1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
;;; polynomial-related stuff
;;;
;;; poly+ poly* poly/ poly-gcd poly-reduce poly-roots poly-derivative poly-resultant poly-discriminant
(provide 'snd-poly.scm)
(when (provided? 'pure-s7)
(define (make-polar mag ang)
(if (and (real? mag) (real? ang))
(complex (* mag (cos ang)) (* mag (sin ang)))
(error 'wrong-type-arg "make-polar args should be real"))))
(define (vector->float-vector v) (copy v (make-float-vector (length v))))
(define (float-vector->vector v) (copy v (make-vector (length v) 0.0)))
;;; using lists and vectors internally for complex intermediates
(define vector-add!
(let ((+documentation+ "(vector-add! p1 p2) adds (elementwise) the vectors p1 and p2"))
(lambda (p1 p2)
(do ((len (min (length p1) (length p2)))
(i 0 (+ i 1)))
((= i len))
(set! (p1 i) (+ (p1 i) (p2 i))))
p1)))
(define vector-scale!
(let ((+documentation+ "(vector-scale! p1 scl) scales each element of the vector p1 by scl"))
(lambda (p1 scl)
(do ((len (length p1))
(i 0 (+ i 1)))
((= i len))
(set! (p1 i) (* scl (p1 i))))
p1)))
(define poly-as-vector-eval
(let ((+documentation+ "(poly-as-vector-eval v x) treats 'v' as a vector of polynomial coefficients, returning the value of the polynomial at x"))
(lambda (v x)
(let* ((top (- (length v) 1))
(sum (v top)))
(do ((i (- top 1) (- i 1)))
((< i 0) sum)
(set! sum (+ (* sum x) (v i))))))))
(define poly-as-vector-reduce
(let ((+documentation+ "(poly-as-vector-reduce p1) removes trailing (high-degree) zeros from the vector p1"))
(lambda (p1)
;; always return at least a 0 coeff (rather than return #f=0 polynomial)
(let ((new-len (do ((i (- (length p1) 1) (- i 1)))
((or (= i 0)
(not (= (p1 i) 0.0)))
(+ i 1)))))
(if (= new-len (length p1))
p1
(copy p1 (make-vector new-len)))))))
(define poly-reduce
(let ((+documentation+ "(poly-reduce p1) removes trailing (high-degree) zeros from the float-vector p1"))
(lambda (p1)
(if (= (p1 (- (length p1) 1)) 0.0)
(vector->float-vector (poly-as-vector-reduce (float-vector->vector p1)))
p1))))
;;; (poly-reduce (float-vector 1 2 3)) -> #<float-vector[len=3]: 1.000 2.000 3.000>
;;; (poly-reduce (float-vector 1 2 3 0 0 0)) -> #<float-vector[len=3]: 1.000 2.000 3.000>
;;; (poly-reduce (float-vector 0 0 0 0 1 0)) -> #<float-vector[len=5]: 0.000 0.000 0.000 0.000 1.000>
(define poly-as-vector+
(let ((+documentation+ "(poly-as-vector+ p1 p2) adds vectors p1 and p2"))
(lambda (p1 p2)
(if (vector? p1)
(if (vector? p2)
(if (> (length p1) (length p2))
(vector-add! (copy p1) p2)
(vector-add! (copy p2) p1))
(let ((v (copy p1)))
(set! (v 0) (+ (v 0) p2))
v))
(let ((v (copy p2)))
(set! (v 0) (+ (v 0) p1))
v)))))
(define poly+
(let ((+documentation+ "(poly+ p1 p2) adds vectors or float-vectors p1 and p2"))
(lambda (p1 p2)
(vector->float-vector
(poly-as-vector+
(if (float-vector? p1) (float-vector->vector p1) p1)
(if (float-vector? p2) (float-vector->vector p2) p2))))))
