1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>An Introduction to FM</title>
<style>
EM.noem {font-style: normal}
PRE.indented {padding-left: 1.0cm;}
TD.greenish {background-color: #eefdee}
TD.bluish {background-color: #f6f8ff}
TD.beige {background-color: beige}
TD.center {text-align: center}
TD.spaced {
margin-left: 0.2cm;
}
TD.bluishcentered {background-color: #f2f4ff;
text-align: center;
}
TD.bluishb {background-color: #f2f4ff;
text-align: center;
border: 1px solid lightgray;
padding-top: 0.1cm;
padding-bottom: 0.1cm;
}
IMG.indented {margin-left: 2.0cm}
DIV.spacer {margin-top: 1.0cm;
}
TABLE.spaced {margin-left: 1.0cm;
}
TABLE.bordered {border: 1px solid black;
padding-left: 0.1cm;
padding-right: 0.1cm;
}
TABLE.borderedm {border: 1px solid black;
padding-left: 0.2cm;
padding-right: 0.2cm;
margin-left: 1.0cm;
margin-top: 0.5cm;
margin-right: 1.0cm;
padding-top: 0.2cm;
padding-bottom: 0.2cm;
}
DIV.greenish {border: 1px solid gray;
background-color: #eefdee;
/* margin-left: 1.0cm; */
margin-right: 1.0cm;
margin-top: 0.5cm;
padding-left: 0.4cm;
padding-right: 0.4cm;
padding-top: 0.5cm;
padding-bottom: 0.5cm;
}
DIV.header {margin-top: 60px;
margin-bottom: 30px;
border: 4px solid #00ff00; /* green */
background-color: #eefdee; /* lightgreen */
padding-left: 30px;
}
DIV.topheader {margin-top: 10px;
margin-bottom: 40px;
border: 4px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
font-family: 'Helvetica';
font-size: 30px;
text-align: center;
padding-top: 10px;
padding-bottom: 10px;
}
DIV.centered {text-align: center;
padding-bottom: 0.5cm;
}
DIV.centered1 {padding-left: 30%;
padding-bottom: 0.5cm;
}
DIV.bordered { background-color: #f2f4ff;
border: 1px solid gray;
padding-left: 0.4cm;
padding-right: 0.4cm;
padding-top: 0.5cm;
padding-bottom: 0.5cm;
margin-left: 2.0cm;
margin-right: 1.0cm;
}
BODY.body {background-color: #ffffff; /* white */
margin-left: 0.5cm;
margin-right: 0.5cm;
}
</style>
</head>
<body class="body">
<div class="topheader" id="fmintro">An Introduction To FM</div>
<div class="centered1">
<img src="pix/fmad1.png" alt="radio ad">
<img src="pix/fmad2.png" alt="intro">
<!--
this Zenith brochure is probably from around 1952: these 3 models were introduced
between 1950 and 1952. Schematics are available online,
http://www.nostalgiaair.org/PagesByModel/573/M0025573.pdf
for example (the others are at the same site). There are
much better photos online for the H models, but I think this
is the best picture of the "Waldorf". They used 7 or 8 tubes.
H723 and H725 were from 1951. Earliest FM radios (using a different
frequency band) were from ca 1940. There are good pictures at various websites,
http://userpages.bright.net/~geary/fm/index.html for example.
-->
</div>
<div class="centered">Bill Schottstaedt</div>
<!-- the latex stuff is always embedded in:
\documentclass{amsart}
\begin{document}
\thispagestyle{empty}
\Large
...
\end{document}
-->
<!-- INDEX fmintro:Frequency Modulation -->
<p>In frequency modulation we modulate the frequency — "modulation" here is just a latinate word for
"change". Vibrato and glissando are frequency modulation. John Chowning tells me that he
stumbled on FM when he sped up vibrato to the point that it was creating audible sidebands
(perceived as a timbral change) rather than faster warbling (perceived as a frequency change). We
can express this (the vibrato, not the neat story) as:
</p>
<!-- LATEX \[\cos \, (\omega_{c}t+f(t))\] -->
<img class="indented" src="pix/fmeq1.png" alt="cos(wt + f)">
<p>where the c subscript stands for "carrier" and f(t) means "some arbitrary function added to the
carrier". Since cos takes an angle as its argument, f(t) modulates (that is, changes) the angle
passed to the cosine, hence the generic name "angle modulation". We can add that change either to
the argument to cos
("phase modulation", <code>cos(angle + change)</code>), or add it to the current phase, then take cos of that
("frequency modulation", <code>cos(angle += change)</code>), so
our formula can viewed either way. Since the angle is being incremented by the carrier frequency in
either case, the difference is between:
</p>
<pre class="indented">
PM: cos((angle += incr) + change)
FM: cos(angle += (incr + change))
</pre>
<p>
To make the difference clear, textbooks
put in an integral when they mean
frequency modulation:
</p>
<!-- LATEX
fmeq3:
\cos \, (\omega_{c}t + \!\int_{0}^{t}\! f(t) \, \mathrm{d} t)
-->
<img class="indented" src="pix/fmeq3.png" alt="cos + integral">
<p>In PM we change the phase, in FM we change the phase increment, and
to go from FM to PM, integrate the FM modulating signal.
But you can't tell which is in use
from the output waveform; you have to know
what the modulating signal is. In sound synthesis, where we can do what we want with the modulating signal,
there is no essential difference between frequency and phase modulation.
</p>
<div class="bordered">
<p>I would call this issue a dead horse, but it is still causing confusion, even 40 years
down the road. So,
here are two CLM instruments, one performing
phase modulation, the other performing frequency modulation. I have tried to make the innards
explicit at each step, and match the indices so that the instruments produce the same results given
the same parameters. Also, to lay a different controversy to rest, it should be obvious from these two
functions that there is no difference in run-time computational expense or accuracy.
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument pm (beg end freq amp mc-ratio index) ; "mc-ratio" = modulator to carrier frequency ratio
(let ((carrier-phase 0.0) ; set to pi/2 if someone tells you PM can't generate energy at DC
(carrier-phase-incr (hz->radians freq))
(modulator-phase 0.0)
(modulator-phase-incr (hz->radians (* freq mc-ratio)))
(modulation 0.0)
(val 0.0))
(run
(loop for i from beg to end do
(setf modulation (* index (sin modulator-phase)))
(setf val (* amp (sin (+ carrier-phase modulation))))
;; no integration in phase modulation
(incf carrier-phase carrier-phase-incr)
(incf modulator-phase modulator-phase-incr)
(outa i val)))))
(definstrument fm (beg end freq amp mc-ratio index)
(let* ((carrier-phase 0.0)
(carrier-phase-incr (hz->radians freq))
(modulator-phase-incr (hz->radians (* freq mc-ratio)))
(modulator-phase (* 0.5 (+ pi modulator-phase-incr)))
;; (pi+incr)/2 to get (centered) sin after integration, to match pm case above
(fm-index (hz->radians (* freq mc-ratio index)))
;; fix up fm index (it's a frequency change)
(val 0.0)
(modulation 0.0))
(run
(loop for i from beg to end do
(setf modulation (* fm-index (sin modulator-phase)))
(incf carrier-phase modulation)
;; here is the fm integration
(setf val (* amp (sin carrier-phase)))
(incf carrier-phase carrier-phase-incr)
(incf modulator-phase modulator-phase-incr)
(outa i val)))))
(with-sound () (pm 0 10000 1000 .5 0.25 4))
(with-sound () (fm 0 10000 1000 .5 0.25 4))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (pm beg end freq amp mc-ratio index) ; "mc-ratio" = modulator to carrier frequency ratio
(let ((carrier-phase 0.0) ; set to pi/2 if someone tells you PM can't produce energy at 0Hz
(carrier-phase-incr (hz->radians freq))
(modulator-phase 0.0)
(modulator-phase-incr (hz->radians (* mc-ratio freq))))
(do ((i beg (+ i 1)))
((= i end))
(let* ((modulation (* index (sin modulator-phase)))
(pm-val (* amp (sin (+ carrier-phase modulation)))))
;; no integration in phase modulation
(set! carrier-phase (+ carrier-phase carrier-phase-incr))
(set! modulator-phase (+ modulator-phase modulator-phase-incr))
(outa i pm-val)))))
(define (fm beg end freq amp mc-ratio index)
(let* ((carrier-phase 0.0)
(carrier-phase-incr (hz->radians freq))
(modulator-phase-incr (hz->radians (* mc-ratio freq)))
(modulator-phase (* 0.5 (+ pi modulator-phase-incr)))
;; (pi+incr)/2 to get (centered) sin after integration, to match pm case above
(fm-index (hz->radians (* mc-ratio freq index))))
;; fix up fm index (it's a frequency change)
(do ((i beg (+ i 1)))
((= i end))
(let ((modulation (* fm-index (sin modulator-phase)))
(fm-val (* amp (sin carrier-phase))))
(set! carrier-phase (+ carrier-phase modulation carrier-phase-incr))
(set! modulator-phase (+ modulator-phase modulator-phase-incr))
(outb i fm-val)))))
(with-sound (:channels 2)
(pm 0 10000 1000 .5 0.25 4)
(fm 0 10000 1000 .5 0.25 4))
(with-sound (:channels 2)
(pm 0 10000 1000 .5 0.5 10)
(fm 0 10000 1000 .5 0.5 10))
</pre>
<!-- -->
</div>
<!-- a check of these instruments:
(define (channel-distance-max s1 c1 s2 c2)
(let* ((r1 (make-sampler 0 s1 c1))
(r2 (make-sampler 0 s2 c2))
(sum 0.0)
(mx 0.0)
(mxloc 0)
(N (min (framples s1 c1) (framples s2 c2))))
(do ((i 0 (+ i 1)))
((= i N))
(let ((diff (- (r1) (r2))))
(if (> (abs diff) mx)
(begin
(set! mx (abs diff))
(set! mxloc i)))
(set! sum (+ sum (* diff diff)))))
(list (sqrt sum) mx mxloc)))
(with-sound (:channels 2 :srate 44100)
(pm 0 100000 1000 .25 0.5 4)
(fm 0 100000 1000 .25 0.5 4))
(channel-distance-max 0 0 0 1)
(0.0295699815499316 2.01372429728508e-4 54261)
(with-sound (:channels 2 :srate 44100)
(pm 0 100000 1000 .25 0.5 10)
(fm 0 100000 1000 .25 0.5 10))
(channel-distance-max 0 0 0 1)
(0.0930102199004151 5.19216060638428e-4 97657)
(with-sound (:channels 2 :srate 44100)
(pm 0 100000 4000 .5 .25 10)
(fm 0 100000 4000 .5 .25 10))
(channel-distance-max 0 0 0 1)
(0.619834957208772 0.00419910810887814 99588)
(with-sound (:channels 2 :srate 441000)
(pm 0 100000 4000 .5 .25 10)
(fm 0 100000 4000 .5 .25 10))
(channel-distance-max 0 0 0 1)
(0.00620158844593978 4.19728457927704e-5 339)
(with-sound (:channels 2 :srate 22050)
(fmdoc-pm 0 100000 4000 .5 .25 10)
(fmdoc-fm 0 100000 4000 .5 .25 10))
(channel-distance-max 0 0 0 1)
(2.47456807755109 0.0168174412101507 99627)
;;; the difference is proportional to the inverse square of the sampling rate,
;;; which I interpret as caused by the "centering"; it is hard to say what
;;; the "true" or effective FM modulator initial-phase is, so a naive comparison
;;; with the bessel functions makes FM look "inaccurate". We can turn the
;;; tables by using cos, and a PM modulator initial phase of
;;; (+ pi (* 0.5 (+ pi (hz->radians mfreq))))
;;; (to match outputs), then complain that PM is inaccurate. Just to add to
;;; the confusion, in the latter case, the difference seems to be directly
;;; proportional to srate(?); enough...
-->
<div class="greenish">simple FM: sin(sin)</div>
<p>Given our formula for FM, let's assume, for starters, that f(t) is a sinusoid:
</p>
<!-- LATEX \[ \cos \, (\omega_{c}t+B\sin \omega_{m}t) \] -->
<img class="indented" src="pix/fmeq4.png" alt="cos(sin)">
<p>where the "m" stands for "modulator" and the "B" factor is usually called the modulation index.
The corresponding CLM code is:
</p>
<pre class="indented">
(oscil carrier (* B (oscil modulator)))
</pre>
<p>where oscil is (essentially):
</p>
<!-- CLM CASE
<pre class="indented">
(defun oscil (oscillator &optional (fm-input 0.0) (pm-input 0.0))
(prog1
(sin (+ (mus-phase oscillator) pm-input))
(incf (mus-phase oscillator) (+ (mus-frequency oscillator) fm-input))))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define* (oscil oscillator (fm-input 0.0) (pm-input 0.0))
(let ((result (sin (+ oscillator-phase pm-input))))
(set! oscillator-phase (+ oscillator-phase (+ oscillator-phase-increment fm-input)))
result))
</pre>
<!-- -->
<p>Since it is generally believed that the ear performs some sort of projection of the time domain
waveform into the frequency domain (a Fourier Transform), and that timbre is at least partly a matter
of the mix of frequencies present (the spectrum), our main interest in the FM formula is in the
spectrum it produces. To determine that spectrum, we have to endure some tedious mathematics.
