  # spectrum displayed in various frequency scales
  #
  class Display_bark_fft
    # click in lisp-graph to change the tick placement choice
    def initialize
      @bark_fft_size = 0
      @bark_tick_function = 0
    end
    attr_reader :bark_tick_function

    def display_bark_fft(snd, chn)
      ls = left_sample(snd, chn)
      rs = right_sample(snd, chn)
      fftlen = (2 ** (log((rs - ls) + 1.0) / log(2.0)).ceil.to_i).to_i
      if fftlen > 0
        data = channel2vct(ls, fftlen, snd, chn)
        normalized = (transform_normalization(snd, chn) != Dont_normalize)
        linear = true
        if vct?(data)
          fft = snd_spectrum(data,
                             fft_window(snd, chn), fftlen, linear,
                             fft_window_beta(snd, chn), false, normalized)
          if vct?(fft)
            sr = srate(snd)
            mx = fft.peak
            data_len = fft.length

            # bark settings
            bark_low    = bark(20.0).floor
            bark_high   = bark(0.5 * sr).ceil
            bark_frqscl = data_len / (bark_high - bark_low)
            bark_data   = Vct.new(data_len)

            # mel settings
            mel_low     = mel(20.0).floor
            mel_high    = mel(0.5 * sr).ceil
            mel_frqscl  = data_len / (mel_high - mel_low)
            mel_data    = Vct.new(data_len)

            # erb settings
            erb_low     = erb(20.0).floor
            erb_high    = erb(0.5 * sr).ceil
            erb_frqscl  = data_len / (erb_high - erb_low)
            erb_data    = Vct.new(data_len)

            @bark_fft_size = fftlen
            fftlenf = fftlen.to_f

            fft.each_with_index do |val, i|
              frq = sr * (i / fftlenf)
              bark_bin = (bark_frqscl * (bark(frq) - bark_low)).round
              mel_bin  = (mel_frqscl  * (mel(frq)  -  mel_low)).round
              erb_bin  = (erb_frqscl  * (erb(frq)  -  erb_low)).round
              if bark_bin.between?(0, data_len - 1)
                bark_data[bark_bin] += val
              end
              if mel_bin.between?(0, data_len - 1)
                mel_data[mel_bin] += val
              end
              if erb_bin.between?(0, data_len - 1)
                erb_data[erb_bin] += val
              end
            end

            if normalized
              bmx = bark_data.peak
              mmx = mel_data.peak
              emx = erb_data.peak
              if (mx - bmx).abs > 0.01
                bark_data.scale!(mx / bmx)
              end
              if (mx - mmx).abs > 0.01
                mel_data.scale!(mx / mmx)
              end
              if (mx - emx).abs > 0.01
                erb_data.scale!(mx / emx)
              end
            end
            graph([bark_data, mel_data, erb_data],
                  "ignored",
                  20.0, 0.5 * sr,
                  0.0, (normalized ? 1.0 : data_len * y_zoom_slider(snd, chn)),
                  snd, chn,
                  false, Show_bare_x_axis)
          end
        end
      end
      false
    end

    def mark_bark_labels(snd, chn)
      # at this point the x axis has no markings, but there is room
      # for labels and ticks
      old_foreground_color = foreground_color(snd, chn, Copy_context)
      # assume at start the foreground color is correct
      axinfo = axis_info(snd, chn, Lisp_graph)
      axis_x0 = axinfo[10]
      axis_x1 = axinfo[12]
      axis_y0 = axinfo[13]
      axis_y1 = axinfo[11]
      label_height = 15
      char_width = 8
      sr2 = 0.5 * srate(snd)
      minor_tick_len = 6
      major_tick_len = 12
      tick_y0 = axis_y1
      minor_y0 = axis_y1 + minor_tick_len
      major_y0 = axis_y1 + major_tick_len
      bark_label_font = snd_font(3)
      bark_numbers_font = snd_font(2)
      label_pos = (axis_x0 + 0.45 * (axis_x1 - axis_x0)).to_i
      cr = channel_widgets(snd, chn)[17]
      scale_position = lambda do |scale, f|
        b20 = scale.call(20.0)
        (axis_x0 +
         ((axis_x1 - axis_x0) * (scale.call(f) - b20)) /
         (scale.call(sr2) - b20)).round
      end
      bark_position = lambda do |f|
        scale_position.call(method(:bark).to_proc, f)
      end
      mel_position = lambda do |f|
        scale_position.call(method(:mel).to_proc, f)
      end
      erb_position = lambda do |f|
        scale_position.call(method(:erb).to_proc, f)
      end
      draw_bark_ticks = lambda do |bark_function|
        if bark_numbers_font
          set_current_font(bark_numbers_font, snd, chn, Copy_context)
        end
        draw_line(axis_x0, tick_y0, axis_x0, major_y0,
                  snd, chn, Copy_context, cr)
        i1000 = scale_position.call(bark_function, 1000.0)
        i10000 = scale_position.call(bark_function, 10000.0)
        draw_line(i1000, tick_y0, i1000, major_y0,
                  snd, chn, Copy_context, cr)
        draw_line(i10000, tick_y0, i10000, major_y0,
                  snd, chn, Copy_context, cr)
        draw_string("20", axis_x0, major_y0,
                    snd, chn, Copy_context, cr)
        draw_string("1000", i1000 - 3 * 4, major_y0,
                    snd, chn, Copy_context, cr)
        draw_string("10000", i10000 - 6 * 4, major_y0,
                    snd, chn, Copy_context, cr)
        draw_string("fft size: #{@bark_fft_size}", axis_x0 + 10, axis_y0,
                    snd, chn, Copy_context, cr)
        100.step(1000, 100) do |i|
          i100 = scale_position.call(bark_function, i)
          draw_line(i100, tick_y0, i100, minor_y0, snd, chn, Copy_context, cr)
        end
        2000.step(10000, 1000) do |i|
          i1000 = scale_position.call(bark_function, i)
          draw_line(i1000, tick_y0, i1000, minor_y0, snd, chn, Copy_context, cr)
        end
      end