;;; (poly+ (float-vector .1 .2 .3) (float-vector 0.0 1.0 2.0 3.0 4.0)) -> #<float-vector[len=5]: 0.100 1.200 2.300 3.000 4.000>
;;; (poly+ (float-vector .1 .2 .3) .5) -> #<float-vector[len=3]: 0.600 0.200 0.300>
;;; (poly+ .5 (float-vector .1 .2 .3)) -> #<float-vector[len=3]: 0.600 0.200 0.300>
(define poly-as-vector*
(let ((+documentation+ "(poly-as-vector* p1 p2) multiplies (as polynomials) the vectors p1 and p2"))
(lambda (p1 p2)
(if (not (vector? p1))
(vector-scale! (copy p2) p1)
(if (not (vector? p2))
(vector-scale! (copy p1) p2)
(let ((p1len (length p1))
(p2len (length p2)))
(do ((m (make-vector (+ p1len p2len) 0))
(i 0 (+ i 1)))
((= i p1len) m)
(do ((j 0 (+ j 1)))
((= j p2len))
(set! (m (+ i j)) (+ (m (+ i j)) (* (p1 i) (p2 j))))))))))))
(define poly*
(let ((+documentation+ "(poly* p1 p2) multiplies the polynomials (float-vectors or vectors) p1 and p2"))
(lambda (p1 p2)
(vector->float-vector
(poly-as-vector*
(if (float-vector? p1) (float-vector->vector p1) p1)
(if (float-vector? p2) (float-vector->vector p2) p2))))))
;;; (poly* (float-vector 1 1) (float-vector -1 1)) -> #<float-vector[len=4]: -1.000 0.000 1.000 0.000>
;;; (poly* (float-vector -5 1) (float-vector 3 7 2)) -> #<float-vector[len=5]: -15.000 -32.000 -3.000 2.000 0.000>
;;; (poly* (float-vector -30 -4 2) (float-vector 0.5 1)) -> #<float-vector[len=5]: -15.000 -32.000 -3.000 2.000 0.000>
;;; (poly* (float-vector -30 -4 2) 0.5) -> #<float-vector[len=3]: -15.000 -2.000 1.000>
;;; (poly* 2.0 (float-vector -30 -4 2)) -> #<float-vector[len=3]: -60.000 -8.000 4.000>
(define poly-as-vector/
(let ((+documentation+ "(poly-as-vector/ p1 p2) divides the polynomial p1 by p2 (both vectors)"))
(lambda (p1 p2)
(if (not (vector? p1))
(list (vector 0) p2)
(if (not (vector? p2))
(list (poly-as-vector* p1 (/ p2)) (vector 0))
;; Numerical Recipes poldiv
(let ((p1len (length p1))
(p2len (length p2)))
(if (> p2len p1len)
(list (vector 0) p2)
(let ((len (max p1len p2len)))
(let ((r (make-vector len 0))
(q (make-vector len 0)))
(do ((i 0 (+ i 1)))
((= i len))
(set! (r i) (p1 i)))
(let ((n (- p1len 1))
(nv (- p2len 1)))
(do ((k (- n nv) (- k 1)))
((< k 0))
(set! (q k) (/ (r (+ nv k)) (p2 nv)))
(do ((j (+ nv k -1) (- j 1)))
((< j k))
(set! (r j) (- (r j) (* (q k) (p2 (- j k)))))))
(do ((j nv (+ j 1)))
((> j n))
(set! (r j) 0))
(list q r)))))))))))
(define poly/
(let ((+documentation+ "(poly/ p1 p2) divides p1 by p2, both polynomials either float-vectors or vectors"))
(lambda (p1 p2)
(map vector->float-vector (poly-as-vector/ (if (float-vector? p1) (float-vector->vector p1) p1)
(if (float-vector? p2) (float-vector->vector p2) p2))))))
;;; (poly/ (float-vector -1.0 -0.0 1.0) (vector 1.0 1.0)) -> (#<float-vector[len=3]: -1.000 1.000 0.000> #<float-vector[len=3]: 0.000 0.000 0.000>)
;;; (poly/ (float-vector -15 -32 -3 2) (vector -5 1)) -> (#<float-vector[len=4]: 3.000 7.000 2.000 0.000> #<float-vector[len=4]: 0.000 0.000 0.000 0.000>)
;;; (poly/ (float-vector -15 -32 -3 2) (vector 3 1)) -> (#<float-vector[len=4]: -5.000 -9.000 2.000 0.000> #<float-vector[len=4]: 0.000 0.000 0.000 0.000>)