By the trigonometric identity:
</p>
<!-- LATEX \[ \cos (a+b)=\cos a\cos b - \sin a \sin b \] -->
<img class="indented" src="pix/fmeq5.png" alt="cos a+b">
<!-- LATEX \[B\sin \omega_{m}t \] -->
<p>we can substitute <img src="pix/fmeq23.png" alt="wct"> for "a" and
<img src="pix/fmeq9.png" alt="bsin">
for "b" and get:
</p>
<!-- LATEX \[ \cos (\omega_{c}t+B\sin \omega_{m}t)=\cos \omega_{c}t \, \cos (B \sin \omega_{m}t) - \sin \omega_{c}t \, \sin (B\sin \omega_{m}t) \] -->
<img class="indented" src="pix/fmeq6.png" alt="cos (sin) expanded">
<p>If we can get a Fourier transform of the two inner portions:
<img src="pix/fmeq41.png" alt="cos sin"> and
<img src="pix/fmeq40.png" alt="sin sin">, we can use:
</p>
<!-- LATEX \[ \cos (B \sin \omega_{m}t) \textrm{ and } \sin (B\sin \omega_{m}t) \]: fmeq7 -->
<!-- LATEX \sin (B\sin \omega_{m}t): fmeq40 -->
<!-- LATEX \cos (B \sin \omega_{m}t): fmeq41 -->
<!-- <img src="pix/fmeq7.png" alt="cos and sin"> -->
<!-- LATEX
\Large
\begin{eqnarray*}
\cos a \, \cos b = \frac{1}{2}(\cos (a-b) + \cos(a+b)) \\
\sin a \, \sin b = \frac{1}{2}(\cos (a-b) - \cos(a+b)) \\
\end{eqnarray*}
-->
<img class="indented" src="pix/fmeq8.png" alt="coscos and sinsin">
<!-- LATEX \omega_{c}t -->
<p>to get the final results. "A" here is
<img src="pix/fmeq23.png" alt="wct">
in the earlier formulas, and "B" is either
<img src="pix/fmeq41.png" alt="cos sin"> or
<img src="pix/fmeq40.png" alt="sin sin">.
The Fourier transform we want is not obvious to us (not to me, certainly!), so we go to Abramowitz and Stegun,
"Handbook of Mathematical Functions" and find (formulas 9.1.42 and 9.1.43):
</p>
<!-- LATEX \cos(B\sin\omega_{m}t)=J_{0}(B)+2J_{2}(B)\cos 2\omega_{m}t + \,\cdots\, + 2J_{2n}(B)\cos 2n\omega_{m}t + \,\cdots -->
<img class="indented" src="pix/fmeq10.png" alt="cos B sin t">
<!-- LATEX \sin(B\sin\omega_{m}t)=2J_{1}(B)\sin\omega_{m}t+2J_{3}(B)\sin 3\omega_{m}t + \,\cdots\, + 2J_{2n-1}(B)\sin (2n-1)\omega_{m}t + \,\cdots -->
<img class="indented" src="pix/fmeq11.png" alt="sin B sin t">
<table>
<tr><td>
<p>Here the J's refer to the Bessel functions which we will return to later.
First, let's finish this
expansion; we take these two sums and
<img src="pix/fmeq23.png" alt="wct">
and plug them into our first expansion of the FM
formula, and out pops:
</p>
<!-- LATEX
\Large
\begin{eqnarray*}
\lefteqn{ \cos(\omega_{c}t + B\sin\omega_{m}t) } \\
&& {} =J_{0}(B)\cos \omega_{c}t \\
&& {} -J_{1}(B)(\cos(\omega_{c} - \omega_{m})t - \cos(\omega_{c} + \omega_{m})t) \\
&& {} +J_{2}(B)(\cos(\omega_{c} - 2\omega_{m})t + \cos(\omega_{c} + 2\omega_{m})t) \\
&& {} -J_{3}(B)(\cos(\omega_{c} - 3\omega_{m})t - \cos(\omega_{c} + 3\omega_{m})t) + \cdots
\end{eqnarray*}
-->
<img class="indented" src="pix/fmeq12.png" alt="cos w+sin">
<p>or in a slightly more compact form:
</p>
<!-- LATEX \sum_{n=-\infty}^{\infty} \! \! J_{n}(B)\cos(\omega_{c} + n\omega_{m})t -->
<img class="indented" src="pix/fmeq13.png" alt="sum J cos">
<!-- LATEX J_{-n}(x) = (-1)^{n}J_{n}(x) -->
<p>Here we are using the fact that
<img src="pix/fmeq14.png" alt="J - J">.
We can change our point of view on the first part of the expansion given above, and ask for the
amplitude of a given sideband:
</p>
<!-- LATEX J_{n}(B) = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(B\sin\omega) \sin n\omega \: \mathrm{d}\omega \qquad \textrm{(n odd)} -->
<img class="indented" src="pix/fmeq15.png" alt="J sin int"><br>
<!-- LATEX J_{n}(B) = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos(B\sin\omega) \cos n\omega \: \mathrm{d}\omega \qquad \textrm{(n even)} -->
<img class="indented" src="pix/fmeq16.png" alt="J cos int">
<!-- LATEX \omega_{m} : fmeq42 -->
<!-- LATEX \omega_{c} : fmeq43 -->
<p>We end up with a spectrum made up of a "carrier" at
<img src="pix/fmeq43.png" alt="wc">
and symmetrically placed sidebands
separated by
<img src="pix/fmeq42.png" alt="wm">.
The amplitudes follow the Bessel functions. I put carrier in quotes because in
computer music we listen to the result of the modulation (this was Chowning's idea — see "The
Synthesis of Complex Audio Spectra by Means of Frequency Modulation"). The Bessel functions
are nearly 0 until the index (B) equals the order (n). Then they have a bump and tail off as
a sort of damped sinusoid:
</p>
</td><td>
<table class="bordered">
<tr><td>
<img src="pix/jacobi.png" alt="page from Jacobi's works">
</td></tr>
<tr>
<td class="bluishb">
C G J Jacobi, Gesammelte Werke, VI 101
</td></tr></table>
</td></tr></table>
<img src="pix/bessel.png" alt="bessel functions">
<p>
As the index sweeps
upward, energy is swept gradually outward into higher order side bands; this is the originally
exciting, now extremely annoying "FM sweep".
The important thing to get from these Bessel functions is that the higher the index, the
more dispersed the spectral energy — normally a brighter sound.
</p>
<table class="bordered">
<tr>
<td class="bluishb">carrier=1000, mod=100, index=1.0</td>
<td class="bluishb">carrier=1000, mod=100, index=2.0</td>
<td class="bluishb">carrier=1000, mod=100, index=3.0</td>
</tr>
<tr>
<td><img src="pix/fm10.png" alt="fm 1.0"></td>
<td><img src="pix/fm20.png" alt="fm 2.0"></td>
<td><img src="pix/fm30.png" alt="fm 3.0"></td>
</tr>
<tr>
<td>
<pre>
J0(1.0) = 0.765 -> 1.0 (*)
J1(1.0) = 0.440 -> 0.575
J2(1.0) = 0.115 -> 0.150
J3(1.0) = 0.019 -> 0.025
J4(1.0) = 0.002 -> 0.003
(* Jn values normalized to match
the peak values given above)
</pre>
</td><td>
<pre>
J0(2.0) = 0.224 -> 0.388 (*)
J1(2.0) = 0.577 -> 1.0
J2(2.0) = 0.353 -> 0.611
J3(2.0) = 0.129 -> 0.223
J4(2.0) = 0.034 -> 0.058
J5(2.0) = 0.007 -> 0.012
J6(2.0) = 0.001 -> 0.002
</pre>
<small>(A larger FFT reduces the mismatch)</small>
<!-- well, sort of; almost exact: Dolph-Chebyshev window, B=0.9, (also Blackman10), size=2^22, srate=1000000, carfreq=1000 -->
</td>
<td>
<pre>
J0(3.0) = -0.260 -> -0.534 (*)
J1(3.0) = 0.339 -> 0.697
J2(3.0) = 0.486 -> 1.0
J3(3.0) = 0.309 -> 0.635
J4(3.0) = 0.132 -> 0.271
J5(3.0) = 0.043 -> 0.088
J6(3.0) = 0.011 -> 0.023
</pre>
</td>
</tr>
</table>
<!-- in code:
(let ((amps (make-vector 20 0.0))
(freq (hz->radians 100)))
(vector-set! amps 10 (bes-jn 0 1.0))
(do ((i 1 (+ i 1)))
((= i 5))
(vector-set! amps (- 10 i) (bes-jn (- i) 1.0))
(vector-set! amps (+ 10 i) (bes-jn i 1.0)))
(with-sound (:channels 2)
(do ((i 0 (+ i 1))
(x 0.0 (+ x freq)))
((= i 44100))
(let ((y 0.0))
(do ((j 5 (+ j 1)))
((= j 16))
(set! y (+ y (* (amps j) (sin (* x j))))))
(outa i y)
(outb i (sin (+ (* x 10) (sin x))))))))
-->
<p>There is a rule of thumb, Mr Carson's rule, about the overall bandwidth of the resultant spectrum (it
follows from our description of the Bessel functions): Roughly speaking, there are fm-index+1
significant sidebands on each side of the carrier, so our total bandwidth is more or less
</p>
<pre class="indented">
2 * modulator-frequency * (fm-index + 1)
</pre>
<p>This is a good approximation — 99% of the signal power is within its limits. To turn that around, we can
reduce the danger of aliasing by limiting the FM index to approximately (srate/2 - carrier_frequency) / modulator_frequency;
use srate/4 to be safer. (Mr Carson's opinion of FM: "this method of modulation inherently distorts without any compensating
advantages whatsoever").
</p>
<p>One hidden aspect of the FM expansion is that it produces a time domain waveform that is not "spikey".
If we add cosines at the amplitudes given by the Bessel functions (using additive synthesis to
produce the same magnitude spectrum as FM produces), we get a very different waveform. Doesn't the
FM version sound richer and, far more importantly, louder?
</p>
<table class="borderedm">
<tr><td>
<img src="pix/fmtime.png" alt="time domain comparisons">
</td></tr>
<tr><td class="bluishcentered">
FM waveform (index: 3.0) vs sum of cosines with the same (relative) component amplitudes
</td></tr>
</table>
<p>
From one point of view (looking at FM as changing the phase passed to
the sin function), it's obvious that the output waveform should be this well behaved, but looking at it from its components,
it strikes me as a minor miracle that there is a set of amplitudes (courtesy of the Bessel functions) that fits together so perfectly.
Here is an attempt to graph
the 15 main components, with their sum in black:
</p>
<!-- the min peak attribute is surprising because it means FM is a worst case;
yet searches so far have come up empty!
and oddly there seem to be bazillions of cases at 1.0: symmetry?
(accidentally deleted the data, but see t738.scm to recompute it)
-->
<img src="pix/fmadd.png" alt="fm components">
<br>
<!--
(define (fm-it freq index)
(with-sound (:channels 1 :clipped #f)
(let* ((angle 0.0)
(incr (hz->radians 1.0))
(n (ceiling (+ index 5)))
(cur-phases (make-float-vector (* (+ n 1) 3 2))))
(do ((i 0 (+ i 1))
(j 0 (+ j 3)))
((> i n))
(set! (cur-phases j) (+ 10 i))
(set! (cur-phases (+ j 1)) (abs (bes-jn i index)))
(set! (cur-phases (+ j 2)) (/ pi 2)))
(do ((i 1 (+ i 1))
(j (* (+ n 1) 3) (+ j 3)))
((> i n))
(set! (cur-phases j) (- 10 i))
(set! (cur-phases (+ j 1)) (abs (bes-jn i index)))
(set! (cur-phases (+ j 2)) (/ pi 2)))
(let ((gen (make-polyoid freq cur-phases)))
(do ((i 0 (+ i 1)))
((= i 88200))
(outa i (polyoid gen 0.0)))))))
(with-sound ("test1.snd")
(let* ((cgen (make-oscil 1000))
(mgen (make-oscil 100))
(index (hz->radians (* 3 100))))
(do ((i 0 (+ i 1)))
((= i 44100))
(outa i (oscil cgen (* index (oscil mgen)))))))
(define (all-fm freq index tries)
(let* ((incr (/ (* 2 pi) tries))
(max-rms 0.0)
(min-rms 1.0)
(fm-index (hz->radians (* index freq))))
(with-sound (:clipped #f)
(do ((try 0 (+ 1 try))
(mod-phase 0.0 (+ mod-phase incr)))
((= try tries))
(let* ((cargen (make-oscil (* freq 10) (/ pi 2))) ; or 0 phase
(modgen (make-oscil freq mod-phase))
(samps 44100)
(sum 0.0))
(do ((samp 0 (+ 1 samp)))
((= samp samps))
(let ((val (oscil cargen (* fm-index (oscil modgen)))))
(set! sum (+ sum (* val val)))))
(let ((rms (sqrt (/ sum samps))))
(set! max-rms (max max-rms rms))
(set! min-rms (min min-rms rms))
(outa try rms)))))
(list min-rms max-rms)))
-->
<!-- LATEX sceq42: \frac{1}{2i}(e^{ix} - e^{-ix}) -->
<!-- LATEX
fmeq17:
OLD:
\int_{-\pi}^{\pi}e^{i(B\sin \omega_{m}t - n\omega_{m}t)} \, \mathrm{d}t
NEW:
fmeq17: e^{\frac{1}{2}(t - \frac{1}{t})}
-->
<!-- LATEX fmeq45.png: e^{iz \cos \theta} \! = \sum i^{n} J_{n}(z) \, e^{i n \theta} -->
<!-- LATEX fmeq59.png:
& \mathrm{define} \ J_{n}(x) = \sum_{0}^{\infty}\frac{(-1)^{s}x^{n+2s}}{2^{n+2s}s!(n+s)!} \quad
\mathrm{now}\ e^{\frac{x}{2}\left(t - \frac{1}{t}\right)} = \left(e^{\frac{xt}{2}}\right) \left(e^{\frac{-x}{2t}}\right) = \left(\sum_{0}^{\infty} \frac{x^{r} t^{r}}{2^{r} r!}\right) \left(\sum_{0}^{\infty} \frac{(-1)^{s} x^{s} t^{-s}}{2^{s} s!}\right) = \sum \sum \frac{(-1)^{s}x^{r+s} t^{r-s}}{2^{r+s}\, r! s!} = \sum_{-\infty}^{\infty} J_{n}(x) t^{n} \quad
\mathrm{and}\ \mathrm{let}\ t = e^{i\phi} \\
-->
<table class="borderedm">
<tr><td>
Then there's the perennial question "why Bessel functions?".
