1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
# poly.rb -- polynomial-related stuff; poly.scm --> poly.rb
# Translator: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: 05/04/09 23:55:07
# Changed: 20/11/08 00:06:07
# class Complex
# to_f
# to_f_or_c
#
# class Poly < Vec
# inspect
# to_poly
# reduce
# +(other)
# *(other)
# /(other)
# derivative
# resultant(other)
# discriminant
# gcd(other)
# roots
# eval(x)
#
# class Float
# +(other)
# *(other)
# /(other)
#
# class String
# to_poly
#
# class Array
# to_poly
#
# class Vct
# to_poly
#
# Poly(obj)
# make_poly(len, init, &body)
# poly?(obj)
# poly(*vals)
# poly_reduce(obj)
# poly_add(obj1, obj2)
# poly_multiply(obj1, obj2)
# poly_div(obj1, obj2)
# poly_derivative(obj)
# poly_gcd(obj1, obj2)
# poly_roots(obj)
require "clm"
require "mix"
include Math
class Complex
# XXX: attr_writer :real, :imag
# Doesn't work any longer.
# Complex objects are now frozen objects.
# (Thu Nov 30 21:29:10 CET 2017)
with_silence do
def to_f
self.real.to_f
end
end
def to_f_or_c
self.imag.zero? ? self.to_f : self
end
end
class Poly < Vec
Poly_roots_epsilon = 1.0e-6
def inspect
@name = "poly"
super
end
def to_poly
self
end
def reduce
if self.last.zero?
i = self.length - 1
while self[i].zero? and i > 0
i -= 1
end
# FIXME: ruby3 requires to_poly
self[0, i + 1].to_poly
else
self
end
end
# [1, 2, 3].to_poly.reduce ==> poly(1.0, 2.0, 3.0)
# poly(1, 2, 3, 0, 0, 0).reduce ==> poly(1.0, 2.0, 3.0)
# vct(0, 0, 0, 0, 1, 0).to_poly.reduce ==> poly(0.0, 0.0, 0.0, 0.0, 1.0)
def poly_add(other)
assert_type((array?(other) or vct?(other) or number?(other)),
other, 0, "a poly, a vct an array, or a number")
if number?(other)
v = self.dup
v[0] += other
v
else
if self.length > other.length
self.add(other)
else
Poly(other).add(self)
end
end
end
alias + poly_add
# poly(0.1, 0.2, 0.3) + poly(0, 1, 2, 3, 4) ==> poly(0.1, 1.2, 2.3, 3.0, 4.0)
# poly(0.1, 0.2, 0.3) + 0.5 ==> poly(0.6, 0.2, 0.3)
# 0.5 + poly(0.1, 0.2, 0.3) ==> poly(0.6, 0.2, 0.3)
def poly_multiply(other)
assert_type((array?(other) or vct?(other) or number?(other)),
other, 0, "a poly, a vct, an array, or a number")
if number?(other)
Poly(self.scale(Float(other)))
else
len = self.length + other.length
m = Poly.new(len, 0.0)
self.each_with_index do |val1, i|
other.each_with_index do |val2, j|
m[i + j] = m[i + j] + val1 * val2
end
end
m
end
end
alias * poly_multiply
# poly(1, 1) * poly(-1, 1) ==> poly(-1.0, 0.0, 1.0, 0.0)
# poly(-5, 1) * poly(3, 7, 2) ==> poly(-15.0, -32.0, -3.0, 2.0, 0.0)
# poly(-30, -4, 2) * poly(0.5, 1) ==> poly(-15.0, -32.0, -3.0, 2.0, 0.0)
# poly(-30, -4, 2) * 0.5 ==> poly(-15.0, -2.0, 1.0)
# 2.0 * poly(-30, -4, 2) ==> poly(-60.0, -8.0, 4.0)
def poly_div(other)