;;; (poly/ (float-vector -15 -32 -3 2) (vector .5 1)) -> (#<float-vector[len=4]: -30.000 -4.000 2.000 0.000> #<float-vector[len=4]: 0.000 0.000 0.000 0.000>)
;;; (poly/ (float-vector -15 -32 -3 2) (vector 3 7 2)) -> (#<float-vector[len=4]: -5.000 1.000 0.000 0.000> #<float-vector[len=4]: 0.000 0.000 0.000 0.000>)
;;; (poly/ (float-vector -15 -32 -3 2) 2.0) -> (#<float-vector[len=4]: -7.500 -16.000 -1.500 1.000> #<float-vector[len=1]: 0.0>)
(define poly-as-vector-derivative
(let ((+documentation+ "(poly-as-vector-derivative p1) returns the derivative or polynomial p1 (as a vector)"))
(lambda (p1)
(let ((len (- (length p1) 1)))
(do ((v (make-vector len))
(i (- len 1) (- i 1))
(j len (- j 1)))
((< i 0) v)
(set! (v i) (* j (p1 j))))))))
(define poly-derivative
(let ((+documentation+ "(poly-derivative p1) returns the derivative of p1, either a float-vector or vector"))
(lambda (p1)
(vector->float-vector
(poly-as-vector-derivative
(float-vector->vector p1))))))
;;; (poly-derivative (float-vector 0.5 1.0 2.0 4.0)) -> #<float-vector[len=3]: 1.000 4.000 12.000>
;;; poly-antiderivative with random number as constant? or max of all coeffs? -- 0.0 seems like a bad idea -- maybe an optional arg
;;; then poly-integrate: (let ((integral (poly-antiderivative p1))) (- (poly-as-vector-eval integral end) (poly-as-vector-eval integral beg)))
(define (submatrix mx row col)
(let ((old-n (vector-dimension mx 0)))
(do ((nmx (let ((new-n (- old-n 1)))
(make-float-vector (list new-n new-n))))
(i 0 (+ i 1))
(ni 0))
((= i old-n) nmx)
(unless (= i row)
(do ((j 0 (+ j 1))
(nj 0))
((= j old-n))
(if (not (= j col))
(begin
(set! (nmx ni nj) (mx i j))
(set! nj (+ nj 1)))))
(set! ni (+ 1 ni))))))
(define (determinant mx)
(if (not (float-vector? mx))
(error 'wrong-type-arg "determinant argument should be a float-vector")
(let ((n (vector-dimension mx 0)))
(case n
((1) (mx 0 0))
((2) (- (* (mx 0 0) (mx 1 1)) (* (mx 0 1) (mx 1 0))))
((3) (- (+ (* (mx 0 0) (mx 1 1) (mx 2 2))
(* (mx 0 1) (mx 1 2) (mx 2 0))
(* (mx 0 2) (mx 1 0) (mx 2 1)))
(* (mx 0 0) (mx 1 2) (mx 2 1))
(* (mx 0 1) (mx 1 0) (mx 2 2))
(* (mx 0 2) (mx 1 1) (mx 2 0))))
(else
(do ((sum 0.0)
(sign 1)
(i 0 (+ i 1)))
((= i n) sum)
(let ((mult (mx 0 i)))
(if (not (= mult 0.0))
(set! sum (+ sum (* sign mult (determinant (submatrix mx 0 i))))))
(set! sign (- sign)))))))))
(define (poly-as-vector-resultant p1 p2)
(if (not (and (vector? p1)
(vector? p2)))
(error 'wrong-type-arg "poly-as-vector-resultant arguments should be vectors")
(let* ((m (length p1))
(n (length p2))
(mat (let ((d (+ n m -2)))
(make-float-vector (list d d)))))
;; load matrix with n-1 rows of m's coeffs then m-1 rows of n's coeffs (reversed in sense), return determinant
(do ((i 0 (+ i 1)))
((= i (- n 1)))
(do ((j 0 (+ j 1)))
((= j m))
(set! (mat i (+ i j)) (p1 (- m j 1)))))
(do ((i 0 (+ i 1)))
((= i (- m 1)))
(do ((j 0 (+ j 1)))
((= j n))
(set! (mat (+ i n -1) (+ i j)) (p2 (- n j 1)))))