Most explanations start with <img src="pix/fmeq45.png" alt="jacobi formula">: <em>obscurum per obscurius</em>!
A different tack might be to start with <img src="pix/sceq42.png" alt="sin in terms of e">, a definition of sine,
and call the "e^(ix)" terms "t",
then cos(sin) involves terms like <img src="pix/fmeq17.png" alt="cos(sin) in e">,
which is one (convoluted) way to define Bessel functions.
Or perhaps most forthright, start with the formula for Jn(B) given above (the integral), and say "we want cos(sin) expanded as a sum of cosines, and we
define Jn to be the nth coefficient in that sum".
This was the approach of Bessel and other 19th century mathematicians, but it is not very satisfying for some reason. Perhaps history can help?
These functions were
studied by Daniel Bernoulli (the vibrations of a heavy chain, 1738),
Euler (the vibrations of a membrane, 1764), Lagrange (planetary motion, 1770),
and Fourier (the motion of heat in a cylinder, 1822); Bessel studied them in the context of Kepler's equation, and wrote a monograph
about them in 1824.
For an explanation of the connection between planetary motion and FM, see Benson, "Music: A Mathematical Offering".
Just for completeness, here's a derivation following Gray and Mathews, "A Treatise on Bessel Functions":
<img src="pix/fmeq59.png" alt="et again">
</td></tr></table>
<!-- should we do the expansion by hand? -->
<div class="greenish">simple FM examples</div>
<p>Here's a simple FM instrument:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument fm (beg dur freq amp mc-ratio index &optional (index-env '(0 1 100 1)))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil (* freq mc-ratio)))
(fm-index (hz->radians (* index mc-ratio freq)))
(ampf (make-env index-env :scaler amp :duration dur))
(indf (make-env index-env :scaler fm-index :duration dur)))
(run
(loop for i from start to end do
(outa i (* (env ampf)
(oscil cr (* (env indf)
(oscil md)))))))))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define* (fm beg dur freq amp mc-ratio index (index-env '(0 1 100 1)))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil (* freq mc-ratio)))
(fm-index (hz->radians (* index mc-ratio freq)))
(ampf (make-env index-env :scaler amp :duration dur))
(indf (make-env index-env :scaler fm-index :duration dur)))
(do ((i start (+ i 1)))
((= i end))
(outa i (* (env ampf) ; amplitude env
(oscil cr (* (env indf) ; carrier + modulation env
(oscil md)))))))) ; modulation
</pre>
<!-- -->
<p>I put an envelope on the fm-index ("indf" above) to try out dynamic spectra ("dynamic" means
"changing" here). For now, don't worry too much about the actual side band amplitudes. They
will not always match Chowning's description, but we'll get around to an explanation eventually.
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 100 .5 1.0 4.0))
</pre>
<p>is Chowning's first example. Sure enough, it's a complex spectrum (that is, it has lots of
components; try an index of 0 to hear a sine wave, if you're suspicious). Since our modulating
frequency to carrier frequency ratio (mc-ratio above) is 1.0, we get sidebands at harmonics of the
carrier. If we use an mc-ratio of .25 and a carrier of 400:
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 400 .5 0.25 4.0))
</pre>
<p>we end up with the same perceived pitch because the sidebands are still at multiples of 100 Hz.
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 400 .5 1.1414 4.0))
</pre>
<p>has inharmonic sidebands. Most real sounds seem to change over the course of a note, and it was at one time thought that most
of this change was spectral. To get a changing spectrum, we need only put an envelope on the fm-index:
</p>
<pre class="indented">
(with-sound () (fm 0 0.5 400 .5 1.0 5.0 '(0 0 20 1 40 .6 90 .5 100 0)))
</pre>
<p>making a brass-like sound. Similarly, Chowning suggests that
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 900 .5 1/3 2.0 '(0 0 6 .5 10 1 90 1 100 0)))
</pre>
<p>is a woodwind-like tone,
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 500 .5 .2 1.5 '(0 0 6 .5 10 1 90 1 100 0)))
</pre>
<p>is bassoon-like, and finally
</p>
<pre class="indented">
(with-sound () (fm 0 1.0 900 .5 2/3 2 '(0 0 25 1 75 1 100 0)))
</pre>
<p>is clarinet-like. Now start at 2000 Hz, set the mc-ratio to .1, and
sweep the FM index from 0 to 10, and the spectrogram looks like this:
</p>
<img src="pix/fmsweep.png" alt="sweep index">
<p>
There is a lot of music in simple FM. You get a full spectrum at little computational expense, and
the index gives you a simple and intuitive way to change that spectrum.
Since the output peak amplitude
is not affected by the modulating signal (cos(x) is between -1 and 1 no matter what x is, as long as it is real),
we can wrench the index around with wild abandon.
And since the number of significant components in the spectrum is nearly proportional to the index
(Carson's rule), we can usually predict more or less what index we want for a given spectral result.
</p>
<!-- LATEX fmeq54: & J_{n}(ix) = i^{n} I_{n}(x) G&R 8.406 -->
<!-- LATEX fmeq55: & \sum i^{n} I_{n}(b)\cos(\omega_{c} + n\omega_{m})t -->
<!-- LATEX fmeq56: & \sum \sum i^{k} J_{n}(a) I_{k}(b)\cos(\omega_{c} + (n + k)\omega_{m})t -->
<table class="borderedm">
<tr><td>
<p>A slightly bizarre sidelight: there's no law against a modulating signal made up of complex numbers.
In this case, cos is no longer bounded, so the output can peak at anything, but
we still get FM-like spectra. <img src="pix/fmeq54.png" alt="J=I">, where "I" is
the modified Bessel function,
so if our index is purely imaginary, we can expand cos(wc + bi sin wm)t as
</p>
<img class="indented" src="pix/fmeq55.png" alt="i case">
<p>If our index is a + bi, we get
</p>
<img class="indented" src="pix/fmeq56.png" alt="a=bi case">
<p>This looks similar to normal FM,
but with normalization headaches. Perhaps we can take advantage of the split betweeen the
real and imaginary parts — unexplored territory!
</p>
</td></tr>
<tr><td>
<table>
<tr><td>
<img src="pix/fmc63.png" alt="complex index fm 6.0+3.0i 0.5 interp">
</td></tr>
<tr><td class="bluishb">here the index is 6+3i
</td></tr></table>
</td></tr></table>
<!-- here's an instrument to test complex indices:
(define* (fmc beg dur freq amp mc-ratio index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr 0.0)
(cr-incr (hz->radians freq))
(md-incr (hz->radians (* freq mc-ratio)))
(md 0.0) ; (* 0.5 (+ pi md-incr)))
(fm-index (/ (* 2 pi index mc-ratio freq) *clm-srate*))) ; hz->radians with complex arg and result
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp (real-part (sin cr)))) ; or magnitude in place of real-part
(set! cr (+ cr cr-incr (* fm-index (sin md))))
(set! md (+ md md-incr)))))
; (with-sound (:clipped #f :statistics #t) (fmc 0 1 1000.0 1.0 0.1 0.5+1.0i))
(define* (pmc beg dur freq amp mc-ratio fm-index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr 0.0)
(cr-incr (hz->radians freq))
(md-incr (hz->radians (* freq mc-ratio)))
(md 0.0))
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp (real-part (sin (+ cr (* fm-index (sin md)))))))
(set! cr (+ cr cr-incr))
(set! md (+ md md-incr)))))
; (with-sound (:clipped #f :statistics #t) (pmc 0 1 1000.0 1.0 0.1 0.5+1.0i))
(define* (fpmc beg dur freq amp mc-ratio fm-index interp)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr 0.0)
(cr-incr (hz->radians freq))
(md-incr (hz->radians (* freq mc-ratio)))
(md 0.0))
(do ((i start (+ i 1)))
((= i end))
(let ((val (sin (+ cr (* fm-index (sin md))))))
(outa i (* amp (+ (* (- 1.0 interp) (real-part val))
(* interp (imag-part val)))))
(set! cr (+ cr cr-incr))
(set! md (+ md md-incr))))))
;(with-sound (:clipped #f :statistics #t) (fpmc 0 1 1000.0 1.0 0.1 0.5+0.5i 0.5))
;(with-sound (:clipped #f :statistics #t) (fpmc 0 1 1000.0 1.0 0.1 3.0+1.0i 0.5))
;(with-sound (:clipped #f :statistics #t) (fpmc 0 2 1000.0 1.0 0.1 0.0+3.0i 0.5)) use 65536 as fft size, mark the imag part? (maxamp 7.03)
(bes-in 0 3)
4.88079258586502 [1.0]
(/ (bes-in 1 3) (bes-in 0 3))
0.809985293903298 [.816]
(/ (bes-in 2 3) (bes-in 0 3))
0.460009804028997 [.463]
(/ (bes-in 3 3) (bes-in 0 3))
0.196638888584509 [.198]
(/ (bes-in 4 3) (bes-in 0 3))
0.0667320268599799 [.067]
(/ (bes-in 5 3) (bes-in 0 3))
0.0186868169578955 [.018]
;(with-sound (:clipped #f :statistics #t) (fpmc 0 2 1000.0 1.0 0.1 6.0+3.0i 0.5)); shows same cancellation as earlier 3+1 case
;(with-sound (:clipped #f :statistics #t :srate (* 4 16384)) (fpmc 0 2 1000.0 1.0 0.1 6.0+3.0i 0.5)); need srate change to get freqs rounded correctly
(fm-a+bi 1000 1000 100 6.0 3.0 0.5 #f)
;add -0.00533062568641282 from J-6(6.0) = 0.245836863364327 and I6(3.0) = 0.0216835897328909
;add -0.0-0.0330246867072196i from J-5(6.0) = -0.362087074887172 and I5(3.0) = 0.0912064776615134
;add 0.116485720696706 from J-4(6.0) = 0.357641594780961 and I4(3.0) = 0.325705181937936
;add 0.0+0.110149373883134i from J-3(6.0) = -0.114768384820775 and I3(3.0) = 0.959753629496008
;add 0.5453019525712 from J-2(6.0) = -0.242873209960185 and I2(3.0) = 2.24521244092995
;add 0.0+1.09383372428571i from J-1(6.0) = 0.276683858127566 and I1(3.0) = 3.95337021714292
;add 0.735268254686395 from J0(6.0) = 0.150645257250997 and I0(3.0) = 4.88079258586502
;add -0.0+1.09383372428571i from J1(6.0) = -0.276683858127566 and I-1(3.0) = 3.95337021714292
;add 0.5453019525712 from J2(6.0) = -0.242873209960185 and I-2(3.0) = 2.24521244092995
;add -0.0+0.110149373883134i from J3(6.0) = 0.114768384820775 and I-3(3.0) = 0.959753629496008
;add 0.116485720696706 from J4(6.0) = 0.357641594780961 and I-4(3.0) = 0.325705181937936
;add 0.0-0.0330246867072196i from J5(6.0) = 0.362087074887172 and I-5(3.0) = 0.0912064776615134
;add -0.00533062568641282 from J6(6.0) = 0.245836863364327 and I-6(3.0) = 0.0216835897328909
(2.04827407952567+2.34307028395662i 2.19567218174114)
(fm-a+bi 1100 1000 100 6.0 3.0 0.5 #f)
;add -0.0-0.00109941164116366i from J-6(6.0) = 0.245836863364327 and I7(3.0) = 0.00447211872994957
;add 0.00785134757943601 from J-5(6.0) = -0.362087074887172 and I6(3.0) = 0.0216835897328909
;add 0.0+0.0326192301252177i from J-4(6.0) = 0.357641594780961 and I5(3.0) = 0.0912064776615134
;add -0.0373806576587736 from J-3(6.0) = -0.114768384820775 and I4(3.0) = 0.325705181937936
;add 0.0+0.233098444766634i from J-2(6.0) = -0.242873209960185 and I3(3.0) = 0.959753629496008
;add -0.621214040472508 from J-1(6.0) = 0.276683858127566 and I2(3.0) = 2.24521244092995
;add 0.0+0.595556473369924i from J0(6.0) = 0.150645257250997 and I1(3.0) = 3.95337021714292
;add -1.35043652337755 from J1(6.0) = -0.276683858127566 and I0(3.0) = 4.88079258586502
