File: sndclm.html

package info (click to toggle)
snd 25.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,016 kB
  • sloc: ansic: 291,818; lisp: 260,387; ruby: 71,134; sh: 3,293; fortran: 2,342; csh: 1,062; cpp: 294; makefile: 294; python: 87; xml: 27; javascript: 1
file content (10917 lines) | stat: -rw-r--r-- 422,747 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
<!DOCTYPE html>

<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>CLM</title>
<style type="text/css">
	EM.red {color:red; font-style: normal}
	EM.gen {font-weight: bold; font-style: normal}
        EM.error {color:chocolate; font-style: normal}
        EM.narg {color:chocolate; font-style: normal}
	H1 {text-align: center}
	DIV.centered {text-align: center}
	UL {list-style-type: none}
	EM.emdef {font-weight: bold; font-style: normal; padding-right: 0.2cm}
	EM.noem {font-style: normal}

	A {text-decoration:none}
	A:hover {text-decoration:underline}
	A.quiet {color:black; text-decoration:none}
	A.quiet:hover {text-decoration:underline}
	A.invisible {color:white; text-decoration:none}
	A.def {font-weight: bold; font-style: normal; text-decoration:none; text-color:black; padding-right: 0.2cm}
	A.olddef {font-style: normal; text-decoration:none; color:gray; padding-right: 0.2cm}
	EM.gray {color:gray; font-style: normal}
	EM.def {font-weight: bold; font-style: normal; text-decoration:none; text-color:black; padding-right: 0.2cm}

        TD.green {background-color: lightgreen}
	PRE.bluish {background-color: #f2f4ff}
	TD.beige {background-color: beige}
        TD.greenish {background-color: #eefdee}
        PRE.indented {padding-left: 1.0cm}
	IMG.indented {margin-left: 2.0cm}

	TH.beige {background-color: beige;
	          border: 1px solid black;
		  padding-left: 0.2cm;
		  padding-right: 0.2cm;
		  padding-top: 0.1cm;
		  padding-bottom: 0.1cm;
		  }
	TD.br {border: 1px solid lightgray;
		  padding-left: 0.2cm;
		  padding-right: 0.2cm;
		  padding-top: 0.1cm;
		  padding-bottom: 0.1cm;
	       }
	TD.hightop {padding-top: 0.5cm;
           	   }
        IMG.noborder {border: none}
	DIV.center {text-align: center}
	DIV.scheme {background-color: #f2f4ff;
	            border: 1px solid gray;
		    padding-right: 1.0cm;
		    margin-bottom: 0.2cm;
		    }
	DIV.ruby {background-color: #fbfbf0;
	            border: 1px solid gray;
		    padding-right: 1.0cm;
		    margin-bottom: 0.2cm;
		    }
	DIV.forth {background-color: #eefdee;
	            border: 1px solid gray;
		    padding-right: 1.0cm;
		    margin-bottom: 0.2cm;
		    }
	DIV.c {background-color: #f0f0f0;
	            border: 1px solid gray;
		    padding-right: 1.0cm;
		    margin-bottom: 0.2cm;
		    }
	DIV.lisp {background-color: aliceblue;
	            border: 1px solid gray;
		    padding-right: 1.0cm;
		    margin-bottom: 0.2cm;
		    }

        BODY.body {background-color: #ffffff;    /* white */
	           margin-left: 0.5cm; 
		   margin-right: 0.5cm;
                   }
        TABLE.borderspaced {margin-top: 0.5cm;
	              margin-bottom: 0.5cm;
		      margin-left: 0.5cm;
		      border: 8px solid gray;
		      }	
        TABLE.pb {margin-top: 0.1cm;
	              margin-bottom: 0.5cm;
		      margin-left: 2.0cm;
		      border: 2px solid gray;
		      padding-left: 0.2cm;
		      padding-right: 0.2cm;
		      padding-top: 0.2cm;
		      padding-bottom: 0.2cm;
		      }	
        TABLE.grayborder {margin-top: 0.5cm;
                      margin-bottom: 0.5cm;
		      margin-left: 1.0cm;
		      border: 8px solid gray;
		      padding-left: 0.1cm;
		      padding-right: 0.1cm;
		      padding-top: 0.1cm;
		      padding-bottom: 0.1cm;
	               }
        TABLE.contents {margin-top: 0.5cm;
                      margin-bottom: 0.5cm;
		      margin-left: 1.0cm;
		      border: 8px solid lightgray;
		      padding-left: 0.1cm;
		      padding-right: 0.1cm;
		      padding-top: 0.1cm;
		      padding-bottom: 0.1cm;
	               }
        TABLE.method {margin-top: 0.2cm;
                      margin-bottom: 0.5cm;
		      margin-left: 1.0cm;
		      border: 1px solid gray;
		      padding-left: 0.1cm;
		      padding-right: 0.1cm;
		      padding-top: 0.1cm;
		      padding-bottom: 0.1cm;
		      }	    
        TD.sumtitle {background-color: #eefdee;
		  border: 1px solid lightgray;
		  padding-top: 0.2cm;	
		  padding-bottom: 0.2cm;
		  text-align: center;
		  }
        TD.methodtitle {background-color: beige;
		  border: 1px solid gray;
		  padding-top: 0.2cm;	
		  padding-bottom: 0.2cm;
		  text-align: center;
		  }
        TD.inner {padding-right: 0.5cm;
	          padding-top: 0.1cm;
	         }
        TD.center {text-align: center}		 
        DIV.separator {margin-top: 40px;
	               margin-bottom: 15px;
	               border: 2px solid #00ff00; /* green */
		       background-color: #f5f5dc; /* beige */
		       padding-top: 4px;
		       width: 30%;
		      border-radius: 4px;
		      -moz-border-radius: 4px;
		      -webkit-border-radius: 4px;
		      } 
        DIV.topheader {margin-top: 10px;
	            margin-bottom: 40px;
	            border: 4px solid #00ff00; /* green */
		    background-color: #f5f5dc; /* beige */
		    font-family: 'Helvetica';
		    font-size: 30px;
		    text-align: center;
		    padding-top: 10px;
		    padding-bottom: 10px;
	           }
        DIV.header {margin-top: 50px;
	            margin-bottom: 10px;
		    font-size: 20px;
		    font-weight: bold;
	            border: 4px solid #00ff00; /* green */
		    background-color: #f5f5dc; /* beige */
		    text-align: center;
		    padding-top: 20px;
		    padding-bottom: 20px;
	           }
        DIV.innerheader {margin-top: 60px;
	            margin-bottom: 30px;
	            border: 4px solid #00ff00; /* green */
		    background-color: #eefdee; /* lightgreen */
		    padding-left: 30px;
		    width: 50%;
		    padding-top: 20px;
		    padding-bottom: 20px;
	           }
	DIV.related {text-align:center;
	             border: 1px solid lightgray;
		     margin-top: 1.0cm;
		     margin-bottom: 1.0cm;
		     padding-top: 10px;
		     padding-bottom: 10px;
		     background-color: #f0f0f0;
	            }
        DIV.inset {margin-left: 2.0cm;
	           margin-right: 2.0cm;
		   margin-top: 0.5cm;
		   margin-bottom: 0.5cm;
		   background-color: #f0f0f0;
		   padding-left: 0.25cm;
		   padding-right: 0.25cm;
		   padding-top: 0.25cm;
		   padding-bottom: 0.25cm;
		   }
        DIV.inset_inline {background-color: #f0f0f0;
	                  display: inline;
			  margin-left: 2.0cm;
		   padding-left: 0.25cm;
		   padding-right: 0.25cm;
		   padding-top: 0.25cm;
		   padding-bottom: 0.25cm;
			  }
        DIV.contentscenter {text-align: center;
		   padding-top: 0.25cm;
		   padding-bottom: 0.25cm;
                   border: 1px solid gray;
               	   }
	TD.ic {
		   padding-left: 0.5cm;
		   padding-right: 0.1cm;
		   }	
</style>