(determinant mat))))
(define poly-resultant
(let ((+documentation+ "(poly-resultant p1 p2) returns the resultant of polynomials p1 and p2 (float-vectors or vectors)"))
(lambda (p1 p2)
(poly-as-vector-resultant
(if (float-vector? p1) (float-vector->vector p1) p1)
(if (float-vector? p2) (float-vector->vector p2) p2)))))
(define poly-as-vector-discriminant
(let ((+documentation+ "(poly-as-vector-discriminant p1) returns the discriminant of polynomial p1 (a vector)"))
(lambda (p1)
(poly-as-vector-resultant p1 (poly-as-vector-derivative p1)))))
(define poly-discriminant
(let ((+documentation+ "(poly-discriminant p1) returns the discriminant of polynomial p1 (either a float-vector or a vector)"))
(lambda (p1)
(poly-as-vector-discriminant
(if (float-vector? p1) (float-vector->vector p1) p1)))))
;;; (poly-as-vector-resultant (vector -1 0 1) (vector 1 -2 1)) 0.0 (x=1 is the intersection)
;;; (poly-as-vector-resultant (vector -1 0 2) (vector 1 -2 1)) 1.0
;;; (poly-as-vector-resultant (vector -1 0 1) (vector 1 1)) 0.0 (x=-1 is the intersection)
;;; (poly-as-vector-resultant (vector -1 0 1) (vector 2 1)) 3.0
;;; (poly-as-vector-discriminant (vector -1 0 1)) -4.0
;;; (poly-as-vector-discriminant (vector 1 -2 1)) 0.0
;;; (poly-discriminant (poly-reduce (poly* (poly* (float-vector -1 1) (float-vector -1 1)) (float-vector 3 1)))) 0.0
;;; (poly-discriminant (poly-reduce (poly* (poly* (poly* (float-vector -1 1) (float-vector -1 1)) (float-vector 3 1)) (float-vector 2 1)))) 0.0
;;; (poly-discriminant (poly-reduce (poly* (poly* (poly* (float-vector 1 1) (float-vector -1 1)) (float-vector 3 1)) (float-vector 2 1)))) 2304
;;; (poly-discriminant (poly-reduce (poly* (poly* (poly* (float-vector 1 1) (float-vector -1 1)) (float-vector 3 1)) (float-vector 3 1)))) 0.0
(define poly-roots-epsilon 1.0e-7)
(define simplify-complex
(let ((+documentation+ "(simplify-complex a) sets to 0.0 real or imaginary parts of 'a' that are less than poly-roots-epsilon"))
(lambda (a)
(if (< (abs (imag-part a)) poly-roots-epsilon)
(if (< (abs (real-part a)) poly-roots-epsilon)
0.0
(real-part a))
(if (< (abs (real-part a)) poly-roots-epsilon)
(complex 0.0 (imag-part a))
a)))))
(define poly-gcd
(let ((+documentation+ "(poly-gcd p1 p2) returns the GCD of polynomials p1 and p2 (both float-vectors)"))
(lambda (p1 p2)
(if (< (length p1) (length p2))
(float-vector 0.0)
(let ((qr (map poly-reduce (poly/ p1 p2))))
(if (= (length (cadr qr)) 1)
(if (= (float-vector-ref (cadr qr) 0) 0.0)
p2
(float-vector 0.0))
(apply poly-gcd qr)))))))
(define poly-as-vector-gcd
(let ((+documentation+ "(poly-as-vector-gcd p1 p2) returns the GCD of polynomials p1 and p2 (both vectors)"))
(lambda (p1 p2)
(if (< (length p1) (length p2))
(vector 0)
(let ((qr (map poly-as-vector-reduce (poly-as-vector/ p1 p2))))
(if (= (length (cadr qr)) 1)
(if (= ((cadr qr) 0) 0.0)
p2
(vector 0))
(apply poly-as-vector-gcd qr)))))))
;;; (poly-gcd (poly-reduce (poly* (float-vector 2 1) (float-vector -3 1))) (float-vector 2 1)) -> #<float-vector[len=2]: 2.000 1.000>