;add -0.0+0.960167714798496i from J2(6.0) = -0.242873209960185 and I-1(3.0) = 3.95337021714292
;add -0.257679405425041 from J3(6.0) = 0.114768384820775 and I-2(3.0) = 2.24521244092995
;add -0.0+0.343247818649768i from J4(6.0) = 0.357641594780961 and I-3(3.0) = 0.959753629496008
;add 0.117933636603501 from J5(6.0) = 0.362087074887172 and I-4(3.0) = 0.325705181937936
;add 0.0-0.022421914386815i from J6(6.0) = 0.245836863364327 and I-5(3.0) = 0.0912064776615134
;add -0.00280990379338964 from J7(6.0) = 0.129586651841481 and I-6(3.0) = 0.0216835897328909
(-2.14382339773855+2.14142771818658i -0.00119783977598686) [0]
(fm-a+bi 1200 1000 100 6.0 3.0 0.5 #f)
;add 0.0+0.00161929638947558i from J-5(6.0) = -0.362087074887172 and I7(3.0) = 0.00447211872994957
;add -0.00775495361264718 from J-4(6.0) = 0.357641594780961 and I6(3.0) = 0.0216835897328909
;add -0.0-0.010467620126404i from J-3(6.0) = -0.114768384820775 and I5(3.0) = 0.0912064776615134
;add -0.0791050630379326 from J-2(6.0) = -0.242873209960185 and I4(3.0) = 0.325705181937936
;add -0.0-0.26554833706089i from J-1(6.0) = 0.276683858127566 and I3(3.0) = 0.959753629496008
;add -0.338230605747031 from J0(6.0) = 0.150645257250997 and I2(3.0) = 2.24521244092995
;add -0.0-1.09383372428571i from J1(6.0) = -0.276683858127566 and I1(3.0) = 3.95337021714292
;add -1.18541376247891 from J2(6.0) = -0.242873209960185 and I0(3.0) = 4.88079258586502
;add 0.0-0.45372191442005i from J3(6.0) = 0.114768384820775 and I-1(3.0) = 3.95337021714292
;add -0.802981357996241 from J4(6.0) = 0.357641594780961 and I-2(3.0) = 2.24521244092995
;add -0.0+0.347514384316557i from J5(6.0) = 0.362087074887172 and I-3(3.0) = 0.959753629496008
;add 0.0800703403091294 from J6(6.0) = 0.245836863364327 and I-4(3.0) = 0.325705181937936
;add 0.0-0.0118191420664103i from J7(6.0) = 0.129586651841481 and I-5(3.0) = 0.0912064776615134
;add -0.00122581649816301 from J8(6.0) = 0.0565319909324618 and I-6(3.0) = 0.0216835897328909
(-2.33443662315078-1.48617977275652i -1.91030819795365) [(/ 1.91 2.19) = .872 == .874]
(fm-a+bi 1300 1000 100 6.0 3.0 0.5 #f)
;add -0.0-0.00159941567462897i from J-4(6.0) = 0.357641594780961 and I7(3.0) = 0.00447211872994957
;add 0.00248859057076024 from J-3(6.0) = -0.114768384820775 and I6(3.0) = 0.0216835897328909
;add -0.0-0.0221516099988137i from J-2(6.0) = -0.242873209960185 and I5(3.0) = 0.0912064776615134
;add 0.0901173663507287 from J-1(6.0) = 0.276683858127566 and I4(3.0) = 0.325705181937936
;add -0.0-0.144582332413004i from J0(6.0) = 0.150645257250997 and I3(3.0) = 0.959753629496008
;add 0.621214040472508 from J1(6.0) = -0.276683858127566 and I2(3.0) = 2.24521244092995
;add -0.0-0.960167714798496i from J2(6.0) = -0.242873209960185 and I1(3.0) = 3.95337021714292
;add 0.560160681724944 from J3(6.0) = 0.114768384820775 and I0(3.0) = 4.88079258586502
;add 0.0-1.41388962921855i from J4(6.0) = 0.357641594780961 and I-1(3.0) = 3.95337021714292
;add -0.812962405236614 from J5(6.0) = 0.362087074887172 and I-2(3.0) = 2.24521244092995
;add -0.0+0.235942821877827i from J6(6.0) = 0.245836863364327 and I-3(3.0) = 0.959753629496008
;add 0.0422070440147574 from J7(6.0) = 0.129586651841481 and I-4(3.0) = 0.325705181937936
;add 0.0-0.00515608376814245i from J8(6.0) = 0.0565319909324618 and I-5(3.0) = 0.0912064776615134
(0.502475925962626-2.31154049748365i -0.90453228576051) [(/ (/ 0.90 2.19) = 0.411 == .413]
(fm-a+bi 1400 1000 100 6.0 3.0 0.5 #f)
;add 0.00526636304188694 from J-2(6.0) = -0.242873209960185 and I6(3.0) = 0.0216835897328909
;add 0.0+0.0252353601256131i from J-1(6.0) = 0.276683858127566 and I5(3.0) = 0.0912064776615134
;add 0.0490659409210231 from J0(6.0) = 0.150645257250997 and I4(3.0) = 0.325705181937936
;add 0.0+0.26554833706089i from J1(6.0) = -0.276683858127566 and I3(3.0) = 0.959753629496008
;add 0.5453019525712 from J2(6.0) = -0.242873209960185 and I2(3.0) = 2.24521244092995
;add 0.0+0.45372191442005i from J3(6.0) = 0.114768384820775 and I1(3.0) = 3.95337021714292
;add 1.74557444420386 from J4(6.0) = 0.357641594780961 and I0(3.0) = 4.88079258586502
;add 0.0-1.43146425787134i from J5(6.0) = 0.362087074887172 and I-1(3.0) = 3.95337021714292
;add -0.551955984064783 from J6(6.0) = 0.245836863364327 and I-2(3.0) = 2.24521244092995
;add -0.0+0.124371259439097i from J7(6.0) = 0.129586651841481 and I-3(3.0) = 0.959753629496008
;add 0.0184127623919712 from J8(6.0) = 0.0565319909324618 and I-4(3.0) = 0.325705181937936
;add 0.0-0.00193041464863622i from J9(6.0) = 0.0211653239784174 and I-5(3.0) = 0.0912064776615134
(1.81180116486504-0.564042995574322i 0.623879084645359) [(/ 0.623 2.19) = 0.284 == .287]
1500: [(/ 0.936 2.19) = 0.427 == .428]
1600: [(/ 0.496 2.19) = 0.226 == .228]
1700: [(/ 0.102 2.19) = 0.047 == .047]
-->
<div class="spacer"></div>
<p>
I am getting carried away —
we need to back up a bit and clear up one source of confusion. If you
looked at the spectrum of our first example, and compared it to the spectrum Chowning works out,
you may wonder what's gone awry. We have to return to our initial set of formulas. If we consider
that:
</p>
<!-- LATEX \sin(a+b)=\sin a \cos b + \cos a \sin b -->
<img class="indented" src="pix/fmeq18.png" alt="sin split"><br>
<!-- LATEX \sin(\omega_{c}t+B\sin \omega_{m}t) = \sin \omega_{c}t \cos(B \sin \omega_{m}t) + \cos \omega_{c}t \sin(B \sin \omega_{m}t) -->
<img class="indented" src="pix/fmeq19.png" alt="sin split">
<p>and using our previous formulas for the expansion of the cos(sin) and sin(sin) terms, with the
identity:
</p>
<!-- LATEX \sin a \cos b = \frac{1}{2} (\sin (a-b) + \sin (a+b)) -->
<img class="indented" src="pix/fmeq20.png" alt="sin cos again">
<p>we see that we still have a spectrum symmetric around the carrier, and the amplitude and frequencies
are just as they were before, but the initial phases of the side bands have changed. Our result is now
</p>
<!-- LATEX fmeq21: \sin (\omega_{c}t+B\sin \omega_{m}t) = \! \! \sum_{n=-\infty}^{\infty} \! \! J_{n}(B)\sin(\omega_{c} + n\omega_{m})t -->
<img class="indented" src="pix/fmeq21.png" alt="sin sin case">
<p>This is Chowning's version of the expansion.
In general:
</p>
<!-- Gagliardi 2.2.11 -->
<!-- LATEX \cos(\omega_{c}t+B\sin(\omega_{m}t + \theta_{m}) + \phi) = \sum_{k=-\infty}^{\infty}J_{k}(B)\cos((\omega_{c}+k\omega_{m})t + k\theta_{m} + \phi) -->
<img class="indented" src="pix/fmeq22.png" alt="big formula">
<!-- LATEX:
\small
\begin{align*}
& \cos(B \sin x) = J_{0}(B) + 2 \sum_{k=1}^{\infty} J_{2k}(B) \cos 2kx \\
& \cos(B \cos x) = J_{0}(B) + 2 \sum_{k=1}^{\infty} (-1)^{k} J_{2k}(B) \cos 2kx \\
& \sin(B \sin x) = 2 \sum_{k=0}^{\infty} J_{2k+1}(B) \sin (2k+1)x \\
& \sin(B \cos x) = 2 \sum_{k=0}^{\infty} (-1)^{k} J_{2k+1}(B) \cos (2k+1)x \\
\end{align*}
-->
<!--
<table><tr><td>
<table>
<tr><td colspan=3>
Or perhaps more readable:
</td></tr>
<td>
<img src="pix/fmeq49.png" alt="cos cos cases">
</td><td></td>
<td>
<img src="pix/fmeq50.png" alt="cos cos cases">
</td>
</tr></table>
</td></tr></table>
-->
<!-- LATEX fmeq24: \omega_{c}-2\omega_{m} = -\omega_{c} -->
<!-- LATEX fmeq52: \sin(-x) = - \sin(x) -->
<!-- LATEX fmeq53: \cos(-x) = \cos(x) -->
<p>Our first reaction is, "well so what if one's a sine and the other's a cosine — they'll sound the
same", but we are being hasty. What if (for example), the modulator has the same frequency as the
carrier, and its index (B) is high enough that some significant energy appears at
<img src="pix/fmeq24.png" alt="w-m=-w">?
Where does energy at a negative frequency go? We once again fall back on
trigonometry: <img src="pix/fmeq52.png" alt="sin(-x)=-sin(x)">,
but <img src="pix/fmeq53.png" alt="cos(-x)=cos(x)">,
so the negative frequency component adds to the positive frequency component if it's a cosine, but
subtracts if it's a sine. We get a different
pattern of cancellations depending on the initial phases of the carrier and modulator. Take the CLM
instrument:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument pm (beg end freq amp fm-index mod-phase)
(let ((cr (make-oscil freq))
(md (make-oscil freq mod-phase)))
(run
(loop for i from beg to end do
(outa i (* amp (oscil cr 0.0
(* fm-index (oscil md)))))))))
(with-sound () (fm 0 10000 100 .5 8 0))
(with-sound () (fm 0 10000 100 .5 8 0 (* .5 pi)))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (pm beg dur freq amp fm-index mod-phase)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil freq mod-phase)))
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp (oscil cr 0.0
(* fm-index (oscil md))))))))
(with-sound () (pm 0 1.0 100 .5 8 0))
(with-sound () (pm 0 1.0 100 .5 8 (* .5 pi)))
</pre>
<table class="borderedm">
<tr><td>
<img src="pix/fmeq25.png" alt="mod phase 0">
</td><td>
<img src="pix/fmeq26.png" alt="mod phase pi/2">
</td></tr>
<tr><td class="bluishb">mod phase = 0.0
</td><td class="bluishb">mod phase = pi/2
</td></tr></table>
<div class="spacer"></div>
<p>There is a slight difference! We're using phase-modulation for simplicity (the integration in FM
changes the effective initial phase).
By varying the relative phases, we can get a changing spectrum from these cancellations. Here is a
CLM instrument that shows this (subtle) effect:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument fm (beg end freq amp mc-ratio index car-phase mod-phase skew-func skew)
(let ((cr (make-oscil freq car-phase))
(md (make-oscil (* freq mc-ratio) mod-phase))
(skewf (make-env skew-func :scaler (hz->radians (* skew mc-ratio freq)) :length (+ 1 (- end beg))))
(fm-index (hz->radians (* index mc-ratio freq))))
(run
(loop for i from beg to end do
(outa i (* amp (oscil cr (* fm-index (oscil md (env skewf))))))))))
(with-sound () (fm 0 40000 100 .25 1.0 4.0 0 0 '(0 0 50 1 100 0) .02))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (fm beg dur freq amp mc-ratio index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil (* freq mc-ratio)))
(skewf (make-env (list 0.0 0.0 1.0 pi) :duration dur)))
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp (oscil cr 0.0 (* index (oscil md 0.0 (env skewf)))))))))
(with-sound () (fm 0 2 100 0.5 1.0 30.0))
</pre>
<p>The next question is "if we can get cancellations, can we fiddle with the phases and get
asymmetric FM spectra?". There are several approaches; an obvious one uses the
fact that:
</p>
<!-- LATEX see above -->
<img class="indented" src="pix/fmeq8.png" alt="coscos and sinsin">
<p>If we have a spectrum B made up entirely of sines (or entirely cosines), we can multiply it by
sin A (or cos A), add the two resulting spectra, and the (A + B) parts cancel.
Unfortunately, in this case there are some pesky -1's floating around, so we get asymmetric or gapped spectra,
but not anything we'd claim was single side-band.