<!-- the latex stuff is always embedded in:

\documentclass{amsart}
\begin{document}
\thispagestyle{empty}
\small
\begin{displaymath}
...
\end{displaymath}
\end{document}

where the "displaymath" lines change to fit the situation


in the new (FC9) latex/pdf2png case, I need:

\documentclass[fleqn,11pt]{amsart}

\setlength\paperwidth{1500pt}
\setlength\textwidth{1200pt}

\begin{document}
...

and then in the output PDF file, set the line
/MediaBox [0 0 595.276 841.89]
to something like
/MediaBox [0 0 1595.276 841.89]
before calling pdf2png

pdf2png is in the cairo tarball (cairo/test dir)
-->

</head>
<body class="body">


<div class="topheader" id="sndclmtop">CLM</div>


<p>CLM (originally an acronym for Common Lisp Music) is a sound synthesis
package in the Music V family.  This file describes CLM as implemented in Snd,
aiming primarily at the Scheme version.
CLM is based on a set of functions known
as "generators".  These can be packaged into "instruments", and instrument calls
can be packaged into "note lists".  (These names are just convenient historical artifacts).
The main emphasis here is on the generators;
note lists and instruments are described in <a href="sndscm.html">sndscm.html</a>.
</p>


<div class="center">Bill Schottstaedt (bil@ccrma.stanford.edu)</div>


<div class="related">
related documentation: &nbsp;
<a href="snd.html">snd.html &nbsp;</a>
<a href="extsnd.html">extsnd.html &nbsp;</a>
<a href="grfsnd.html">grfsnd.html &nbsp;</a>
<a href="sndscm.html">sndscm.html &nbsp;</a>
<a href="fm.html">fm.html &nbsp;</a>
<a href="sndlib.html">sndlib.html &nbsp;</a>
<a href="s7.html">s7.html &nbsp;</a>
<a href="s7-ffi.html">s7-ffi.html &nbsp;</a>
<a href="s7-scm.html">s7-scm.html &nbsp;</a>
<a href="index.html">index.html</a>
</div>



<div class="header">Contents</div>


<table class="grayborder">

<tr><td colspan=4><div class="contentscenter"><a href="#introduction">Introduction</a></div></td></tr>

<tr><td colspan=4><div class="contentscenter"><a href="#generators">Built-in Generators</a></div></td></tr>