;;; (poly-gcd (poly-reduce (poly* (float-vector 2 1) (float-vector -3 1))) (float-vector 3 1)) -> #<float-vector[len=1]: 6.000>
;;; (poly-gcd (poly-reduce (poly* (float-vector 2 1) (float-vector -3 1))) (float-vector -3 1)) -> #<float-vector[len=2]: -3.000 1.000>
;;; (poly-gcd (poly-reduce (poly* (float-vector 8 1) (poly* (float-vector 2 1) (float-vector -3 1)))) (float-vector -3 1)) -> #<float-vector[len=2]: -3.000 1.000>
;;; (poly-gcd (poly-reduce (poly* (float-vector 8 1) (poly* (float-vector 2 1) (float-vector -3 1)))) (poly-reduce (poly* (float-vector 8 1) (float-vector -3 1)))) -> #<float-vector[len=3]: -24.000 5.000 1.000>
;;; (poly-gcd (float-vector -1 0 1) (float-vector 2 -2 -1 1)) -> #<float-vector[len=1]: 0.000>
;;; (poly-gcd (float-vector 2 -2 -1 1) (float-vector -1 0 1)) -> #<float-vector[len=2]: 1.000 -1.000>
;;; (poly-gcd (float-vector 2 -2 -1 1) (float-vector -2.5 1)) -> #<float-vector[len=1]: 0.000>
(define poly-as-vector-roots
(let ((linear-root ; ax + b
(lambda (a b)
(list (/ (- b) a))))
(quadratic-roots ; ax^2 + bx + c
(lambda (a b c)
(let ((d (sqrt (- (* b b) (* 4 a c)))))
(list (/ (- d b) (* 2 a))
(/ (- (+ d b)) (* 2 a))))))
(cubic-roots ; ax^3 + bx^2 + cx + d
(lambda (a b c d)
;; Abramowitz & Stegun 3.8.2
(let ((a0 (/ d a))
(a1 (/ c a))
(a2 (/ b a)))
(let* ((r (- (/ (- (* a1 a2) (* 3 a0)) 6) (/ (* a2 a2 a2) 27)))
(sq3r2 (let ((q (- (/ a1 3) (/ (* a2 a2) 9))))
(sqrt (+ (* q q q) (* r r))))))
(let ((r1 (expt (+ r sq3r2) 1/3))
(r2 (expt (- r sq3r2) 1/3))
(incr (/ (* 2 pi 0+i) 3)))
(call-with-exit
(lambda (return)
(do ((i 0 (+ i 1))) ; brute force! this can almost certainly be optimized
((= i 3))
(do ((j 0 (+ j 1)))
((= j 3))
(let* ((s1 (* r1 (exp (* i incr))))
(s2 (* r2 (exp (* j incr))))
(z1 (simplify-complex (- (+ s1 s2) (/ a2 3)))))
(if (< (magnitude (poly-as-vector-eval (vector a0 a1 a2 1) z1)) poly-roots-epsilon)
(let ((z2 (simplify-complex (+ (* -0.5 (+ s1 s2))
(/ a2 -3)
(* (- s1 s2) 0.5 (sqrt -3))))))
(if (< (magnitude (poly-as-vector-eval (vector a0 a1 a2 1) z2)) poly-roots-epsilon)
(let ((z3 (simplify-complex (+ (* -0.5 (+ s1 s2))
(/ a2 -3)
(* (- s1 s2) -0.5 (sqrt -3))))))
(if (< (magnitude (poly-as-vector-eval (vector a0 a1 a2 1) z3)) poly-roots-epsilon)
(return (list z1 z2 z3))))))))))
#f)))))))
(quartic-roots ; ax^4 + bx^3 + cx^2 + dx + e
(lambda (a b c d e) ; Weisstein, "Encyclopedia of Mathematics"
(call-with-exit
(lambda (return)
(let ((a0 (/ e a))
(a1 (/ d a))
(a2 (/ c a))
(a3 (/ b a)))
(let ((yroot (poly-as-vector-roots (vector (- (* 4 a2 a0) (* a1 a1) (* a3 a3 a0))
(- (* a1 a3) (* 4 a0))
(- a2)
1.0))))
(when (and (pair? yroot)
(= (length yroot) 4))
(do ((i 0 (+ i 1)))
((= i 3))
(let* ((y1 (yroot i))
(R (sqrt (- (+ (* 0.25 a3 a3) y1) a2))))
(let ((D (sqrt (if (= R 0)
(+ (* 0.75 a3 a3) (* -2 a2) (* 2 (sqrt (- (* y1 y1) (* 4 a0)))))
(- (+ (* 0.75 a3 a3) (* -2 a2) (/ (* 0.25 (- (+ (* 4 a3 a2) (* -8 a1)) (* a3 a3 a3))) R)) (* R R)))))