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument fm (beg end freq amp mc-ratio index cr0p cr1p md0p md1p)
(let ((cr0 (make-oscil 0 cr0p))
(cr1 (make-oscil 0 cr1p))
(md0 (make-oscil (* freq mc-ratio) md0p))
(md1 (make-oscil (* freq mc-ratio) md1p))
(am0 (make-oscil freq 0))
(am1 (make-oscil freq (* .5 pi)))
(fm-index (hz->radians (* index mc-ratio freq))))
(run
(loop for i from beg to end do
(outa i (* amp (+ (* (oscil am0) (oscil cr0 (* fm-index (oscil md0))))
(* (oscil am1) (oscil cr1 (* fm-index (oscil md1)))))))))))
(with-sound () (fm 0 10000 1000 .25 .1 1.0 0 (* .5 pi) (* .5 pi) 0))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (pm-cancellation beg dur carfreq modfreq amp index)
(let* ((cx 0.0)
(mx 0.0)
(car-incr (hz->radians carfreq))
(mod-incr (hz->radians modfreq))
(start (seconds->samples beg))
(stop (+ start (seconds->samples dur))))
(do ((i start (+ i 1)))
((= i stop))
(outa i (* amp (- (* (cos cx) ; cos * sum-of-cos
(sin (* index (cos mx))))
(* (sin cx) ; sin * sum-of-sin
(* (sin (* index (sin mx))))))))
(set! cx (+ cx car-incr))
(set! mx (+ mx mod-incr)))))
(with-sound () (pm-cancellation 0 1 1000.0 100.0 0.3 9.0))
</pre>
<table class="borderedm">
<tr><td><img src="pix/fmeq27.png" alt="uncancelled"></td></tr>
<tr><td class="bluishb">cos side by itself</td></tr>
<tr><td><img src="pix/fmcancel.png" alt="fm cancellation"></td></tr>
<tr><td class="bluishb">both sides (showing cancellations)</td></tr>
</table>
<p>I really like the sounds you get from this cancellation; I can't resist adding the following
examples which come from a collection of "imaginary machines":
</p>
<pre class="indented">
(definstrument (machine1 beg dur cfreq mfreq amp index gliss)
(let* ((gen (make-fmssb cfreq (/ mfreq cfreq) :index 1.0)) ; defined in generators.scm
(start (seconds->samples beg))
(stop (+ start (seconds->samples dur)))
(ampf (make-env '(0 0 1 .75 2 1 3 .1 4 .7 5 1 6 .8 100 0) :base 32 :scaler amp :duration dur))
(indf (make-env '(0 0 1 1 3 0) :duration dur :base 32 :scaler index))
(frqf (make-env (if (> gliss 0.0) '(0 0 1 1) '(0 1 1 0))
:duration dur :scaler (hz->radians (abs gliss)))))
(do ((i start (+ i 1)))
((= i stop))
(set! (gen 'index) (env indf))
(outa i (* (env ampf) (fmssb gen (env frqf)))))))
(with-sound (:play #t)
(do ((i 0.0 (+ i .2)))
((>= i 2.0))
(machine1 i .3 100 540 0.5 4.0 0.0)
(machine1 (+ i .1) .3 200 540 0.5 3.0 0.0))
(do ((i 0.0 (+ i .6)))
((>= i 2.0))
(machine1 i .3 1000 540 0.5 6.0 0.0)
(machine1 (+ i .1) .1 2000 540 0.5 1.0 0.0)))
(with-sound (:scaled-to .5 :play #t)
(let ((gen (make-rkoddssb 1000.0 2.0 0.875)) ; defined in generators.scm
(noi (make-rand 15000 .04))
(gen1 (make-rkoddssb 100.0 0.1 0.9))
(ampf (make-env '(0 0 1 1 11 1 12 0) :duration 11.0 :scaler .5))
(frqf (make-env '(0 0 1 1 2 0 10 0 11 1 12 0 20 0) :duration 11.0 :scaler (hz->radians 1.0))))
(do ((i 0 (+ i 1)))
((= i (* 12 44100)))
(outa i (* (env ampf)
(+ (rkoddssb gen1 (env frqf))
(* .2 (sin (rkoddssb gen (rand noi)))))))))
(do ((i 0.0 (+ i 2)))
((>= i 10.0))
(machine1 i 3 100 700 0.5 4.0 0.0)
(machine1 (+ i 1) 3 200 700 0.5 3.0 0.0))
(do ((i 0.0 (+ i 6)))
((>= i 10.0))
(machine1 i 3 1000 540 0.5 6.0 0.0)
(machine1 (+ i 1) 1 2000 540 0.5 1.0 0.0)))
</pre>
<!-- LATEX fmeq44: &\sum_{k=0}^{\infty} \frac{a^{k}}{k!} \cos(x + ky) = e^{a \cos y} \cos (x + a \sin y) \\ -->
<p>A different approach, also using a form of amplitude modulation, is mentioned by Moorer in "Signal Processing Aspects of Computer Music":
</p>
<img class="indented" src="pix/fmeq44.png" alt="jam case">
<p>This is the rxyk!cos generator in generators.scm. It produces beautiful single-sided spectra. We might grumble
that the sideband amplitudes don't leave us much room for maneuver, but the factorial in the denominator overwhelms
any exponential in the numerator, so we can get many interesting effects: moving formants, for example.
</p>
<table class="borderedm">
<tr><td>
<img src="pix/jam.png" alt="jam pict">
</td></tr>
<tr>
<td class="bluishb">a: 2, x:1000, y: 100
</td></tr></table>
<!--
(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
(let ((gen (make-rxyk!cos 1000 100 2)))
(do ((i 0 (+ i 1)))
((= i 10000))
(outa i (rxyk!cos gen 0.0)))))
-->
<div class="spacer"></div>
<p>
Palamin et al in "A Method of Generating and Controlling Musical Asymmetrical Spectra"
came up with a slightly more complicated version:
</p>
<!-- LATEX e^{(\frac{B}{2}(r-\frac{1}{r})\cos \omega_{m}t)}\sin(\omega_{c}t+\frac{B}{2}(r+\frac{1}{r})\sin \omega_{m}t)=\sum r^{n}J_{n}(B)\sin(\omega_{c}t+n\omega_{m}t) -->
<img class="indented" src="pix/fmeq29.png" alt="e sin">
<p>But the peak amplitude of this formula is hard to predict; we'd rather have a sum of cosines:
</p>
<!--LATEX: e^{(\frac{B}{2}(r-\frac{1}{r})\cos \omega_{m}t)}\cos(\omega_{c}t+\frac{B}{2}(r+\frac{1}{r})\sin \omega_{m}t)=\sum_{n=-\infty}^{\infty} r^{n}J_{n}(B)\cos(\omega_{c}t+n\omega_{m}t) -->
<img class="indented" src="pix/fmeq47.png" alt="better asy">
<!-- LATEX: e^{\frac{B}{2}\big(r-\frac{1}{r}\big)}=\sum_{n=-\infty}^{\infty} r^{n}J_{n}(B) -->
<p>so we can use</p>
<img class="indented" src="pix/fmeq48.png" alt="sum of Js">
<p>to normalize the output to -1.0 to 1.0.
The spectrum produced for a given "r" is mirrored by -1/r (remembering that
<img src="pix/fmeq14.png" alt="J - J">).
</p>
<!-- LATEX:
\documentclass{amsart}
\begin{document}
\thispagestyle{empty}
\begin{align*}
& 0.5^{-5}J_{-5}(2.0) = -0.225 \Rightarrow -0.160 \quad \textrm{(normalized to match fft)} \\
& 0.5^{-4}J_{-4}(2.0) = 0.544 \Rightarrow 0.385 \\
& 0.5^{-3}J_{-3}(2.0) = -1.031 \Rightarrow -0.730 \\
& 0.5^{-2}J_{-2}(2.0) = 1.411 \Rightarrow 1.0 \\
& 0.5^{-1}J_{-1}(2.0) = -1.153 \Rightarrow -0.817 \\
& 0.5^{0}J_{0}(2.0) = 0.224 \Rightarrow 0.159 \\
& 0.5^{1}J_{1}(2.0) = 0.288 \Rightarrow 0.204 \\
& 0.5^{2}J_{2}(2.0) = 0.088 \Rightarrow 0.062 \\
\end{align*}
\end{document}
-->
<pre class="indented">
(with-sound ()
(let ((gen (make-asymmetric-fm 2000.0 :ratio .2 :r 0.5)))
(do ((i 0 (+ i 1)))
((= i 20000))
(outa i (asymmetric-fm gen 2.0)))))
</pre>
<table class="borderedm">
<tr><td>
<img src="pix/asyfm1.png" alt="asy fm">
</td></tr>
<tr>
<td>
<img src="pix/asyfm2.png" alt="peaks">
</td></tr></table>
<div class="spacer"></div>
<p>We can put an envelope on either the index or "r"; the index
affects how broad the spectrum is, and "r" affects its placement relative to the carrier (giving the effect of
a moving formant). Here we sweep "r" from -1.0 to -20.0, with an index of 3, m/c ratio of .2, and carrier at 1000 Hz:
</p>
<img class="indented" src="pix/asyfm.png" alt="asy spectra">
<div class="greenish">complex FM: sin(sin+sin)</div>
<p>
So far we have been using just a sinusoid for the modulator; what if we make it a more complicated
signal? Here again trigonometry can be used to expand
</p>
<!-- LATEX \sin(\omega_{c}t + B_{1}\sin \omega_{m1}t + B_{2}\sin \omega_{m2}t) -->
<img class="indented" src="pix/fmeq30.png" alt="multiple sins">
<!-- LATEX sceq41.png: x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \cdots -->
<p>The modulating signal is now made up of two sinusoids (don't despair; this is a terminating
sequence). Since sine is not linear (it is <img src="pix/sceq41.png" alt="x-x^3/3!+x^5/5!...">), this is not the same thing as
</p>
<!-- LATEX \sin(\omega_{c}t + B_{1}\sin \omega_{m1}t) + \sin(B_{2}\sin \omega_{m2}t) -->
<img class="indented" src="pix/fmeq31.png" alt="bad sins">
<p>In the second case we just add together the two simple FM spectra, but in the first case
we get a more complex mixture involving all the sums and differences of the modulating frequencies.
These sum and difference tones ("intermodulation products") are not limited to FM. Any
nonlinear synthesis technique produces them. Being non-linear, it must have something that involves
a power of its input other than 0 or 1; if we feed in sin a + sin b, for example, that term will produce
not just (sin a)^n and (sin b)^n, but all sorts of stuff involving sin a * sin b (in various powers),
and this produces things like cos(a+b) and cos(a-b).
For a less impressionistic derivation of the spectrum, see Le Brun,
"A Derivation of the Spectrum of FM with a Complex Modulating Wave". The result can be
expressed:
</p>
<!-- LATEX fmeq32:
\sin(\omega_{c}t + B_{1}\sin \omega_{m1}t + B_{2}\sin \omega_{m2}t) = \sum_{i=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} J_{i}(B_{1})J_{k}(B_{2})\sin(\omega_{c} + i\omega_{m1} + k\omega_{m2})t \\
-->
<img class="indented" src="pix/fmeq32.png" alt="2 sums">
<p>You can chew up any amount of free time calculating the resulting side band amplitudes — see the immortal classic:
Schottstaedt, "The Simulation of Natural Instrument Tones Using Frequency Modulation with a
Complex Modulating Wave". (There's a function to do it for you in dsp.scm: fm-parallel-component).
In simple cases, the extra modulating components flatten and spread out the
spectrum somewhat (see below and <a href="sndclm.html#ncosdoc">ncos</a> for discussions of very different not-so-simple cases).
In general:
</p>
<!-- Gagliardi 2.2.16 -->
<!-- LATEX
\cos(\omega_{c}t+\Big(\sum_{i=1}^{k}B_{i}\sin(\omega_{i}t + \theta_{i})\Big) + \phi) = \sum_{k_{k}} \cdots \sum_{k_{1}}\Big(\prod_{i=1}^{k}J_{k_{i}}(B_{i})\Big)\cos(\omega_{c}t+\Big(\sum_{i=1}^{k}k_{i}(\omega_{i}t+\theta_{i})\Big)+\phi)
-->
<img class="indented" src="pix/fmeq33.png" alt="silly formula">
<p>A CLM instrument to produce this is:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument fm (beg end freq amp mc-ratios indexes carrier-phase mod-phases)
(let* ((cr (make-oscil freq carrier-phase))
(n (length mc-ratios))
(md-arr (make-array n :element-type 'osc))
(fm-index-arr (make-array n :element-type 'short-float)))
(loop for i from 0 below n do
(setf (aref md-arr i)
(make-oscil (* freq (aref mc-ratios i))
(aref mod-phases i)))
(setf (aref fm-ind-arr i) (hz->radians (* (aref indexes i) (aref mc-ratios i) freq))))
(run
(loop for i from beg to end do
(let ((sum 0.0))
(dotimes (k n)
(incf sum (* (aref fm-ind-arr k) (oscil (aref md-arr k)))))
(outa i (* amp (oscil cr sum))))))))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (fm beg dur freq amp mc-ratios indexes carrier-phase mod-phases)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq carrier-phase))
(n (length mc-ratios))
(modulators (make-vector n))
(fm-indices (make-float-vector n)))
(do ((i 0 (+ i 1)))
((= i n))
(set! (modulators i) (make-oscil (* freq (mc-ratios i)) (mod-phases i)))
(set! (fm-indices i) (hz->radians (* freq (indexes i) (mc-ratios i)))))
(do ((i start (+ i 1)))
((= i end))
(let ((sum 0.0))
(do ((k 0 (+ k 1)))
((= k n))
(set! sum (+ sum (* (fm-indices k) (oscil (modulators k))))))
(outa i (* amp (oscil cr sum)))))))
(with-sound () (fm 0 2.0 440 .3 '(1 3 4) '(1.0 0.5 0.1) 0.0 '(0.0 0.0 0.0)))
</pre>
<!-- -->
<table class="borderedm">
<tr><td>
<img src="pix/multifm.png" alt="multi fm picture">
</td>
<td class="spaced">
<pre>
200Hz is -0.106 (i = -1, k = -1)
-0.106 (i = -1, k = 1)
-0.213 -> 0.306 normalized
2000Hz: -0.023 (i = -2, k = 0)
0.718 (i = 0, k = 0)
0.695 -> 1.0 normalized
1800Hz: -0.013 (i = -2, k = 1)
-0.413 (i = 0, k = -1)
-0.426 -> 0.614 normalized
</pre>
<pre class="indented">
i is the 2000 Hz part, k the 200 Hz,
red dots mark pure sum/difference tones
</pre>
</td></tr>
<tr><td colspan=2 class="bluishb">(with-sound () (fm 0 2.0 2000 .5 '(1 .1) '(0.5 1.0) 0.0 '(1.855 1.599)))</td></tr>
</table>
<!--
here's the code to get that info:
(with-sound ()
(fm 0 2.0 2000 .5 '(1 .1) '(0.5 1.0) 0.0 (list (* 0.5 (+ pi (hz->radians 2000))) (* 0.5 (+ pi (hz->radians 200))))))
;(multifm-component 200 2000.0 (list 2000.0 200.0) (list 0.5 1.0) () () #t)
(define (multifm-component freq-we-want wc wms inds ns bs using-sine)
(if (pair? wms)
(let* ((sum 0.0)
(index (car inds))
(mx (ceiling (* 5 index)))
(wm (car wms)))
(do ((k (- mx) (+ k 1)))
((>= k mx) sum)
(set! sum (+ sum (multifm-component freq-we-want (+ wc (* k wm)) (cdr wms) (cdr inds)
(append ns (list k)) (append bs (list index))
using-sine)))))
(if (< (abs (- freq-we-want (abs wc))) .1)
(let ((bmult 1.0))
(for-each
(lambda (n index)
(set! bmult (* bmult (bes-jn n index))))
ns bs)
(if (and using-sine (< wc 0.0)) (set! bmult (- bmult)))
(snd-display ";add ~A from ~A ~A" bmult ns bs)
bmult)
0.0)))
-->
<p>
My favorite computer instrument, the FM violin, uses three sinusoidal components in the
modulating wave; for more complex spectra these violins are then
ganged together (see fmviolin.clm for many examples). By using a few sines in the modulator, you
get away from the simple FM index sweep that has become tiresome, and the broader, flatter spectrum
is somewhat closer to that of a real violin.