  <tr><td class="ic"><a href="#all-passdoc">all-pass</a></td><td class="ic">all-pass filter</td>
      <td class="ic"><a href="#nrxydoc">nrxysin</a></td><td class="ic">n scaled sines</td></tr>
  <tr><td class="ic"><a href="#asymmetric-fmdoc">asymmetric-fm</a></td><td class="ic">asymmetric fm</td>
      <td class="ic"><a href="#ncosdoc">nsin</a></td><td class="ic">n equal amplitude sines</td></tr>
  <tr><td class="ic"><a href="#combdoc">comb</a></td><td class="ic">comb filter</td>
      <td class="ic"><a href="#one-poledoc">one-pole</a></td><td class="ic">one pole filter</td></tr>
  <tr><td class="ic"><a href="#convolvedoc">convolve</a></td><td class="ic">convolution</td>
      <td class="ic"><a href="#one-poledoc">one-zero</a></td><td class="ic">one zero filter</td></tr>
  <tr><td class="ic"><a href="#delaydoc">delay</a></td><td class="ic">delay line</td>
      <td class="ic"><a href="#oscildoc">oscil</a></td><td class="ic">sine wave and FM</td></tr>
  <tr><td class="ic"><a href="#envdoc">env</a></td><td class="ic">line segment envelope</td>
      <td class="ic"><a href="#in-anydoc">out-any</a></td><td class="ic">sound output</td></tr>
  <tr><td class="ic"><a href="#filetosampledoc">file-&gt;sample</a></td><td class="ic">input sample from file</td>
      <td class="ic"><a href="#phase-vocoderdoc">phase-vocoder</a></td><td class="ic">vocoder analysis and resynthesis</td></tr>
  <tr><td class="ic"><a href="#filetoframple">file-&gt;frample</a></td><td class="ic">input frample from file</td>
      <td class="ic"><a href="#polywavedoc">polyshape and polywave</a></td><td class="ic">waveshaping</td></tr>
  <tr><td class="ic"><a href="#filterdoc">filter</a></td><td class="ic">direct form FIR/IIR filter</td>
      <td class="ic"><a href="#sawtoothdoc">pulse-train</a></td><td class="ic">pulse train</td></tr>
  <tr><td class="ic"><a href="#combdoc">filtered-comb</a></td><td class="ic">comb filter with filter on feedback</td>
      <td class="ic"><a href="#randdoc">rand, rand-interp</a></td><td class="ic">random numbers, noise</td></tr>
  <tr><td class="ic"><a href="#filterdoc">fir-filter</a></td><td class="ic">FIR filter</td>
      <td class="ic"><a href="#readindoc">readin</a></td><td class="ic">sound input</td></tr>
  <tr><td class="ic"><a href="#formantdoc">formant and firmant</a></td><td class="ic">resonance</td>
      <td class="ic"><a href="#sampletofile">sample-&gt;file</a></td><td class="ic">output sample to file</td></tr>
  <tr><td class="ic"><a href="#frampletofile">frample-&gt;file</a></td><td class="ic">output frample to file</td>
      <td class="ic"><a href="#sawtoothdoc">sawtooth-wave</a></td><td class="ic">sawtooth</td></tr>
  <tr><td class="ic"><a href="#granulatedoc">granulate</a></td><td class="ic">granular synthesis</td>
      <td class="ic"><a href="#sawtoothdoc">square-wave</a></td><td class="ic">square wave</td></tr>
  <tr><td class="ic"><a href="#filterdoc">iir-filter</a></td><td class="ic">IIR filter</td>
      <td class="ic"><a href="#srcdoc">src</a></td><td class="ic">sampling rate conversion</td></tr>
  <tr><td class="ic"><a href="#in-anydoc">in-any</a></td><td class="ic">sound file input</td>
      <td class="ic"><a href="#ssb-amdoc">ssb-am</a></td><td class="ic">single sideband amplitude modulation</td></tr>
  <tr><td class="ic"><a href="#locsigdoc">locsig</a></td><td class="ic">static sound placement</td>
      <td class="ic"><a href="#table-lookupdoc">table-lookup</a></td><td class="ic">interpolated table lookup</td></tr>
  <tr><td class="ic"><a href="#move-sounddoc">move-sound</a></td><td class="ic">sound motion</td>
      <td class="ic"><a href="#delaydoc">tap</a></td><td class="ic">delay line tap</td></tr>
  <tr><td class="ic"><a href="#moving-averagedoc">moving-average</a></td><td class="ic">moving window average</td>
      <td class="ic"><a href="#sawtoothdoc">triangle-wave</a></td><td class="ic">triangle wave</td></tr>
  <tr><td class="ic"><a href="#ncosdoc">ncos</a></td><td class="ic">n equal amplitude cosines</td>
      <td class="ic"><a href="#one-poledoc">two-pole</a></td><td class="ic">two pole filter</td></tr>
  <tr><td class="ic"><a href="#combdoc">notch</a></td><td class="ic">notch filter</td>
      <td class="ic"><a href="#one-poledoc">two-zero</a></td><td class="ic">two zero filter</td></tr>
  <tr><td class="ic"><a href="#nrxydoc">nrxycos</a></td><td class="ic">n scaled cosines</td>
      <td class="ic"><a href="#wave-traindoc">wave-train</a></td><td class="ic">wave train</td></tr>

<tr><td colspan=4><div class="contentscenter"><a href="#genericfunctions">Generic Functions</a></div></td></tr>

<tr><td colspan=4><div class="contentscenter"><a href="#othergenerators">Other Generators</a></div></td></tr>

<tr><td colspan=4><div class="contentscenter"><a href="#otherfunctions">Other Functions</a></div></td></tr>

  <tr><td class="ic"><a href="#autocorrelate">autocorrelate</a></td><td class="ic">autocorrelation</td>
      <td class="ic"><a href="#dot-product">dot-product</a></td><td class="ic">dot (scalar) product</td></tr>
  <tr><td class="ic"><a href="#amplitude-modulate">amplitude-modulate</a></td><td class="ic">sig1 * (car + sig2)</td>
      <td class="ic"><a href="#fft">fft</a></td><td class="ic">Fourier transform</td></tr>
  <tr><td class="ic"><a href="#array-interp">array-interp</a></td><td class="ic">array interpolation</td>
      <td class="ic"><a href="#make-fft-window">make-fft-window</a></td><td class="ic">various standard windows</td></tr>
  <tr><td class="ic"><a href="#contrast-enhancement">contrast-enhancement</a></td><td class="ic">modulate signal</td>
      <td class="ic"><a href="#polynomial">polynomial</a></td><td class="ic">Horner's rule</td></tr>
  <tr><td class="ic"><a href="#convolution">convolution</a></td><td class="ic">convolve signals</td>
      <td class="ic"><a href="#ring-modulate">ring-modulate</a></td><td class="ic">sig * sig</td></tr>
  <tr><td class="ic"><a href="#correlate">correlate</a></td><td class="ic">cross correlation</td>
      <td class="ic"><a href="#spectrum">spectrum</a></td><td class="ic">power spectrum of signal</td></tr>

<tr><td colspan=4><div class="contentscenter"><a href="#instruments">Instruments</a></div></td></tr>

</table>



<div class="header" id="introduction">Introduction</div>

<p>Start Snd, open the listener (choose "Show listener" in the View menu), and:
</p>

<pre class="indented">
&gt; (load "v.scm")
fm-violin
&gt; (with-sound () (fm-violin 0 1 440 .1))
"test.snd"
</pre>

<p>
If all went well, you should see a graph of the fm-violin's output.  Click the "play" button to
hear it; click "f" to see its spectrum.
</p>

<p>
In Ruby, we'd do it this way:
</p>

<pre class="indented">
&gt;load "v.rb"
true
&gt;with_sound() do fm_violin_rb(0, 1.0, 440.0, 0.1) end
#&lt;With_CLM: output: "test.snd", channels: 1, srate: 22050&gt;
</pre>

<p>and in Forth:
</p>
<pre class="indented">
snd&gt; "clm-ins.fs" file-eval
0
snd&gt; 0.0 1.0 440.0 0.1 ' fm-violin with-sound
\ filename: test.snd
</pre>


<p>In most of this document, I'll stick with Scheme as implemented by s7.  
<a href="extsnd.html">extsnd.html</a> and <a href="sndscm.html">sndscm.html</a> have numerous
Ruby and Forth examples, and I'll toss some in here as I go along.
You can save yourself a lot of typing by using two features of the listener.  First, &lt;TAB&gt; (that is, the key marked TAB) tries to complete 
the current name, so if you type "fm-&lt;TAB&gt;" the listener completes the name as "fm-violin".
And second, you can back up to a previous expression, edit it, move the cursor to the closing parenthesis, and
type &lt;RETURN&gt;, and that expression will be evaluated as if you had typed all of it in from the start. 
Needless to say, you can paste code from this file into the Snd listener.
</p>