(E (sqrt (if (= R 0)
(+ (* 0.75 a3 a3) (* -2 a2) (* -2 (sqrt (- (* y1 y1) (* 4 a0)))))
(- (+ (* 0.75 a3 a3) (* -2 a2) (/ (* -0.25 (- (+ (* 4 a3 a2) (* -8 a1)) (* a3 a3 a3))) R)) (* R R))))))
(let ((z1 (+ (* -0.25 a3) (* 0.5 R) (* 0.5 D)))
(z2 (+ (* -0.25 a3) (* 0.5 R) (* -0.5 D)))
(z3 (+ (* -0.25 a3) (* -0.5 R) (* 0.5 E)))
(z4 (+ (* -0.25 a3) (* -0.5 R) (* -0.5 E))))
(if (< (magnitude (poly-as-vector-eval (vector e d c b a) z1)) poly-roots-epsilon)
(return (list z1 z2 z3 z4))))))))
#f))))))
(nth-roots ; ax^n + b
(lambda (a b deg)
(do ((n (expt (/ (- b) a) (/ 1.0 deg)))
(incr (/ (* 2 pi 0+i) deg))
(roots ())
(i 0 (+ i 1)))
((= i deg) roots)
(set! roots (cons (simplify-complex (* n (exp (* i incr)))) roots))))))
;; poly-as-vector-roots
(lambda (p1)
(let ((deg (- (length p1) 1)))
(cond ((= deg 0) ; just constant
())
((not (= (p1 0) 0.0)) ; constant=0.0, divide through by x, recurse on new
(case deg
((1) ; ax + b -> -b/a
(linear-root (p1 1) (p1 0)))
((2) ; ax^2 + bx + c -> -b +/- sqrt(b^2 - 4ac) / 2a
(quadratic-roots (p1 2) (p1 1) (p1 0)))
(else
(or (and (= deg 3)
;; it may be better to fall into Newton's method here
(cubic-roots (p1 3) (p1 2) (p1 1) (p1 0)))
(and (= deg 4)
(quartic-roots (p1 4) (p1 3) (p1 2) (p1 1) (p1 0)))
;; degree>4 (or trouble above), use Newton's method unless some simple case pops up
(let ((ones 0))
(do ((i 1 (+ i 1)))
((> i deg))
(if (not (= (p1 i) 0.0))
(set! ones (+ 1 ones))))
(cond ((= ones 1) ; x^n + b -- "linear" in x^n
(nth-roots (p1 deg) (p1 0) deg))
((and (= ones 2)
(even? deg)
(not (= (p1 (/ deg 2)) 0.0)))
(let ((roots ()) ; quadratic in x^(n/2)
(n (/ deg 2)))
(for-each
(lambda (r)
(set! roots (append roots (nth-roots 1.0 (- r) n))))
(poly-as-vector-roots (vector (p1 0)
(p1 (/ deg 2))
(p1 deg))))
roots))
((and (> deg 3)
(= ones 3)
(= (modulo deg 3) 0)
(not (= (p1 (/ deg 3)) 0.0))
(not (= (p1 (/ (* 2 deg) 3)) 0.0)))
(let ((roots ()) ; cubic in x^(n/3)
(n (/ deg 3)))
(for-each
(lambda (r)
(set! roots (append roots (nth-roots 1.0 (- r) n))))
(poly-as-vector-roots (vector (p1 0)
(p1 (/ deg 3))
(p1 (/ (* 2 deg) 3))
(p1 deg))))
roots))
(else
;; perhaps get derivative roots, plug in main -- need to get nth derivative to be safe in this
;; from Cohen, "Computational Algebraic Number Theory"
(let ((roots ())
(q (copy p1))
(n deg)
(x 1.3+0.314159i))
(let ((pp (poly-as-vector-derivative p1)))
(let ((happy #f)
(qp (copy pp))
(dx 0.0)
(v (poly-as-vector-eval q x))
(last-dx 1.0)) ; guard against infinite loop
(do ((m (* (magnitude v) (magnitude v))))
(happy)
(set! dx (/ v (poly-as-vector-eval qp x)))
(if (or (<= (magnitude dx) poly-roots-epsilon)
(= dx last-dx))
(set! happy #t)
(begin
(set! last-dx dx)
(do ((c 0 (+ 1 c))
(step3 #f))
((or (>= c 20)
step3
(<= (magnitude dx) poly-roots-epsilon)))
(let* ((y (- x dx))
(v1 (poly-as-vector-eval q y))
(m1 (* (magnitude v1) (magnitude v1))))
(if (< m1 m)
(begin
(set! x y)
(set! v v1)
(set! m m1)
(set! step3 #t))
(set! dx (/ dx 4.0)))))))))