A pared down version of the fm-violin is:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument violin (beg dur frequency amplitude fm-index)
(let* ((start (seconds->samples beg))
(stop (+ beg (seconds->samples dur)))
(frq-scl (hz->radians frequency))
(maxdev (* frq-scl fm-index))
(index1 (* maxdev (/ 5.0 (log frequency))))
(index2 (* maxdev 3.0 (/ (- 8.5 (log frequency)) (+ 3.0 (/ frequency 1000)))))
(index3 (* maxdev (/ 4.0 (sqrt frequency))))
(carrier (make-oscil frequency))
(fmosc1 (make-oscil frequency))
(fmosc2 (make-oscil (* 3 frequency)))
(fmosc3 (make-oscil (* 4 frequency)))
(ampf (make-env '(0 0 25 1 75 1 100 0) :scaler amplitude :duration dur))
(indf1 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index1))
(indf2 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index2))
(indf3 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index3))
(pervib (make-triangle-wave 5 :amplitude (* .0025 frq-scl)))
(ranvib (make-rand-interp 16 :amplitude (* .005 frq-scl)))
(vib 0.0))
(run
(loop for i from start to stop do
(setf vib (+ (triangle-wave pervib) (rand-interp ranvib)))
(outa i (* (env ampf)
(oscil carrier
(+ vib
(* (env indf1) (oscil fmosc1 vib))
(* (env indf2) (oscil fmosc2 (* 3.0 vib)))
(* (env indf3) (oscil fmosc3 (* 4.0 vib)))))))))))
(with-sound () (violin 0 1 440 .1 1.0))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (violin beg dur frequency amplitude fm-index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(frq-scl (hz->radians frequency))
(maxdev (* frq-scl fm-index))
(index1 (* maxdev (/ 5.0 (log frequency))))
(index2 (* maxdev 3.0 (/ (- 8.5 (log frequency)) (+ 3.0 (/ frequency 1000)))))
(index3 (* maxdev (/ 4.0 (sqrt frequency))))
(carrier (make-oscil frequency))
(fmosc1 (make-oscil frequency))
(fmosc2 (make-oscil (* 3 frequency)))
(fmosc3 (make-oscil (* 4 frequency)))
(ampf (make-env '(0 0 25 1 75 1 100 0) :scaler amplitude :duration dur))
(indf1 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index1 :duration dur))
(indf2 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index2 :duration dur))
(indf3 (make-env '(0 1 25 .4 75 .6 100 0) :scaler index3 :duration dur))
(pervib (make-triangle-wave 5 :amplitude (* .0025 frq-scl)))
(ranvib (make-rand-interp 16 :amplitude (* .005 frq-scl))))
(do ((i start (+ i 1)))
((= i end))
(let ((vib (+ (triangle-wave pervib) (rand-interp ranvib))))
(outa i (* (env ampf)
(oscil carrier
(+ vib
(* (env indf1) (oscil fmosc1 vib))
(* (env indf2) (oscil fmosc2 (* 3.0 vib)))
(* (env indf3) (oscil fmosc3 (* 4.0 vib)))))))))))
(with-sound () (violin 0 1.0 440 .1 1.0))
</pre>
<!-- -->
<p>There is one surprising aspect of the parallel FM equation. Since we can fiddle with the initial phases of the modulating signal's components,
we can get very different spectra from modulating signals with the same magnitude spectrum. In the next two graphs, both cases involve a
modulating signal made up of 6 equal amplitude harmonically related sinusoids, but the first uses all cosines, and the second uses a
set of initial phases that minimizes the modulating signal's peak amplitude:
</p>
<img src="pix/fmpar6.png" alt="comparison of 2 6-sinusoid spectra">
<!--
(with-sound (:clipped #f :statistics #t :channels 4 :srate 441000)
(let* ((freq 100.0)
(n 6)
(mods1 (make-vector n #f))
(mods2 (make-vector n #f))
(car1 (make-oscil freq))
(car2 (make-oscil freq))
(phases (if (= n 4)
#(0.0 9.429973765023149656627765580196864902973E-1 1.340090256365081833322960846999194473028E0 1.112605206055434337031329050660133361816E0)
(if (= n 6)
#(0.0 0.88722838124921 0.26020415169852 1.2966409163042 1.3233535939997 1.15281977798) ;#(0 0 0 0 1 0)
(if (= n 8)
#(0.0 1.6766927120402 0.81654336999861 0.62403216688615 0.85406407763019 1.0608486873128 0.16723371585947 0.90568594225519)
(if (= n 12)
#(0 1 1 0 0 1 0 1 0 0 0 0)
(if (= n 24)
#(0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0)
#(0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1)
)))))))
(do ((i 0 (+ i 1)))
((= i n))
(set! (mods1 i) (make-oscil (* (+ i 1) freq) (/ pi 2)))
(set! (mods2 i) (make-oscil (* (+ i 1) freq) (* pi (phases i)))))
(do ((i 0 (+ i 1 )))
((= i 441000))
(let ((mod1 0.0)
(mod2 0.0))
(do ((k 0 (+ k 1)))
((= k n))
(set! mod1 (+ mod1 (oscil (mods1 k))))
(set! mod2 (+ mod2 (oscil (mods2 k)))))
(outa i (/ mod1 n))
(outb i (oscil car1 (/ mod1 (* n n))))
(outc i (/ mod2 n))
(outd i (oscil car2 (/ mod2 (* n n))))
))))
(set! (selected-graph-color) (make-color 1 1 1))
(set! (selected-data-color) (make-color 0 0 0))
-->
<div class="greenish">cascade FM: sin(sin(sin))</div>
<p>We can, of course, use FM (or anything) to produce the modulating signal. When FM is used, it is
sometimes called "cascade FM":
</p>
<!-- LATEX \sin(\omega_{c}t + B_{1}\sin(\omega_{m1}t + B_{2}\sin(\omega_{m2}t))) -->
<img class="indented" src="pix/fmeq35.png" alt="cascade fm">
<p>In CLM:
</p>
<pre class="indented">
(* A (oscil carrier (* B (oscil modulator (* C (oscil cascade))))))
</pre>
<p>Each component of the
lower pair of oscillators is surrounded by the spectrum produced by the upper pair,
sort of like a set of formant regions.
</p>
<table class="borderedm">
<tr><td>
<img src="pix/cascade.png" alt="cascade fm picture">
</td></tr>
<tr><td class="bluishb">osc A: 2000 Hz, osc B: 500 Hz, index 1.5, osc C: 50 Hz, index 1.0</td></tr>
</table>
<!--
cascade.png:
(define (cascade1 beg dur freq amp modfreq modind modpha casfreq casind caspha)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil modfreq modpha))
(ca (make-oscil casfreq caspha))
(fm-ind0 (hz->radians (* modind modfreq)))
(fm-ind1 (hz->radians (* casind casfreq))))
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp
(oscil cr (* fm-ind0
(oscil md (* fm-ind1
(oscil ca))))))))))
(with-sound ()
(cascade1 0 1.0 2000 .25 500 1.5 (* 0.5 (+ pi (hz->radians 500))) 50 1.0 (+ pi (* 0.5 (hz->radians 550)))))
-->
<p>The resemblance of cascade FM to parallel FM is not an accident:
</p>
<!-- LATEX fmeq57:
& \sin(\omega_{c}t + B_{1}\sin(\omega_{m1}t + B_{2}\sin(\omega_{m2}t))) = \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} J_{n}(B_{1}) J_{k}(n B_{2}) \sin(\omega_{c} + n \omega_{m1} + k \omega_{m2})t \\
-->
<img class="indented" src="pix/fmeq57.png" alt="cascade FM">
<p>
Unfortunately, FM and PM can produce energy
at 0Hz (when, for example, the carrier frequency equals the modulating frequency), and in FM that 0Hz component becomes a constant offset in the
phase increment (the "instantaneous frequency") of the outer or lowermost
carrier.
Our fundamental frequency no longer has any obvious relation to
<img src="pix/fmeq43.png" alt="wc">!
That is, we
can expand our cascade formula (in the sin(x + cos(sin)) case) into:
</p>
<!-- LATEX old version: \sin(\omega_{c}t + \sum J_{n}(B)\cos(\omega_{c}t + n\omega_{m_{n}}t)) -->
<!-- LATEX fmeq36.png: \sin \big(\omega_{c}t + \int_{0}^{t} \! \sum J_{n}(B)\cos(\omega_{m1} + n\omega_{m2})t \, \mathrm{d} t\big) -->
<img class="indented" src="pix/fmeq36.png" alt="more sins">
<!-- LATEX old version (fmeq46.png): \omega_{c} = -n\omega_{m}\textrm{, we get }J_{n}(B)\cos(0) = J_{n}(B) -->
<!-- LATEX fmeq46.png: \omega_{m1} = -n\omega_{m2} -->
<!-- LATEX fmeq51.png: J_{n}(B)\cos(0) = J_{n}(B) -->
<p>but now whenever the
<img src="pix/fmeq46.png" alt="wc">, we get
<img src="pix/fmeq51.png" alt="j0 case">,
and the carrier is offset by <code>(radians->hz (bes-jn B))</code>, that is, (Jn(B) * srate / (2 * pi)).
For example, if we have <code>(oscil gen 0.05)</code>, where we've omitted everything except
the constant (DC) term (0.05 in this case), this oscil produces a sine wave at its nominal frequency + (radians->hz 0.05),
an offset of about 351 Hz at a 44100 Hz sampling rate.
This extra offset could be a disaster, because
in most cases where we care about the perceived fundamental, we are trying to create harmonic
spectra, and that is harder if our modulator/carrier ratio depends on the current FM index.
If you are using low indices and the top pair's
mc-ratios are below 1.0 (in vibrato, for example), you have a good chance of getting usable results.
If you want cascade FM to work in other situations, make sure the top oscil has an initial phase of
(pi + mod-incr)/2. The middle FM spectrum will then have only sines (not cosines), so the DC component
will be thoroughly discouraged. Or use phase modulation instead; in that case, we
have effectively <code>(oscil gen 0.0 0.05)</code>, which has no effect on the pitch, but offsets the
phase by a constant (0.05), usually not a big deal.
</p>
<p>The irascible reader may be grumbling about angels and pins, so here's an example of cascade FM
to show how strong this effect is:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument cascade (beg end freq amp modrat modind casrat casind caspha)
(let ((cr (make-oscil freq))
(md (make-oscil (* freq modrat)))
(ca (make-oscil (* freq casrat) caspha))
(fm-ind0 (hz->radians (* modind modrat freq)))
(fm-ind1 (hz->radians (* casind casrat freq))))
(run
(loop for i from beg to end do
(outa i (* amp (oscil cr (* fm-ind0 (oscil md (* fm-ind1 (oscil ca)))))))))))
(with-sound () (cascade 0 10000 400 .25 1.0 1.0 1.0 1.0 0))
(with-sound () (cascade 0 10000 400 .25 1.0 1.0 1.0 1.0 (* .5 pi)))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define (cascade beg dur freq amp modrat modind casrat casind caspha)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(cr (make-oscil freq))
(md (make-oscil (* freq modrat)))
(ca (make-oscil (* freq casrat) caspha))
(fm-ind0 (hz->radians (* modind modrat freq)))
(fm-ind1 (hz->radians (* casind casrat freq))))
(do ((i start (+ i 1)))
((= i end))
(outa i (* amp
(oscil cr (* fm-ind0
(oscil md (* fm-ind1
(oscil ca))))))))))
(with-sound ()
(cascade 0 1.0 400 .25 1.0 1.0 1.0 1.0 0)
(cascade 1.5 1.0 400 .25 1.0 1.0 1.0 1.0 (* .5 pi)))
;;; clean it up by using the no-DC initial phase:
(with-sound ()
(cascade 0 1.0 400 .25 1 1.0 1 1.0 (* 0.5 (+ pi (hz->radians 400)))))
</pre>
<!-- -->
<div class="spacer"></div>
<p>Why stop at three sins? Here's an experiment that calls sin(sin(sin...)) k times;
it seems to be approaching a square wave as k heads into the stratosphere:
</p>
<!--
(with-sound ()
(let ((angle 0.0)
(incr (hz->radians 100.0)))
(do ((i 0 (+ i 1)))
((= i 20000))
(let* ((result (sin angle)))
(do ((k 0 (+ k 1)))
((= k 2))
(set! result (sin result)))
(set! angle (+ angle incr))
(outa i result)))))
-->
<table class="borderedm">
<tr>
<td>
<img src="pix/sin3.png" alt="3 sins">
</td>
<td>
<img src="pix/sin30.png" alt="30 sins">
</td>
<td>
<img src="pix/sin300.png" alt="300 sins">
</td>
</tr>
<tr>
<td class="bluishb">k=3</td>
<td class="bluishb">k=30</td>
<td class="bluishb">k=300</td>
</tr></table>
<div class="spacer"></div>
<p>
If we use "cos" here instead of "sin", we get a constant, as Bill Gosper has shown:
</p>
<img class="indented" src="pix/coscoscos.png" alt="nested cos equation">
<p>As z increases above 1.27, we get a square wave, then period doubling, and finally (ca. 1.97) chaos.
<!-- googling "cosine map" gets 1.974133 -->
</p>
<!--
(with-sound (:clipped #f :statistics #t)
(let ((angle 0.0)
(z 1.18)
(incr (hz->radians 100.0)))
(do ((i 0 (+ i 1)))
((= i 20000))
(let* ((result (* z (cos angle))))
(do ((k 0 (+ k 1)))
((= k 100))
(set! result (* z (cos result))))
(set! angle (+ angle incr))
(outa i result)))))
http://www.tweedledum.com/rwg/idents.htm
A sum of Bessels wherein the
argument and subscript both ramp with the index is called a Kapteyn series. The
alternate text if you roll over the formula with IE is "Continued cosine, A036778"
which is the sequence number (q.v.) of its expansion coefficients in Sloane's
Encyclopedia, http://akpublic.research.att.com/~njas/sequences/ . I think the
iterated cosine stops converging near z = 1.42, where it begins a period 2
oscillation, presumably with Feigenbaum behavior thereafter. I guess these
things are just called iterated functions or fixed-point equations.