<p>with-sound opens an output sound file, evaluates its body, closes the file, and then opens it in Snd.
If the sound is already open, with-sound replaces it with the new version. 
The body of with-sound can be any size, and can include anything that you could put in a function body.
For example, 
to get an arpeggio:</p>
<pre class="indented">
(with-sound ()
  (do ((i 0 (+ i 1)))
      ((= i 8))
    (fm-violin (* i .25) .5 (* 100 (+ i 1)) .1)))
</pre>

<p>with-sound, instruments, CLM itself are all optional, of course.  We could
do everything by hand:
</p>

<pre class="indented">
(let ((increment (/ (* 440.0 2.0 pi) 22050.0))
      (current-phase 0.0))
  (<a class=quiet href="extsnd.html#newsound">new-sound</a> "test.snd" :size 22050)
  (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y)
 	         (let ((val (* .1 (sin current-phase))))
                   (set! current-phase (+ current-phase increment))
                   val))))
</pre>

<p>This opens a sound file (via <a href="extsnd.html#newsound">new-sound</a>) and fills it with a .1 amplitude sine wave at 440 Hz.
The "increment" calculation turns 440 Hz into a phase increment in radians (we could also use the function <a href="#hztoradians">hz-&gt;radians</a>).
The "oscil" generator keeps track of the phase increment for us, so
essentially the same thing using with-sound and oscil is:
</p>

<pre class="indented">
(with-sound ()
  (let ((osc (<a class=quiet href="#make-oscil">make-oscil</a> 440.0)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (<a class=quiet href="#outa">outa</a> i (* .1 (<a class=quiet href="#oscil">oscil</a> osc)) *output*))))
</pre>

<p>*output* is the file opened by with-sound, and outa is a function that adds its second
argument (the sinusoid) into the current output at the sample given by its first argument
("i" in this case).  oscil is our sinusoid generator, created by make-oscil.  You don't
need to worry about freeing the oscil; we can depend on the Scheme garbage collector to
deal with that.  All the generators are like oscil in that
each is a function that on each call returns the next sample in an infinite stream of samples.
An oscillator, for example, returns an endless sine wave, one sample
at a time.  
Each generator consists of a set of functions:  make-&lt;gen&gt; sets up the
data structure associated with the generator;
&lt;gen&gt; produces a new sample;
&lt;gen&gt;? checks whether a variable is that kind of generator.
Current generator state is accessible via various generic functions such as mus-frequency:
</p>
<pre class="indented">
(set! oscillator (<a class=quiet href="#make-oscil">make-oscil</a> :frequency 330))
</pre>
<p>prepares "oscillator" to produce a sine wave
when set in motion via</p>
<pre class="indented">
(<a class=quiet href="#oscil">oscil</a> oscillator)
</pre>

<p>
The make-&lt;gen&gt; function
takes a number of optional arguments, setting whatever state the given
generator needs to operate on.  The run-time function's first argument is
always its associated structure.  Its second argument is nearly always
something like an FM input or whatever run-time modulation might be
desired.
Frequency sweeps of all kinds (vibrato, glissando, breath
noise, FM proper) are all forms of frequency modulation.  So, in
normal usage, our oscillator looks something like:</p>
<pre class="indented">
(<a class=quiet href="#oscil">oscil</a> oscillator (+ vibrato glissando frequency-modulation))
</pre>

<p>One special aspect of each make-&lt;gen&gt; function is the way it
reads its arguments.  I use parenthesized parameters
in the function definitions to indicate that the argument names are
keywords, but the keywords themselves are optional.
Take the make-oscil call, defined as:</p>
<pre class="indented">
make-oscil (frequency 0.0) (initial-phase 0.0)
</pre>
<p>This says that make-oscil has two optional arguments, frequency (in Hz), and
initial-phase (in radians).  The keywords associated with these values are
:frequency and :initial-phase.
When make-oscil is called, it scans its arguments; if a keyword is seen, that
argument and all following arguments are passed unchanged, but if a value is
seen, the corresponding keyword is prepended in the argument list:
</p>
<pre class="indented">
(<a class=quiet href="#make-oscil">make-oscil</a> :frequency 440.0)
(<a class=quiet href="#make-oscil">make-oscil</a> :frequency 440.0 :initial-phase 0.0)
(<a class=quiet href="#make-oscil">make-oscil</a> 440.0)
(<a class=quiet href="#make-oscil">make-oscil</a> 440.0 :initial-phase 0.0)
(<a class=quiet href="#make-oscil">make-oscil</a> 440.0 0.0)
</pre>
<p>are all equivalent, but</p>
<pre class="indented">
(<a class=quiet href="#make-oscil">make-oscil</a> :frequency 440.0 0.0)
(<a class=quiet href="#make-oscil">make-oscil</a> :initial-phase 0.0 440.0)
</pre>

<p>are in error, because once we see any keyword, all the rest of the arguments have
to use keywords too (we can't reliably make any assumptions after that point about argument
ordering). 
This style of argument passing is the same as that of s7's define*, and is very similar to the "Optional
Positional and Named Parameters" extension of scheme: <a href="http://srfi.schemers.org/srfi-89/">SRFI-89</a>.
</p>

<p>Since we often want to use a given sound-producing algorithm many times (in a note list,
for example), it is convenient to package up that code into a function. Our sinewave
could be rewritten:
</p>

<pre class="indented">
(define (simp start end freq amp)
  (let ((os (<a class=quiet href="#make-oscil">make-oscil</a> freq)))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* amp (<a class=quiet href="#oscil">oscil</a> os)))))) ; outa output defaults to *output* so we can omit it
</pre>

<p>Now to hear our sine wave:</p>
<pre class="indented">
(with-sound (:play #t) (simp 0 44100 330 .1))
</pre>

<p>This version of "simp" forces you to think in terms of sample numbers ("start" and "end") which
are dependent on the sampling rate.  Our first enhancement is to use seconds:
</p>

<pre class="indented">
(define (simp beg dur freq amp)
  (let ((os (<a class=quiet href="#make-oscil">make-oscil</a> freq))
        (<em class=red>start</em> (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
        (<em class=red>end</em> (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> (+ beg dur))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* amp (<a class=quiet href="#oscil">oscil</a> os))))))
</pre>

<p>Now we can use any sampling rate, and call "simp" using seconds:
</p>
<pre class="indented">
(with-sound (:srate 44100) (simp 0 1.0 440.0 0.1))
</pre>


<p>Next we turn the "simp" function into an "instrument".  An instrument is
a function that has a variety of built-in actions within with-sound.  The only change
is the word "definstrument":
</p>