(set! x (- x (/ (poly-as-vector-eval p1 x) (poly-as-vector-eval pp x))))
(set! x (- x (/ (poly-as-vector-eval p1 x) (poly-as-vector-eval pp x)))))
(if (< (imag-part x) poly-roots-epsilon)
(begin
(set! x (real-part x))
(set! q (poly-as-vector/ q (vector (- x) 1.0)))
(set! n (- n 1)))
(begin
(set! q (poly-as-vector/ q (vector (magnitude x) 0.0 1.0)))
(set! n (- n 2))))
(set! roots (cons x roots))
(if (> n 0)
(set! roots (append (poly-as-vector-roots (poly-as-vector-reduce (car q))) roots)))
roots))))))))
((= deg 1)
(list 0.0))
(else
(do ((pnew (make-vector deg))
(i 1 (+ i 1)))
((> i deg)
(cons 0.0 (poly-as-vector-roots pnew)))
(set! (pnew (- i 1)) (p1 i)))))))))
(define poly-roots
(let ((+documentation+ "(poly-roots p1) returns the roots of polynomial p1"))
(lambda (p1)
(let* ((v1 (float-vector->vector (poly-reduce p1)))
(roots (poly-as-vector-roots v1)))
(for-each
(lambda (q)
(let ((dx (magnitude (poly-as-vector-eval v1 q))))
(if (> dx poly-roots-epsilon)
(format () ";poly.scm 502: (poly-roots ~A) numerical trouble (polynomial root is not very good): ~A at ~A: ~A" p1 v1 q dx))))
roots)
roots))))
#|
(do ((i 0 (+ i 1))) ((= i 10))
(poly-as-vector-roots (vector (complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0)))))
(do ((i 0 (+ i 1))) ((= i 10))
(poly-as-vector-roots (vector (complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0)))))
(do ((i 0 (+ i 1))) ((= i 10))
(poly-roots (float-vector (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0))))
(do ((i 0 (+ i 1))) ((= i 10))
(poly-as-vector-roots (vector (complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0)))))
(do ((i 0 (+ i 1))) ((= i 10))
(poly-roots (float-vector (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0))))
(do ((i 0 (+ i 1))) ((= i 10))
(poly-as-vector-roots (vector (complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0))
(complex (mus-random 1.0) (mus-random 1.0)))))
(do ((i 3 (+ i 1))) ((= i 20))
(let ((v (make-float-vector i 0.0)))
(set! (v 0) (mus-random 1.0))
(set! (v (- i 1)) 1.0)
(poly-roots v)))
(do ((i 3 (+ i 2))) ((= i 21))
(let ((v (make-float-vector i 0.0)))
(set! (v 0) (mus-random 1.0))
(set! (v (- i 1)) 1.0)
(set! (v (/ (- i 1) 2)) 1.0)
(poly-roots v)))
;;; these can be off by a lot!
(do ((i 0 (+ i 1))) ((= i 10))
(poly-roots (float-vector (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0) (mus-random 1.0))))
(poly-roots (poly* (poly* (poly* (float-vector -1 1) (float-vector 1 1)) (poly* (float-vector -2 1) (float-vector 2 1))) (poly* (float-vector -3 1) (float-vector 3 1)))) -> (-3.0 3.0 -1.0 1.0 -2.0 2.0)
;;; numerical trouble:
(poly-roots (float-vector 1000 .01 0 1))
;; failed to find a root within poly-roots-epsilon -- get the best available
(let ((s1 backup-s1)
(s2 backup-s2))
(list (simplify-complex (- (+ s1 s2) (/ a2 3.0)))
(simplify-complex (+ (* -0.5 (+ s1 s2))
(/ a2 -3.0)
(* (- s1 s2) 0.5 (sqrt -3.0))))
(simplify-complex (+ (* -0.5 (+ s1 s2))
(/ a2 -3.0)
(* (- s1 s2) -0.5 (sqrt -3.0))))))))))
|#
|