-->
<!-- LATEX
\large
\begin{align*}
&z \cos(z \cos(z\cdots)) = 2 \sum_{k=0}^{\infty} (-1)^{k} \frac{J_{2k+1}((2k+1)z)}{2k+1} & z<1.27 \\
\end{align*}
-->
<div class="spacer"></div>
<div class="greenish">feedback FM: sin(x=sin(x))</div>
<p>A similar trick comes up in feedback FM used in some synthesizers. Here the output of the modulator
is fed back into its input:
</p>
<pre class="indented">
sin(y <= w + B sin y)
</pre>
<p>This is expanded by Tomisawa as:
</p>
<!-- LATEX \sum_{n=1}^{\infty}\frac{2}{nB}J_{n}(nB)\sin n\omega_{c}t -->
<img class="indented" src="pix/fmeq37.png" alt="feedback fm">
<p>As Tomisawa points out, this is very close to the other FM formulas, except that
the argument to the Bessel function depends on the order, we have only multiples of the carrier frequency
in the expansion, and the elements of the sequence are multiplied by 2/nB. The result is a much
broader, flatter spectrum than you normally get from FM. If you just push the index up in normal
FM, the energy is pushed outward in a lumpy sort of fashion, not evenly spread across the spectrum.
In effect we've turned the axis of the Bessel functions so that the higher order functions start at
nearly the same time as the lower order functions. The new function Jn(nB) decreases (very!) gradually.
For example if the index (B) is 1:
</p>
<!-- LATEX
\begin{eqnarray*}
J_{1}(1) = .440 \\
J_{2}(2) = .353 \\
J_{3}(3) = .309 \\
J_{200}(200) = .076 \\
J_{2000}(2000) = .035
\end{eqnarray*}
-->
<!-- J100000(100000) = .0096
J1000000(1000000) = .0044
J10000000(10000000) = .002
after that they are repeating; factor of 10 -> factor of 2 in result; probably an artifact
-->
<img class="indented" src="pix/fmeq28.png" alt="Jn vals">
<p>Since the other part of the equation goes down as 1/n, we get essentially a sawtooth wave
out of this equation (its harmonics go down as 1/n). Tomisawa suggests that B should be between 0
and 1.5. Since we are dividing by B in the equation, we might worry that as B heads toward 0, all
hell breaks loose, but luckily
</p>
<!-- LATEX fmeq38: \lim_{B \to 0}\frac{2}{B}J_{1}(B) = 1 -->
<img class="indented" src="pix/fmeq38.png" alt="lim1 case">
<p>and for all the other components
</p>
<!-- LATEX fmeq39: \lim_{B \to 0}\frac{2}{nB}J_{n}(nB) = 0 -->
<img class="indented" src="pix/fmeq39.png" alt="all cases">
<p>so, just as in normal FM, if the index is 0, we get a pure sine wave.
</p>
<pre class="indented">
(define (feedbk beg dur freq amp index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(y 0.0)
(x-incr (hz->radians freq)))
(do ((i start (+ i 1))
(x 0.0 (+ x x-incr)))
((= i end))
(set! y (+ x (* index (sin y))))
(outa i (* amp (sin y))))))
(with-sound () (feedbk 0 1 100.0 1.0 1.0))
</pre>
<table class="borderedm">
<tr><td>
<img src="pix/fdbk.png" alt="feedback fm">
</td></tr>
<tr>
<td>
<pre>
2/1 J1(1) = 0.880 -> 1.000 (normalized to match fft)
2/2 J2(2) = 0.353 -> 0.401
2/3 J3(3) = 0.206 -> 0.234
2/4 J4(4) = 0.141 -> 0.159
2/5 J5(5) = 0.104 -> 0.118
2/6 J6(6) = 0.082 -> 0.093
2/7 J7(7) = 0.066 -> 0.076
</pre>
</td></tr></table>
<p>Why does the FFT show a 0 Hz component?
Increasing the sampling rate, or decreasing the carrier frequency reduces this component without
affecting the others, but low-pass filtering the output does not affect it (so it's unlikely
to be an artifact of aliasing which is a real problem in feedback FM). Change the sine to
cosine in <code>(* amp (sin y))</code> and suddenly there's a ton of DC. Fiddle with the
initial phase in that line, and there's always some choice that reduces it to 0.0.
Groan — it appears to be another "centering" problem, but I haven't found
the magic formula yet (a reasonable stab at it is: <code>-(phase-incr^(1-(B/3))</code>)).
</p>
<table class="borderedm">
<tr><td>
<img src="pix/blip.png" alt="feedback noise">
</td></tr>
<tr><td class="bluishb">
Tomisawa's picture of the noise
</td></tr></table>
<p>Why does an index over 1.0 create bursts of noise?
Each burst happens as the modulator phase goes through an odd multiple of pi (where sine is going negative as the phase increases). Since the
index (B) is high enough, the change between successive samples in (B * sin(y)) is eventually greater in magnitude than the phase increment.
When that happens on the downslope of the sine curve, B * sin(y) + phase-increment (our overall phase increment) is so much more negative
on the current sample than the previous one that the phase actually backs up. (This is confusing to analyze because at this point in
the curve, the feedback is already holding the phase back, so we need to reach a point where the increase in the backup overwhelms the
increment on that sample, thereby backing up the overall phase beyond its previous held back value).
So the modulator phase backs into the
less negative part of the sine curve: our next y value is less negative (it can even be positive)!
But now B * sin(y) is also less negative, so
the phase increment lurches us forward, and y is now even more negative.
We've started to zig-zag down the sine curve. Depending on the index, this bouncing
can reach any amplitude, and start anywhere after the high point of the curve. Eventually,
the sine slope lessens (as it reaches its bottom), the overall phase catches up, and
the bouncing stops for that cycle.
The noise is not chaos (in the sense of period doubling), or an error in the computation.
Our largest safe index is increment/sin(increment) which is just over 1.0. If we change
the code to make sure the carrier phase doesn't back up, the bursts go away until the
index reaches about 1.4, then we start to zigzag at the zero crossing.
The take-home message is: "keep the index below 1.0!".
</p>
<!--
(define (feedbk beg dur freq amp index)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(y 0.0)
(x-incr (hz->radians freq)))
(do ((i start (+ i 1))
(x 0.0 (+ x x-incr)))
((= i end))
(out-any i y 0) ;0: previous y (effective phase)
(out-any i x 1) ;1: x (carrier phase) = old x + x-incr
(let ((md (* index (sin y))))
(out-any i (- (+ x md) y) 2) ;2: new y - old y
(set! y (+ x md))
(out-any i md 3) ;3: output (* amp (sin y))
(out-any i y 4))))) ;4: new y
(with-sound (:srate 44100 :sample-type mus-ldouble :channels 5 :statistics #t :clipped #f) (feedbk 0 2 100.0 1.0 1.22))
channel 2 (outc) is our actual per-sample phase increment; notice that at the trouble spot it
is zigzagging itself, and after interspersed 0's, finally dips negative, then the bounces start
(at the bad spot y goes from -.57 to -.59 but the phase incr is .014, we back up).
:(samps 9096)
(129.160781860352 129.596038818359 2.01292452402413e-4 -0.435052901506424 129.160980224609)
:(samps 9097)
(129.160980224609 129.610275268555 0.0140117099508643 -0.4352887570858 129.174987792969)
:(samps 9098)
(129.174987792969 129.624526977539 -0.00212752283550799 -0.451663881540298 129.172866821289) ; trouble -.45 - -.43
:(samps 9099)
(129.172866821289 129.638778686523 0.0167283322662115 -0.449183136224747 129.189590454102)
:(samps 9100)
(129.189590454102 129.653030395508 -0.00520234555006027 -0.468633055686951 129.184387207031)
:
:(samps 9130)
(129.506851196289 130.080459594727 -0.233158811926842 -0.806757867336273 129.273696899414)
:(samps 9131)
(129.273696899414 130.094696044922 0.256685614585876 -0.564319849014282 129.530380249023)
:(samps 9132)
(129.530380249023 130.108947753906 -0.25042849779129 -0.828995883464813 129.27995300293)
we can use the phase to minimize the difference with the sum:
(define (feedbk beg dur freq amp index iters pha1)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(y 0.0)
(x-incr (hz->radians freq)))
(do ((i start (+ i 1))
(x 0.0 (+ x x-incr)))
((or (c-g?)
(= i end)))
(set! y (+ x (* index (sin y))))
(let ((result (* amp (sin y)))
(sum 0.0))
(do ((n 1 (+ n 1)))
((= n iters))
(set! sum (+ sum (/ (* 2.0
(bes-jn n (* index n))
(sin (* n x)))
(* n index)))))
(outb i (* amp sum))
(outc i (- sum (sin (+ y pha1))))
(outa i (* amp (sin (+ y pha1))))))))
(with-sound (:channels 3 :statistics #t :clipped #f) (feedbk 0 1 100 1.0 0.5 100 0.01265)) ; .0005 0.1 100
the sum has DC! and the difference is a pulse train, but higher srate fixes that
-->
<div class="spacer"></div>
<div class="greenish">FM and noise: sin(sin(rand))</div>
<p>
One way to make noise
(deliberately) with FM is to increase the index until massive aliasing is taking place.
A more controllable approach is to use a random number generator as our modulator.
In this case, the power spectral density of the output has the same form
as the value distribution function (amplitude distribution as opposed to frequency) of the modulating noise, centered around the carrier.
The bandwidth of the result is about 4 times the peak deviation (the
random number frequency times its index — is this just Mr Carson again?):
</p>
<table class="borderedm">
<tr><td colspan=3>
<pre class="indented">
(with-sound ()
(let ((gen (make-oscil 5000))
(noise (make-rand 1000 :envelope '(-1 1 0 0 1 1))) ; "eared"
(index (hz->radians 1000))) ; index=1.0 so bandwith=4 Khz (2 Khz on each side)
(do ((i 0 (+ i 1)))
((= i 50000))
(outa i (oscil gen (* index (rand noise)))))))
</pre>
</td></tr>
<tr>
<td>
<img src="pix/white-noise.png" alt="white-noise">
</td>
<td>
<img src="pix/gaussian-noise.png" alt="gaussian-noise">
</td>
<td>
<img src="pix/split-noise.png" alt="split-noise">
</td>
</tr>
<tr>
<td class="bluishb">flat</td>
<td class="bluishb">gaussian (bell curve)</td>
<td class="bluishb">eared</td>
</tr></table>
<div class="spacer"></div>
<p>
Simple FM with noise gives both whooshing sounds (high index) and hissing or whistling sounds (low index),
useful for Oceanic Music, but more subtle kinds of noise can be hard to reach.
Heinrich Taube had the inspired idea
of feeding the noise (as a sort of cascade FM) into the
parallel modulators of an fm-flute, but not into the carrier. The modulating signal becomes a sum of
two or three narrow band noises (narrow because normally the amplitude of the noise is low), and
these modulate the carrier. In CLM:
</p>
<!--
It is my belief that you get the normal spectrum with each component
smeared out by a copy of the noise band:
<table>
<tr>
<td colspan=3 class="bluish">(with-sound () (fm-violin 0 1 400.0 .5 :fm-index 3.0 :noise-amount 0.007))</td></tr>
<tr>
<td><img src="pix/fmvnoise0.png" alt="fmv no noise"></td>
<td><img src="pix/fmvnoise2.png" alt="fmv noise .002"></td>
<td><img src="pix/fmvnoise7.png" alt="fmv noise .007"></td>
</tr>
<tr>
<td class="bluish">noise-amount: 0.0</td>
<td class="bluish">noise-amount: 0.002</td>
<td class="bluish">noise-amount: 0.007</td>
</tr></table>
<p>In CLM:
</p>
-->
<pre class="indented">
(oscil carrier (* fm-index (oscil fm (* noise-index (rand noise)))))
</pre>
<p>You may have noticed that this is one case where phase modulation is different from FM. Previously,
we could fix up each modulating sinusoid (both in amplitude and initial phase), but here we have no such
handles on the components of the incoming signal. If someone insists, we can still match outputs by
integrating the modulating signal:
FM(white-noise) = PM(brownian-noise). Similarly,
FM(square-wave) = PM(triangle-wave),
FM(nxy1sin) = PM(square-wave), and
FM(e^x) = PM(e^x). FM(square-wave) is:
</p>
<img class="indented" src="pix/fmeq58.png" alt="fm(noise)">.
<!-- LATEX fmeq58: (Klapper p102)
&\sum_{n=-\infty}^{\infty} \frac{2B}{\pi(B^{2}-n^{2})} \sin(\frac{\pi}{2} (B-n)) \sin (\omega_{c}+n\omega_{m})t
-->
<!--
;; FM(sq)=PM(tri):
(define* (fmpmsq beg dur freq amp (mc-ratio 1) (index 1.0) (phase (* 0.5 pi)))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(fm-carrier (make-oscil freq))
(pm-carrier (make-oscil freq))
(fm-modulator (make-square-wave (* freq mc-ratio) 2.0 phase))
(pm-modulator (make-triangle-wave (* freq mc-ratio) (* 0.5 pi)))
(fm-index (hz->radians (* index freq mc-ratio)))
(ampf (make-env '(0 0 1 1 10 1 11 0) :scaler amp :duration dur))
(sqsum 0.0))
(do ((i start (+ i 1)))
((= i end))
(let ((vol (env ampf))
(sq (* fm-index (- (square-wave fm-modulator) 1.0)))
(tri (* index (triangle-wave pm-modulator))))
(outa i (* vol (oscil fm-carrier sq)))
(outb i (* vol (oscil pm-carrier 0.0 tri)))
(outc i sqsum)
(outd i tri)
(set! sqsum (+ sqsum sq))))))
(with-sound (:clipped #f :statistics #t :channels 4) (fmpmsq 0 1 1000 .5 .1 1 (+ (* 0.5 pi) .005)))
;; almost a match, the pi/2 triangle amp is to take into account the square wave's internal table size (2 pi)
;; there is a drift in sqsum that eventually turns around, raise srate to 441000 and it goes away
;; FM(e^x)=PM(e^x):
(define* (fmpmex beg dur freq amp)
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(fm-carrier (make-oscil freq))
(pm-carrier (make-oscil freq))
(ampf (make-env '(0 0 1 1 10 1 11 0) :scaler amp :duration dur))
(sumex 0.0))
(do ((i start (+ i 1))
(x 0.0 (+ x .0001)))
((= i end))
(let ((vol (env ampf))
(ex (exp x)))
(outa i (* vol (oscil fm-carrier (* .0001 ex)))) ; sampled ex...