assert_type((array?(other) or vct?(other) or number?(other)),
other, 0, "a poly, a vct, an array, or a number")
if number?(other)
[self * (1.0 / other), poly(0.0)]
else
if other.length > self.length
[poly(0.0), other.to_poly]
else
r = self.dup
q = Poly.new(self.length, 0.0)
n = self.length - 1
nv = other.length - 1
(n - nv).downto(0) do |i|
q[i] = r[nv + i] / other[nv]
(nv + i - 1).downto(i) do |j|
r[j] = r[j] - q[i] * other[j - i]
end
end
nv.upto(n) do |i|
r[i] = 0.0
end
[q, r]
end
end
end
alias / poly_div
# poly(-1.0, 0.0, 1.0) / poly(1.0, 1.0)
# ==> [poly(-1.0, 1.0, 0.0), poly(0.0, 0.0, 0.0)]
# poly(-15, -32, -3, 2) / poly(-5, 1)
# ==> [poly(3.0, 7.0, 2.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
# poly(-15, -32, -3, 2) / poly(3, 1)
# ==> [poly(-5.0, -9.0, 2.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
# poly(-15, -32, -3, 2) / poly(0.5, 1)
# ==> [poly(-30.0, -4.0, 2.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
# poly(-15, -32, -3, 2) / poly(3, 7, 2)
# ==> [poly(-5.0, 1.0, 0.0, 0.0), poly(0.0, 0.0, 0.0, 0.0)]
# poly(-15, -32, -3, 2) / 2.0
# ==> [poly(-7.5, -16.0, -1.5, 1.0), poly(0.0)]
def derivative
len = self.length - 1
pl = Poly.new(len, 0.0)
j = len
(len - 1).downto(0) do |i|
pl[i] = self[j] * j
j -= 1
end
pl
end
# poly(0.5, 1.0, 2.0, 4.0).derivative ==> poly(1.0, 4.0, 12.0)
def resultant(other)
m = self.length
m1 = m - 1
n = other.length
n1 = n - 1
d = n1 + m1
mat = Array.new(d) do
Vct.new(d, 0.0)
end
n1.times do |i|
m.times do |j|
mat[i][i + j] = self[m1 - j]
end
end
m1.times do |i|
n.times do |j|
mat[i + n1][i + j] = other[n1 - j]
end
end
determinant(mat)
end
# poly(-1, 0, 1).resultant([1, -2, 1]) ==> 0.0
# poly(-1, 0, 2).resultant([1, -2, 1]) ==> 1.0
# poly(-1, 0, 1).resultant([1, 1]) ==> 0.0
# poly(-1, 0, 1).resultant([2, 1]) ==> 3.0
def discriminant
self.resultant(self.derivative)
end
# poly(-1, 0, 1).discriminant ==> -4.0
# poly(1, -2, 1).discriminant ==> 0.0
# (poly(-1, 1) * poly(-1, 1) * poly(3, 1)).reduce.discriminant
# ==> 0.0
# (poly(-1, 1) * poly(-1, 1) * poly(3, 1) * poly(2, 1)).reduce.discriminant
# ==> 0.0
# (poly(1, 1) * poly(-1, 1) * poly(3, 1) * poly(2, 1)).reduce.discriminant
# ==> 2304.0
# (poly(1, 1) * poly(-1, 1) * poly(3, 1) * poly(3, 1)).reduce.discriminant
# ==> 0.0
def gcd(other)
assert_type((array?(other) or vct?(other)), other, 0,
"a poly, a vct or an array")
if self.length < other.length
poly(0.0)
else
qr = self.poly_div(other).map do |m|
m.reduce
end
if qr[1].length == 1
if qr[1][0].zero?