<pre class="indented">
(<em class=red>definstrument</em> (simp beg dur freq amp)
  (let ((os (<a class=quiet href="#make-oscil">make-oscil</a> freq))
        (start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
        (end (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> (+ beg dur))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* amp (<a class=quiet href="#oscil">oscil</a> os))))))
</pre>

<p>Now we can simulate a telephone:
</p>

<pre class="indented">
(define (telephone start telephone-number)
  (do ((touch-tab-1 '(0 697 697 697 770 770 770 852 852 852 941 941 941))
       (touch-tab-2 '(0 1209 1336 1477 1209 1336 1477 1209 1336 1477 1209 1336 1477))
       (i 0 (+ i 1)))
      ((= i (length telephone-number)))
    (let* ((num (telephone-number i))
	   (frq1 (touch-tab-1 num))
	   (frq2 (touch-tab-2 num)))
      (<em class=red>simp</em> (+ start (* i .4)) .3 frq1 .1)
      (<em class=red>simp</em> (+ start (* i .4)) .3 frq2 .1))))

(with-sound () (telephone 0.0 '(7 2 3 4 9 7 1)))
</pre>

<p>As a last change, let's add an amplitude envelope:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (simp beg dur freq amp envelope)
  (let ((os (<a class=quiet href="#make-oscil">make-oscil</a> freq))
        (<em class=red>amp-env</em> (<a class=quiet href="#make-env">make-env</a> envelope :duration dur :scaler amp))
	(start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
        (end (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> (+ beg dur))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> <em class=red>amp-env</em>) (<a class=quiet href="#oscil">oscil</a> os))))))
</pre>

<p>A CLM envelope is a list of (x y) break-point pairs.  The
x-axis bounds are arbitrary, but it is conventional (here at ccrma) to
go from 0 to 1.0.  The y-axis values are normally between -1.0 and
1.0, to make it easier to figure out how to apply the envelope in
various different situations.  
</p>

<pre class="indented">
(with-sound () (simp 0 2 440 .1 '(0 0  0.1 1.0  1.0 0.0)))
</pre>

<p>Add a few more oscils and envs, and you've got the fm-violin.  You can try out a generator or a patch of generators quickly by
plugging it into the following with-sound call:
</p>

<pre class="indented">
(with-sound () 
  (let ((sqr (make-square-wave 100))) ; test a square-wave generator
    (do ((i 0 (+ i 1))) 
        ((= i 10000)) 
      (outa i (square-wave sqr)))))
</pre>

<p>Many people find the syntax of "do" confusing.  It's possible to hide that
away in a macro:
</p>

<pre class="indented">
(define-macro (output beg dur . body)
  `(do ((i (seconds-&gt;samples ,beg) (+ i 1)))
       ((= i (seconds-&gt;samples (+ ,beg ,dur))))
     (outa i (begin ,@body))))

(define (simp beg dur freq amp)
  (let ((o (make-oscil freq)))
    (output beg dur (* amp (oscil o)))))

(with-sound ()
  (simp 0 1 440 .1)
  (simp .5 .5 660 .1))
</pre>

<p>It's also possible to use recursion, rather than iteration:
</p>

<pre class="indented">
(define (simp1)
  (let ((freq (hz-&gt;radians 440.0)))
    (let <em class=red>simp-loop</em> ((i 0) (x 0.0))
      (outa i (sin x)) 
      (if (&lt; i 44100)
	  (<em class=red>simp-loop</em> (+ i 1) (+ x freq))))))

(define <em class=red>simp2</em>
  (let ((freq (hz-&gt;radians 440.0)))
    (lambda* ((i 0) (x 0.0))
      (outa i (sin x))
      (if (&lt; i 44100)
	  (<em class=red>simp2</em> (+ i 1) (+ x freq))))))
</pre>

<p>but the do-loop is faster.
</p>

<!--
(define samps 44100)

(define (simp1)
  (let ((freq (hz->radians 440.0)))
    (do ((i 0 (+ i 1))
	 (x 0.0 (+ x freq)))
	((= i samps))
      (outa i (sin x)))))

(define (simp2)
  (let ((osc (make-oscil 440.0)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (oscil osc)))))

(define (simp3)
  (let ((freq (hz->radians 440.0)))
    (let simp-loop ((i 0) (x 0.0))
      (outa i (sin x))
      (if (< i samps)
	  (simp-loop (+ i 1) (+ x freq))))))

(define simp4
  (let ((freq (hz->radians 440.0)))
    (lambda* ((i 0) (x 0.0))
      (outa i (sin x))
      (if (< i samps)
	  (simp4 (+ i 1) (+ x freq))))))

(define-macro (time a) 
  `(let ((start (get-internal-real-time)))
     ,a 
     (* 1.0 (- (get-internal-real-time) start))))

(with-sound (:clipped #f)
  (format *stderr* "~,4F~%" (time (simp1)))
  (format *stderr* "~,4F~%" (time (simp2)))
  (format *stderr* "~,4F~%" (time (simp3)))
  (format *stderr* "~,4F~%" (time (simp4))))

#|
0.0044
0.0017
0.0165
0.0276
|#
-->

<!-- INDEX generators:Generators -->

<div class="header" id="generators">Generators</div>



<!--  OSCIL  -->

<div class="innerheader" id="oscildoc">oscil</div>

<pre class="indented">
<em class=def id="make-oscil">make-oscil</em> (frequency 0.0) (initial-phase 0.0)
<em class=def id="oscil">oscil</em> os (fm-input 0.0) (pm-input 0.0)
<em class=def id="oscil?">oscil?</em> os

<em class=def id="make-oscil-bank">make-oscil-bank</em> freqs phases amps stable
<em class=def id="oscil-bank">oscil-bank</em> os fms
<em class=def id="oscil-bank?">oscil-bank?</em> os
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">oscil methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td> <td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td>     <td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td>    <td class="inner">1 (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td> <td class="inner">frequency in radians per sample</td></tr>
</table>


<p>oscil produces a sine wave (using sin) with optional frequency change (FM).
It might be defined:
</p>

<pre class="indented">
(let ((result (sin (+ phase pm-input))))
  (set! phase (+ phase (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frequency) fm-input))
  result)
</pre>
<!--  <img src="pix/sceq9.png" alt="fnm equation"> -->
<!-- LATEX: \cos \, (\omega_{c}t+B\sin \omega_{m}t)\:=\!\!\sum_{n=-\infty}^{\infty} \! \! J_{n}(B)\cos(\omega_{c} + n\omega_{m})t -->