      # bark label/ticks
      if self.bark_tick_function.zero?
        draw_bark_ticks.call(bark_position)
      end
      if bark_label_font
        set_current_font(bark_label_font, snd, chn, Copy_context)
      end
      draw_string("bark,", label_pos, axis_y1 + label_height,
                  snd, chn, Copy_context, cr)
      # mel label/ticks
      set_foreground_color(snd_color(2), snd, chn, Copy_context)
      if self.bark_tick_function == 1
        draw_bark_ticks.call(mel_position)
      end
      if bark_label_font
        set_current_font(bark_label_font, snd, chn, Copy_context)
      end
      draw_string("mel,", char_width * 6 + label_pos, axis_y1 + label_height,
                  snd, chn, Copy_context, cr)
      # erb label/ticks
      set_foreground_color(snd_color(4), snd, chn, Copy_context)
      if self.bark_tick_function == 2
        draw_bark_ticks.call(erb_position)
      end
      if bark_label_font
        set_current_font(bark_label_font, snd, chn, Copy_context)
      end
      draw_string("erb",
                  char_width * (6 + 5) + label_pos,
                  axis_y1 + label_height,
                  snd, chn, Copy_context, cr)
      set_foreground_color(old_foreground_color, snd, chn, Copy_context)
    end
    
    # mouse click = move to next scale's ticks
    def choose_bark_ticks(snd, chn, button, state, x, y, axis)
      if axis == Lisp_graph
        @bark_tick_function += 1
        if @bark_tick_function > 2
          @bark_tick_function = 0
        end
        update_lisp_graph(snd, chn)
      end
    end

    private
    def bark(f)
      f2 = f / 7500.0
      13.5 * atan(0.00076 * f) + (3.5 * atan(f2 * f2))
    end

    def mel(f)
      1127.0 * log(1.0 + f / 700.0)
    end

    def erb(f)
      43.0 + 11.17 * log((f + 312.0) / (f + 14675.0))
    end
  end

  # user's view of display-bark-fft function
  def display_bark_fft(off = false)
    if off.kind_of?(FalseClass)
      db = Display_bark_fft.new
      $lisp_graph_hook.add_hook!("display-bark-fft") do |snd, chn|
        db.display_bark_fft(snd, chn)
      end
      $after_lisp_graph_hook.add_hook!("make-bark-label") do |snd, chn|
        db.mark_bark_labels(snd, chn)
      end
      $mouse_click_hook.add_hook!("choose-bark-ticks") do |s, c, b, st, x, y, a|
        db.choose_bark_ticks(s, c, b, st, x, y, a)
      end
      Snd.sounds.each do |snd|
        channels(snd).times do |chn|
          update_lisp_graph(snd, chn)
        end
      end
    else
      $lisp_graph_hook.remove_hook!("display-bark-fft")
      $after_lisp_graph_hook.remove_hook!("make-bark-label")
      $mouse_click_hook.remove_hook!("choose-bark-ticks")
      Snd.sounds.each do |snd|
        channels(snd).times do |chn|
          set_lisp_graph?(false, snd, chn)
        end
      end
    end
    off
  end

  def undisplay_bark_fft
    display_bark_fft(true)
  end
end

include Dsp

# dsp.rb ends here