Poly(other)
else
poly(0.0)
end
else
qr[0].gcd(qr[1])
end
end
end
# (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(2, 1))
# ==> poly(2.0, 1.0)
# (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(3, 1))
# ==> poly(0.0)
# (poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(-3, 1))
# ==> poly(-3.0, 1.0)
# (poly(8, 1) * poly(2, 1) * poly(-3, 1)).reduce.gcd(poly(-3, 1))
# ==> poly(-3.0, 1.0)
# (poly(8, 1) * poly(2, 1) *
# poly(-3, 1)).reduce.gcd((poly(8, 1) * poly(-3, 1)).reduce)
# ==> poly(-24.0, 5.0, 1.0)
# poly(-1, 0, 1).gcd(poly(2, -2, -1, 1))
# ==> poly(0.0)
# poly(2, -2, -1, 1).gcd(poly(-1, 0, 1))
# ==> poly(1.0, -1.0)
# poly(2, -2, -1, 1).gcd(poly(-2.5, 1))
# ==> poly(0.0)
def roots
rts = poly()
deg = self.length - 1
if deg.zero?
rts
else
if self[0].zero?
if deg == 1
poly(0.0)
else
Poly.new(deg) do |i|
self[i + 1]
end.roots.unshift(0.0)
end
else
if deg == 1
linear_root(self[1], self[0])
else
if deg == 2
quadratic_root(self[2], self[1], self[0])
else
if deg == 3 and
(rts = cubic_root(self[3], self[2], self[1], self[0]))
rts
else
if deg == 4 and
(rts = quartic_root(self[4], self[3],
self[2], self[1], self[0]))
rts
else
ones = 0
1.upto(deg) do |i|
if self[i].nonzero?
ones += 1
end
end
if ones == 1
nth_root(self[deg], self[0], deg)
else
if ones == 2 and deg.even? and self[deg / 2].nonzero?
n = deg / 2
poly(self[0], self[deg / 2], self[deg]).roots.each do |qr|
rts.push(*nth_root(1.0, -qr, n.to_f))
end
rts
else
if deg > 3 and
ones == 3 and
(deg % 3).zero? and
self[deg / 3].nonzero? and
self[(deg * 2) / 3].nonzero?
n = deg / 3
poly(self[0],
self[deg / 3],
self[(deg * 2) / 3],
self[deg]).roots.each do |qr|
rts.push(*nth_root(1.0, -qr, n.to_f))
end
rts
else
q = self.dup
pp = self.derivative
qp = pp.dup
n = deg
x = Complex(1.3, 0.314159)
v = q.eval(x)
m = v.abs * v.abs
20.times do # until c_g?
if (dx = v / qp.eval(x)).abs <= Poly_roots_epsilon
break
end
20.times do
if dx.abs <= Poly_roots_epsilon
break
end
y = x - dx
v1 = q.eval(y)
if (m1 = v1.abs * v1.abs) < m
x = y
v = v1
m = m1
break
else
dx /= 4.0
end
end
end
x = x - self.eval(x) / pp.eval(x)
x = x - self.eval(x) / pp.eval(x)
if x.imag < Poly_roots_epsilon
q = q.poly_div(poly(-x.real, 1.0))
n -= 1
else
q = q.poly_div(poly(x.abs, 0.0, 1.0))
n -= 2
end
rts = if n > 0
q.car.reduce.roots
else
poly()
end
rts << x.to_f_or_c
rts
end
end
end
end
end
end
end
end
end
end
def eval(x)
sum = self.last
self.reverse[1..-1].each do |val|
sum = sum * x + val
end
sum
end
private
def submatrix(mx, row, col)
nmx = Array.new(mx.length - 1) do
Vct.new(mx.length - 1, 0.0)
end
ni = 0
mx.length.times do |i|
if i != row
nj = 0
mx.length.times do |j|
if j != col
nmx[ni][nj] = mx[i][j]
nj += 1
end
end
ni += 1
end
end
nmx
end
def determinant(mx)