<p>oscil's first argument is an oscil created by make-oscil.
Oscil's second argument is the 
frequency change (frequency modulation), and the third argument is the
phase change (phase modulation).
The initial-phase argument to make-oscil is in radians. You can
use <a href="#degreestoradians">degrees-&gt;radians</a> to convert from degrees to radians.
To get a cosine (as opposed to sine), set the initial-phase to (/ pi 2).
Here are examples in Scheme, Ruby, and Forth:
</p>


<table><tr><td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-oscil 440.0)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (oscil gen))))))
</pre>
</div>
</td></tr><tr><td>

<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_oscil(440.0);
  44100.times do |i| 
    outa(i, 0.5 * oscil(gen), $output) 
    end
  end.output
</pre>
</div>
</td></tr><tr><td>

<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 make-oscil { gen }
  44100 0 do
    i  gen 0 0 oscil  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td></tr></table>

<p>One slightly confusing aspect of oscil is that glissando has to be turned into a phase-increment envelope.
This means that the frequency envelope y values should be passed through <a href="#hztoradians">hz-&gt;radians</a>:
</p>

<pre class="indented">
(define (simp start end freq amp frq-env)
  (let ((os (make-oscil freq)) 
        (frqe (<a class=quiet href="#make-env">make-env</a> frq-env :length (- (+ end 1) start) :scaler (<em class=red>hz-&gt;radians</em> freq))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* amp (oscil os (<a class=quiet href="#env">env</a> <em class=red>frqe</em>)))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (simp 0 10000 440 .1 '(0 0 1 1))) ; sweep up an octave
</pre>

<p>Here is an example of FM (here the <a class=quiet href="#hztoradians">hz-&gt;radians</a> business is folded into the FM index):
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (simple-fm beg dur freq amp mc-ratio index amp-env index-env)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
	 (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
	 (cr (<em class=red>make-oscil</em> freq))                     ; carrier
         (md (<em class=red>make-oscil</em> (* freq mc-ratio)))        ; modulator
         (fm-index (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (* index mc-ratio freq)))
         (ampf (<a class=quiet href="#make-env">make-env</a> (or amp-env '(0 0  .5 1  1 0)) :scaler amp :duration dur))
         (indf (<a class=quiet href="#make-env">make-env</a> (or index-env '(0 0  .5 1  1 0)) :scaler fm-index :duration dur)))
    (do ((i start (+ i 1)))
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) 
                 (<em class=red>oscil</em> cr (* (<a class=quiet href="#env">env</a> indf) 
                              (<em class=red>oscil</em> md))))))))

;;; (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (simple-fm 0 1 440 .1 2 1.0))
</pre>

<p><a href="fm.html">fm.html</a> has an introduction to FM.
FM and PM behave slightly differently during a glissando; FM is the more "natural" in that, left to its own devices,
it produces a spectrum that varies inversely with the pitch.  Compare these two cases.  Both involve a slow glissando
up an octave, FM in channel 0, and PM in channel 1.  In the first note, I fix up the FM index during the sweep to
keep the spectra steady, and in the second, I fix up the PM index.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let* ((dur 2.0)
	 (samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))
	 (pitch 1000)
	 (modpitch 100)
	 (pm-index 4.0)
	 (fm-index (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (* 4.0 modpitch))))
    (let ((car1 (make-oscil pitch))
	  (mod1 (make-oscil modpitch))
	  (car2 (make-oscil pitch))
	  (mod2 (make-oscil modpitch))
	  (frqf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :duration dur))
	  (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 20 1 21 0) :duration dur :scaler .5)))
      (do ((i 0 (+ i 1)))
	  ((= i samps))
	(let* ((frq (<a class=quiet href="#env">env</a> frqf))
	       (rfrq (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frq))
	       (amp (<a class=quiet href="#env">env</a> ampf)))
	  (<a class=quiet href="#outa">outa</a> i (* amp (oscil car1 (+ (* rfrq pitch)
					(* <em class=red>fm-index (+ 1 frq)</em> ; keep spectrum the same
					   (oscil mod1 (* rfrq modpitch)))))))
	  (<a class=quiet href="#outa">outb</a> i (* amp (oscil car2 (* rfrq pitch)
				(* <em class=red>pm-index</em> (oscil mod2 (* rfrq modpitch)))))))))
    (let ((car1 (make-oscil pitch))
	  (mod1 (make-oscil modpitch))
	  (car2 (make-oscil pitch))
	  (mod2 (make-oscil modpitch))
	  (frqf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :duration dur))
	  (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 20 1 21 0) :duration dur :scaler .5)))
      (do ((i 0 (+ i 1)))
	  ((= i samps))
	(let* ((frq (<a class=quiet href="#env">env</a> frqf))
	       (rfrq (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frq))
	       (amp (<a class=quiet href="#env">env</a> ampf)))
	  (<a class=quiet href="#outa">outa</a> (+ i samps) (* amp (oscil car1 (+ (* rfrq pitch)
						  (* <em class=red>fm-index</em>   ; let spectrum decay
						     (oscil mod1 (* rfrq modpitch)))))))
	  (<a class=quiet href="#outa">outb</a> (+ i samps) (* amp (oscil car2 (* rfrq pitch)
				          (* <em class=red>(/ pm-index (+ 1 frq))</em> (oscil mod2 (* rfrq modpitch)))))))))))
</pre>

<p>And if you read somewhere that PM can't produce a frequency shift:
</p>
<pre class="indented">
(with-sound ()
  (let ((o (make-oscil 200.0))
        (e (make-env '(0 0 1 1) :scaler 300.0 :duration 1.0)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (oscil o 0.0 (env e))))))
</pre>



<p>To show CLM in its various embodiments, here are the Scheme, Common Lisp, Ruby, Forth, and C versions of the bird instrument;
it produces a sinusoid with (usually very elaborate) amplitude and frequency envelopes.
</p>

<table>
<tr><td>
<div class="scheme">
<pre class="indented">
(define (scheme-bird start dur frequency freqskew amplitude freq-envelope amp-envelope)
  (let* ((gls-env (<a class=quiet href="#make-env">make-env</a> freq-envelope (<a class=quiet href="#hztoradians">hz-&gt;radians</a> freqskew) dur))
         (os (<a class=quiet href="#make-oscil">make-oscil</a> frequency))
         (amp-env (<a class=quiet href="#make-env">make-env</a> amp-envelope amplitude dur))
	 (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
   (do ((i beg (+ i 1)))
       ((= i end))
     (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> amp-env) 
                (<a class=quiet href="#oscil">oscil</a> os (<a class=quiet href="#env">env</a> gls-env)))))))
</pre>
</div>
</td></tr><tr><td>