(outb i (* vol (oscil pm-carrier 0.0 ex)))
(outc i ex)
(outd i sumex)
(set! sumex (+ sumex (* .0001 ex)))))))
(with-sound (:clipped #f :statistics #t :channels 4) (fmpmex 0 1 1000 .5))
;; FM(white)=PM(brown):
(define* (fmpmran beg dur freq amp (index 1.0))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(fm-carrier (make-oscil freq))
(pm-carrier (make-oscil freq))
(ampf (make-env '(0 0 1 1 10 1 11 0) :scaler amp :duration dur))
(sumex 0.0)
(fm-index (hz->radians (* index freq))))
(do ((i start (+ i 1))
(x 0.0 (+ x .0001)))
((= i end))
(let ((vol (env ampf))
(ex (- (random 2.0) 1.0)))
(outa i (* vol (oscil fm-carrier (* fm-index ex))))
(outb i (* vol (oscil pm-carrier 0.0 (* index sumex))))
(outc i ex)
(outd i sumex)
(set! sumex (+ sumex (* fm-index ex)))))))
(with-sound (:clipped #f :statistics #t :channels 4) (fmpmran 0 1 1000 .5 1))
;; FM(odd-sines-alternating-sign) = PM(sq)
(define* (fmpmodd beg dur freq amp (mc-ratio 1) (index 1.0) (phase (* 0.5 pi)))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(fm-carrier (make-oscil freq))
(pm-carrier (make-oscil freq))
(fm-modulator (make-nxy1sin (* freq mc-ratio) (* 2 freq mc-ratio) 100))
(pm-modulator (make-square-wave (* freq mc-ratio) 1.0 phase))
(fm-index (hz->radians (* index freq mc-ratio)))
(ampf (make-env '(0 0 1 1 10 1 11 0) :scaler amp :duration dur))
(sqsum 0.0))
(do ((i start (+ i 1)))
((= i end))
(let ((vol (env ampf))
(pulse (* index (nxy1sin fm-modulator)))
(sq (* index (square-wave pm-modulator))))
(outa i (* vol (oscil fm-carrier pulse)))
(outb i (* vol (oscil pm-carrier 0.0 sq)))
(outc i sqsum)
(outd i sq)
(set! sqsum (+ sqsum pulse))))))
(with-sound (:clipped #f :statistics #t :channels 4) (fmpmodd 0 1 1000 .5 .1 1))
-->
<p>
In the realm of "anything" as the modulating signal, consider
</p>
<pre class="indented">
(sin (+ sound-file (* index (sin (* 2 pi sound-file)))))
</pre>
<p>where "sound file" is any recorded sound. I call this "contrast-enhancement" in the CLM package. It
makes a sound crisper; "Wait for Me!" uses it whenever a sound needs to cut through a huge
mix.
</p>
<div class="spacer"></div>
<div class="greenish">FM voice</div>
<p>We can use more than one sinusoidal component in our carrier, or multiple banks of carriers and
modulators, and depend upon vibrato and "spectral fusion" to make the result sound like one voice.
In this cross between additive synthesis (the multiple carriers) and FM (the formant centered on
each carrier), we get around many of the limitations of the Bessel functions. There are numerous
examples in fmviolin.clm. One of the raspier
versions of the fm-violin used a sawtooth wave as the carrier, and some sci-fi sound effects use
triangle waves as both carrier and modulator. See generators.scm for many other FM-inspired synthesis
techniques, including J0(B sin x): "Bessel FM".
An elaborate multi-carrier FM instrument is the voice instrument written by Marc Le Brun,
used in "Colony" and other pieces:
</p>
<!-- CLM CASE
<pre class="indented">
(definstrument vox (beg end freq amp
&optional (indexes '(.005 .01 .02)) (formant-amps '(.86 .13 .01)))
(let* ((car-os (make-oscil 0))
(evens (make-array 3))
(odds (make-array 3))
(amps (make-array 3 :element-type 'short-float :initial-contents formant-amps))
(ampf (make-env '(0 0 25 1 75 1 100 0) :scaler amp))
(frmfs (make-array 3))
(indices (make-array 3 :element-type 'short-float :initial-contents indexes))
(frq 0.0) (car 0.0) (frm 0.0) (frm-int 0) (frm0 0.0)
(even-amp 0.0) (odd-amp 0.0) (even-freq 0.0)
(odd-freq 0.0) (sum 0.0)
(per-vib (make-triangle-wave 6 :amplitude (* freq .03)))
(ran-vib (make-rand-interp 20 :amplitude (* freq .5 .02))))
(dotimes (i 3)
(setf (aref evens i) (make-oscil 0))
(setf (aref odds i) (make-oscil 0)))
(setf (aref frmfs 0) (make-env '(0 520 100 490)))
(setf (aref frmfs 1) (make-env '(0 1190 100 1350)))
(setf (aref frmfs 2) (make-env '(0 2390 100 1690)))
(run
(loop for i from beg to end do
(setf frq (+ freq (triangle-wave per-vib) (rand-interp ran-vib)))
(setf car (oscil car-os (hz->radians frq)))
(setf sum 0.0)
(dotimes (k 3)
(setf frm (env (aref frmfs k)))
(setf frm0 (/ frm frq))
(setf frm-int (floor frm0))
(if (evenp frm-int)
(progn
(setf even-freq (hz->radians (* frm-int frq)))
(setf odd-freq (hz->radians (* (+ frm-int 1) frq)))
(setf odd-amp (- frm0 frm-int))
(setf even-amp (- 1.0 odd-amp)))
(progn
(setf odd-freq (hz->radians (* frm-int frq)))
(setf even-freq (hz->radians (* (+ frm-int 1) frq)))
(setf even-amp (- frm0 frm-int))
(setf odd-amp (- 1.0 even-amp))))
(incf sum (+ (* (aref amps k)
(+ (* even-amp
(oscil (aref evens k)
(+ even-freq (* (aref indices k) car))))
(* odd-amp
(oscil (aref odds k)
(+ odd-freq (* (aref indices k) car)))))))))
(outa i (* (env ampf) sum))))))
(with-sound () (vox 0 10000 110 .5 '(0.02 0.01 0.02) '(.9 .09 .01)))
</pre>
-->
<!-- SND CASE -->
<pre class="indented">
(define* (vox beg dur freq amp (indexes '(.005 .01 .02)) (formant-amps '(.86 .13 .01)))
(let* ((start (seconds->samples beg))
(end (+ start (seconds->samples dur)))
(car-os (make-oscil 0))
(evens (make-vector 3))
(odds (make-vector 3))
(amps (apply float-vector formant-amps))
(ampf (make-env '(0 0 25 1 75 1 100 0) :scaler amp :duration dur))
(frmfs (make-vector 3))
(indices (apply float-vector indexes))
(per-vib (make-triangle-wave 6 :amplitude (* freq .03)))
(ran-vib (make-rand-interp 20 :amplitude (* freq .5 .02))))
(do ((i 0 (+ i 1)))
((= i 3))
(set! (evens i) (make-oscil 0))
(set! (odds i) (make-oscil 0)))
(set! (frmfs 0) (make-env '(0 520 100 490) :duration dur))
(set! (frmfs 1) (make-env '(0 1190 100 1350) :duration dur))
(set! (frmfs 2) (make-env '(0 2390 100 1690) :duration dur))
(do ((i start (+ i 1)))
((= i end))
(let* ((frq (+ freq (triangle-wave per-vib) (rand-interp ran-vib)))
(car (oscil car-os (hz->radians frq)))
(sum 0.0))
(do ((k 0 (+ k 1)))
((= k 3))
(let* ((frm (env (frmfs k)))
(frm0 (/ frm frq))
(frm-int (floor frm0))
(even-amp 0.0) (odd-amp 0.0)
(even-freq 0.0) (odd-freq 0.0))
(if (even? frm-int)
(begin
(set! even-freq (hz->radians (* frm-int frq)))
(set! odd-freq (hz->radians (* (+ frm-int 1) frq)))
(set! odd-amp (- frm0 frm-int))
(set! even-amp (- 1.0 odd-amp)))
(begin
(set! odd-freq (hz->radians (* frm-int frq)))
(set! even-freq (hz->radians (* (+ frm-int 1) frq)))
(set! even-amp (- frm0 frm-int))
(set! odd-amp (- 1.0 even-amp))))
(set! sum (+ sum (+ (* (amps k)
(+ (* even-amp
(oscil (evens k)
(+ even-freq (* (indices k) car))))
(* odd-amp
(oscil (odds k)
(+ odd-freq (* (indices k) car)))))))))))
(outa i (* (env ampf) sum))))))
(with-sound ()
(vox 0 1.0 220.0 0.5)
(vox 1.5 1.0 110 .5 '(0.02 0.01 0.02) '(.9 .09 .01)))
</pre>
<!-- -->
<p>which produces this spectrogram:
</p>
<img src="pix/voxspectrum.png" alt="voice spectrum">
<h2>References</h2>
<pre class="indented">
Abramowitz and Stegun, "Handbook of Mathematical Functions", Dover 1965.
Benson, "Music: A Mathematical Offering", Cambridge University Press, Nov 2006. Also available
on-line: http://www.maths.abdn.ac.uk/~bensondj/html/music.pdf. If the math side of my
article is of any interest, you might like Benson's discussion of FM.
Chowning, "The Synthesis of Complex Audio Spectra by Means of Frequency Modulation", JAES 21:526-534, 1973
Frost, "Early FM Radio", Johns Hopkins Univ Press, 2010
I am apparently unfair to Mr Carson; Armstrong quoted him out of context, and I did not dig up
the original paper.
Gagliardi, "Introduction to Communications Engineering", Wiley Interscience, 1978.
Gray and Mathews, "A Treatise on Bessel Functions and Their Applications to Physics", MacMillan and Co, 1895.
Klapper, "Selected Papers on Frequency Modulation", Dover 1970. (Out of print, but available
via used book markets such as abebooks or amazon — usually about $25).
The Bessel function graph is from Corrington, "Variation of Bandwidth with Modulation Index in FM",
The picture below of an early radio is from Armstrong, "A Method of Reducing Disturbances in Radio
Signaling by a System of FM". The Carson quote is also from that paper (originally published
in Proc. IRE, Vol 24, No 5, pp 689-740, May, 1936, with Carson's paper referred to as
"Notes on the theory of modulation", Proc. IRE, vol 10, pp 57-82, Feb 1922).
LeBrun, "A Derivation of the Spectrum of FM with a Complex Modulating Wave", CMJ vol1, no 4 1977 p51-52
Moorer, "Signal Processing Aspects of Computer Music: A Survey" Proc IEEE vol 65 1977.
Palamin, Palamin, Ronveaux "A Method of Generating and Controlling Asymmetrical Spectra", JAES vol 36,
no 9, Sept 88, p671-685.
Schottstaedt, "The Simulation of Natural Instrument Tones Using Frequency Modulation
with a Complex Modulating Wave", CMJ vol 1 no 4 1977 p46-50
Taub and Schilling, "Principles of Communications Systems", McGraw-Hill, 1986.
Tomisawa, "Tone Production Method for an Electronic Musical Instrument" US Patent 4,249,447, 1981.
Watson, "A Treatise on the Theory of Bessel Functions", Cambridge, 1922.
</pre>
<table class="spaced">
<tr><td>
<table><tr><td>
<img src="pix/fmradio.png" alt="early FM radio">
</td></tr>
<tr><td class="bluishb">FM (and AM) radio ca 1934
</td></tr></table>
</td><td>
<table class="spaced">
<tr><td>
<img src="pix/m5fm1.png" alt="music v source"><br>
<img src="pix/m5fm2.png" alt="music v source">
</td></tr>
<tr><td class="bluishb">Music 5 FM?
</td></tr></table>
</td></tr></table>
<!-- omitted stuff
John Chowning noticed that if the m:c ratio is the
golden mean (1.618...), several of the sidebands
fall at powers of that number. That is, 1 + 1.618
(the first higher partial) is 1.618^2, .618
(the first wrapped-around lower partial) is
1.618^-1, and 1 + 2*1.618 (the second upper partial)
is 1.618^3. For the first partials to
match is to ask that x^2 = 1 + x, which has
the golden mean as a solution. In the second case,
x^3 = 2*x + 1 also has the golden mean as a solution.
Sadly, this sequence does not continue. The golden
mean is obviously not unique in this regard;
if our ratio is 2+sqrt(3) then the wrap-around
fourth sideband is the ratio squared. A table of
Pisot numbers gives many more such numbers.
1+sqrt(2) squared = 1 + 2* same
-->
<!-- PM producing a frequency shift:
(with-sound ()
(let ((o (make-oscil 200.0))
(e (make-env '(0 0 1 1) :scaler 300.0 :duration 1.0)))
(do ((i 0 (+ i 1)))
((= i 44100))
(outa i (oscil o 0.0 (env e))))))
-->
</body>
</html>
|