if mx.length == 1
mx[0][0]
else
if mx.length == 2
mx[0][0] * mx[1][1] - mx[0][1] * mx[1][0]
else
if mx.length == 3
((mx[0][0] * mx[1][1] * mx[2][2] +
mx[0][1] * mx[1][2] * mx[2][0] +
mx[0][2] * mx[1][0] * mx[2][1]) -
(mx[0][0] * mx[1][2] * mx[2][1] +
mx[0][1] * mx[1][0] * mx[2][2] +
mx[0][2] * mx[1][1] * mx[2][0]))
else
sum = 0.0
sign = 1
mx.length.times do |i|
mult = mx[0][i]
if mult != 0.0
sum = sum + sign * mult * determinant(submatrix(mx, 0, i))
end
sign = -sign
end
sum
end
end
end
end
# ax + b
def linear_root(a, b)
poly(-b / a)
end
# ax^2 + bx + c
def quadratic_root(a, b, c)
d = sqrt(b * b - 4.0 * a * c)
poly((-b + d) / (2.0 * a), (-b - d) / (2.0 * a))
end
# ax^3 + bx^2 + cx + d
def cubic_root(a, b, c, d)
# Abramowitz & Stegun 3.8.2
a0 = d / a
a1 = c / a
a2 = b / a
q = (a1 / 3) - ((a2 * a2) / 9)
r = ((a1 * a2 - 3 * a0) / 6) - ((a2 * a2 * a2) / 27)
sq3r2 = sqrt(q * q * q + r * r)
r1 = (r + sq3r2) ** (1 / 3.0)
r2 = (r - sq3r2) ** (1 / 3.0)
incr = (TWO_PI * Complex::I) / 3
pl = poly(a0, a1, a2, 1)
sqrt3 = sqrt(-3)
3.times do |i|
3.times do |j|
s1 = r1 * exp(i * incr)
s2 = r2 * exp(j * incr)
z1 = simplify_complex((s1 + s2) - (a2 / 3))
if pl.eval(z1).abs < Poly_roots_epsilon
z2 = simplify_complex((-0.5 * (s1 + s2)) +
(a2 / -3) +
((s1 - s2) * 0.5 * sqrt3))
if pl.eval(z2).abs < Poly_roots_epsilon
z3 = simplify_complex((-0.5 * (s1 + s2)) +
(a2 / -3) +
((s1 - s2) * -0.5 * sqrt3))
if pl.eval(z3).abs < Poly_roots_epsilon
return poly(z1, z2, z3)
end
end
end
end
end
false
end
# ax^4 + bx^3 + cx^2 + dx + e
def quartic_root(a, b, c, d, e)
# Weisstein, "Encyclopedia of Mathematics"
a0 = e / a
a1 = d / a
a2 = c / a
a3 = b / a
if yroot = poly((4 * a2 * a0) + -(a1 * a1) + -(a3 * a3 * a0),
(a1 * a3) - (4 * a0),
-a2,
1).roots
yroot.each do |y1|
r = sqrt((0.25 * a3 * a3) + (-a2 + y1))
dd = if r.zero?
sqrt((0.75 * a3 * a3) +
(-2 * a2) +
(2 * sqrt(y1 * y1 - 4 * a0)))
else
sqrt((0.75 * a3 * a3) + (-2 * a2) + (-(r * r)) +
(0.25 * ((4 * a3 * a2) + (-8 * a1) + (-(a3 * a3 * a3)))) / r)
end
ee = if r.zero?
sqrt((0.75 * a3 * a3) +
(-2 * a2) +
(-2 * sqrt((y1 * y1) - (4 * a0))))
else
sqrt((0.75 * a3 * a3) + (-2 * a2) + (-(r * r)) +
(-0.25 *
((4 * a3 * a2) + (-8 * a1) + (-(a3 * a3 * a3)))) / r)
end
z1 = (-0.25 * a3) + ( 0.5 * r) + ( 0.5 * dd)
z2 = (-0.25 * a3) + ( 0.5 * r) + (-0.5 * dd)
z3 = (-0.25 * a3) + (-0.5 * r) + ( 0.5 * ee)
z4 = (-0.25 * a3) + (-0.5 * r) + (-0.5 * ee)
if poly(e, d, c, b, a).eval(z1).abs < Poly_roots_epsilon
return poly(z1, z2, z3, z4)
end
end
end
false
end
# ax^n + b
def nth_root(a, b, deg)
n = (-b / a) ** (1.0 / deg)
incr = (TWO_PI * Complex::I) / deg
rts = poly()
deg.to_i.times do |i|
rts.unshift(simplify_complex(exp(i * incr) * n))
end
rts
end
Poly_roots_epsilon2 = 1.0e-6
def simplify_complex(a)