<div class="lisp">
<pre class="indented">
(definstrument common-lisp-bird (startime dur frequency freq-skew amplitude freq-envelope amp-envelope)
  (multiple-value-bind (beg end) (times-&gt;samples startime dur)
    (let* ((amp-env (make-env amp-envelope amplitude dur))
	   (gls-env (make-env freq-envelope (<a class=quiet href="#hztoradians">hz-&gt;radians</a> freq-skew) dur))
	   (os (make-oscil frequency)))
      (run
       (loop for i from beg to end do
	 (outa i (* (env amp-env) 
                    (oscil os (env gls-env)))))))))
</pre>
</div>
</td></tr><tr><td>

<div class="ruby">
<pre class="indented">
def ruby_bird(start, dur, freq, freqskew, amp, freq_envelope, amp_envelope)
  gls_env = make_env(:envelope, freq_envelope, :scaler, hz2radians(freqskew), :duration, dur)
  os = make_oscil(:frequency, freq)
  amp_env = make_env(:envelope, amp_envelope, :scaler, amp, :duration, dur)
  run_instrument(start, dur) do
    env(amp_env) * oscil(os, env(gls_env))
  end
end
</pre>
</div>
</td></tr><tr><td>

<div class="forth">
<pre class="indented">
instrument: forth-bird { f: start f: dur f: freq f: freq-skew f: amp freqenv ampenv -- }
    :frequency freq make-oscil { os }
    :envelope ampenv :scaler amp :duration dur make-env { ampf }
    :envelope freqenv :scaler freq-skew hz&gt;radians :duration dur make-env { gls-env }
    90e random :locsig-degree
    start dur run-instrument  ampf env  gls-env env os oscil-1  f*  end-run
    os gen-free
    ampf gen-free
    gls-env gen-free
;instrument
</pre>
</div>
</td></tr><tr><td>

<div class="c">
<pre class="indented">
void c_bird(double start, double dur, double frequency, double freqskew, double amplitude, 
	    mus_float_t *freqdata, int freqpts, mus_float_t *ampdata, int amppts, mus_any *output)
{
  mus_long_t beg, end, i;
  mus_any *amp_env, *freq_env, *osc;
  beg = start * mus_srate();
  end = start + dur * mus_srate();
  osc = mus_make_oscil(frequency, 0.0);
  amp_env = mus_make_env(ampdata, amppts, amplitude, 0.0, 1.0, dur, 0, NULL);
  freq_env = mus_make_env(freqdata, freqpts, mus_hz_to_radians(freqskew), 0.0, 1.0, dur, 0, NULL);
  for (i = beg; i &lt; end; i++)
    mus_sample_to_file(output, i, 0, 
		       mus_env(amp_env) * 
		         mus_oscil(osc, mus_env(freq_env), 0.0));
  mus_free(osc);
  mus_free(amp_env);
  mus_free(freq_env);
}
</pre>
</div>
</td></tr></table>


<p>Many of the CLM synthesis functions try to make it
faster or more convenient to produce a lot of sinusoids, but there
are times when nothing but a ton of oscils will do:
</p>


<pre class="indented">
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () 
 (let* ((peaks (list  23  0.0051914    32  0.0090310    63  0.0623477    123  0.1210755    185  0.1971876
		      209  0.0033631  247  0.5797809   309  1.0000000    370  0.1713255    432  0.9351965
		      481  0.0369873  495  0.1335089   518  0.0148626    558  0.1178001    617  0.6353443
		      629  0.1462804  661  0.0208941   680  0.1739281    701  0.0260423    742  0.1203807
		      760  0.0070301  803  0.0272111   865  0.0418878    926  0.0090197    992  0.0098687
		      1174  0.00444  1298  0.0039722  2223  0.0033486   2409  0.0083675   2472  0.0100995
		      2508  0.004262 2533  0.0216248  2580  0.0047732   2596  0.0088663   2612  0.0040592
		      2657  0.005971 2679  0.0032541  2712  0.0048836   2761  0.0050938   2780  0.0098877
		      2824  0.003421 2842  0.0134356  2857  0.0050194   2904  0.0147466   2966  0.0338878
		      3015  0.004832 3027  0.0095497  3040  0.0041434   3092  0.0044802   3151  0.0038269
		      3460  0.003633 3585  0.0050849  4880  0.0042301   5121  0.0037906   5136  0.0048349
		      5158  0.004336 5192  0.0037841  5200  0.0038025   5229  0.0035555   5356  0.0045781
		      5430  0.003687 5450  0.0055170  5462  0.0057821   5660  0.0041789   5673  0.0044932
		      5695  0.007370 5748  0.0031716  5776  0.0037921   5800  0.0062308   5838  0.0034629
		      5865  0.005942 5917  0.0032254  6237  0.0046164   6360  0.0034708   6420  0.0044593
		      6552  0.005939 6569  0.0034665  6752  0.0041965   7211  0.0039695   7446  0.0031611
		      7468  0.003330 7482  0.0046322  8013  0.0034398   8102  0.0031590   8121  0.0031972
		      8169  0.003345 8186  0.0037020  8476  0.0035857   8796  0.0036703   8927  0.0042374
		      9388  0.003173 9443  0.0035844  9469  0.0053484   9527  0.0049137   9739  0.0032365
		      9853  0.004297 10481  0.0036424  10490  0.0033786  10606  0.0031366))
	(len (/ (length peaks) 2))
	(dur 10)
	(oscs (make-vector len))
	(amps (make-vector len))
	(ramps (make-vector len))
	(freqs (make-vector len))
	(vib (<a class=quiet href="#make-rand-interp">make-rand-interp</a> 50 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> .01)))
	(ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 10 1 11 0) :duration dur :scaler .1))
	(samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))