if a.imag.abs < Poly_roots_epsilon2
(a.real.abs < Poly_roots_epsilon2) ? 0.0 : a.real.to_f
else
if a.real.abs < Poly_roots_epsilon2
# XXX: a.real = 0.0
# Doesn't work any longer (see above, class Complex).
a = Complex(0.0, a.imag)
end
a
end
end
end
class Float
unless defined? 0.0.poly_plus
alias fp_plus +
def poly_plus(other)
case other
when Poly
other[0] += self
other
else
self.fp_plus(other)
end
end
alias + poly_plus
end
unless defined? 0.0.poly_times
alias fp_times *
def poly_times(other)
case other
when Poly
Poly(other.scale(self))
else
self.fp_times(other)
end
end
alias * poly_times
end
unless defined? 0.0.poly_div
alias fp_div /
def poly_div(other)
case other
when Poly
[poly(0.0), other]
else
self.fp_div(other)
end
end
alias / poly_div
end
end
class String
def to_poly
if self.scan(/^poly\([-+,.)\d\s]+/).null?
poly()
else
eval(self)
end
end
end
class Array
def to_poly
poly(*self)
end
end
class Vct
def to_poly
poly(*self.to_a)
end
end
def Poly(obj)
if obj.nil?
obj = []
end
assert_type(obj.respond_to?(:to_poly), obj, 0,
"an object containing method 'to_poly'")
obj.to_poly
end
def make_poly(len, init = 0.0, &body)
Poly.new(len, init, &body)
end
def poly?(obj)
obj.instance_of?(Poly)
end
def poly(*vals)
Poly.new(vals.length) do |i|
if integer?(val = vals[i])
Float(val)
else
val
end
end
end
def poly_reduce(obj)
assert_type(obj.respond_to?(:to_poly), obj, 0,
"an object containing method 'to_poly'")
Poly(obj).reduce
end
def poly_add(obj1, obj2)
if number?(obj1)
assert_type(obj2.respond_to?(:to_poly), obj2, 1,
"an object containing method 'to_poly'")
Float(obj1) + Poly(obj2)
else
assert_type(obj1.respond_to?(:to_poly), obj1, 0,
"an object containing method 'to_poly'")
Poly(obj1) + obj2
end
end
def poly_multiply(obj1, obj2)
if number?(obj1)
assert_type(obj2.respond_to?(:to_poly), obj2, 1,
"an object containing method 'to_poly'")
Float(obj1) * Poly(obj2)
else
assert_type(obj1.respond_to?(:to_poly), obj1, 0,
"an object containing method 'to_poly'")
Poly(obj1) * obj2
end
end
def poly_div(obj1, obj2)
if number?(obj1)
assert_type(obj2.respond_to?(:to_poly), obj2, 1,
"an object containing method 'to_poly'")
Float(obj1) / Poly(obj2)
else
assert_type(obj1.respond_to?(:to_poly), obj1, 0,
"an object containing method 'to_poly'")
Poly(obj1) / obj2
end
end
def poly_derivative(obj)
assert_type(obj.respond_to?(:to_poly), obj, 0,
"an object containing method 'to_poly'")
Poly(obj).derivative
end
def poly_gcd(obj1, obj2)
assert_type(obj.respond_to?(:to_poly), obj, 0,
"an object containing method 'to_poly'")
Poly(obj1).gcd(obj2)
end
def poly_roots(obj)
assert_type(obj.respond_to?(:to_poly), obj, 0,
"an object containing method 'to_poly'")
Poly(obj).roots
end
# poly.rb ends here
|