   (do ((i 0 (+ i 1)))
       ((= i len))
     (set! (freqs i) (peaks (* i 2)))
     (set! (oscs i) (<em class=red>make-oscil</em> (freqs i) (random pi)))
     (set! (amps i) (peaks (+ 1 (* 2 i))))
     (set! (ramps i) (<a class=quiet href="#make-rand-interp">make-rand-interp</a> (+ 1.0 (* i (/ 20.0 len))) 
				       (* (+ .1 (* i (/ 3.0 len))) (amps i)))))
  (do ((i 0 (+ i 1)))
      ((= i samps))
    (let ((sum 0.0)
          (fm (<a class=quiet href="#rand-interp">rand-interp</a> vib)))
      (do ((k 0 (+ k 1)))
          ((= k len))
        (set! sum (+ sum (* (+ (amps k)
		               (<a class=quiet href="#rand-interp">rand-interp</a> (ramps k)))
		            (<em class=red>oscil</em> (oscs k) (* (freqs k) fm))))))
  (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) sum))))))
</pre>

<p>oscil-bank here would be faster, or <a href="#mus-chebyshev-tu-sum">mus-chebyshev-t-sum</a>:
</p>

<pre class="indented">
...
(amps (make-float-vector 10607))
(angle 0.0)
(freq (hz-&gt;radians 1.0))
...
(do ((i 0 (+ i 1))
     (k 0 (+ k 2)))
    ((= i len))
  (set! (amps (peaks k)) (peaks (+ k 1))))
...
 (outa i (* (env ampf) (<em class=red>mus-chebyshev-t-sum</em> angle amps)))
 (set! angle (+ angle freq (rand-interp vib)))
...
</pre>

<p>Here's a better example: we want to start with a sum of equal amplitude harmonically
related cosines (a sequence of spikes), and move slowly to a waveform with the same
magnitude spectrum, but with the phases chosen to minimize the peak amplitude.
</p>

<pre class="indented">
(let ((98-phases #(0.000000 -0.183194 0.674802 1.163820 -0.147489 1.666302 0.367236 0.494059 0.191339 
                   0.714980 1.719816 0.382307 1.017937 0.548019 0.342322 1.541035 0.966484 0.936993 
                   -0.115147 1.638513 1.644277 0.036575 1.852586 1.211701 1.300475 1.231282 0.026079 
 		   0.393108 1.208123 1.645585 -0.152499 0.274978 1.281084 1.674451 1.147440 0.906901 
		   1.137155 1.467770 0.851985 0.437992 0.762219 -0.417594 1.884062 1.725160 -0.230688 
		   0.764342 0.565472 0.612443 0.222826 -0.016453 1.527577 -0.045196 0.585089 0.031829 
		   0.486579 0.557276 -0.040985 1.257633 1.345950 0.061737 0.281650 -0.231535 0.620583 
		   0.504202 0.817304 -0.010580 0.584809 1.234045 0.840674 1.222939 0.685333 1.651765 
		   0.299738 1.890117 0.740013 0.044764 1.547307 0.169892 1.452239 0.352220 0.122254 
		   1.524772 1.183705 0.507801 1.419950 0.851259 0.008092 1.483245 0.608598 0.212267	
		   0.545906 0.255277 1.784889 0.270552 1.164997 -0.083981 0.200818 1.204088))
     (freq 10.0)
     (dur 5.0)
     (n 98))
  (with-sound ()
    (let ((samps (floor (* dur 44100)))
	  (1/n (/ 1.0 n))
	  (freqs (make-float-vector n))
	  (phases (make-float-vector n (* pi 0.5))))
      (do ((i 0 (+ i 1)))
	  ((= i n))
	(let ((off (/ (* pi (- 0.5 (98-phases i))) dur 44100))
	      (h (hz-&gt;radians (* freq (+ i 1)))))
	  (set! (freqs i) (+ h off))))
      (let ((ob (<em class=red>make-oscil-bank</em> freqs phases)))
        (do ((i 0 (+ i 1))) ; get rid of the distracting initial click
            ((= i 1000))
          (<em class=red>oscil-bank</em> ob))
        (do ((k 0 (+ k 1)))
	    ((= k samps))
          (outa k (* 1/n (<em class=red>oscil-bank</em> ob))))))))
</pre>



<!--
(with-sound () 
 (let* ((peaks (list  23  0.0051914    32  0.0090310    63  0.0623477    123  0.1210755    185  0.1971876
		      209  0.0033631  247  0.5797809   309  1.0000000    370  0.1713255    432  0.9351965
		      481  0.0369873  495  0.1335089   518  0.0148626    558  0.1178001    617  0.6353443
		      629  0.1462804  661  0.0208941   680  0.1739281    701  0.0260423    742  0.1203807
		      760  0.0070301  803  0.0272111   865  0.0418878    926  0.0090197    992  0.0098687
		      1174  0.00444  1298  0.0039722  2223  0.0033486   2409  0.0083675   2472  0.0100995
		      2508  0.004262 2533  0.0216248  2580  0.0047732   2596  0.0088663   2612  0.0040592
		      2657  0.005971 2679  0.0032541  2712  0.0048836   2761  0.0050938   2780  0.0098877
		      2824  0.003421 2842  0.0134356  2857  0.0050194   2904  0.0147466   2966  0.0338878
		      3015  0.004832 3027  0.0095497  3040  0.0041434   3092  0.0044802   3151  0.0038269
		      3460  0.003633 3585  0.0050849  4880  0.0042301   5121  0.0037906   5136  0.0048349
		      5158  0.004336 5192  0.0037841  5200  0.0038025   5229  0.0035555   5356  0.0045781
		      5430  0.003687 5450  0.0055170  5462  0.0057821   5660  0.0041789   5673  0.0044932
		      5695  0.007370 5748  0.0031716  5776  0.0037921   5800  0.0062308   5838  0.0034629
		      5865  0.005942 5917  0.0032254  6237  0.0046164   6360  0.0034708   6420  0.0044593
		      6552  0.005939 6569  0.0034665  6752  0.0041965   7211  0.0039695   7446  0.0031611
		      7468  0.003330 7482  0.0046322  8013  0.0034398   8102  0.0031590   8121  0.0031972
		      8169  0.003345 8186  0.0037020  8476  0.0035857   8796  0.0036703   8927  0.0042374
		      9388  0.003173 9443  0.0035844  9469  0.0053484   9527  0.0049137   9739  0.0032365
		      9853  0.004297 10481  0.0036424  10490  0.0033786  10606  0.0031366))
	(len (/ (length peaks) 2))
	(dur 10)
	(ramps (make-vector len))
	(vib (make-rand-interp 50 (hz->radians .01)))
	(ampf (make-env '(0 0 1 1 10 1 11 0) :duration dur :scaler .1))
	(samps (seconds->samples dur))
	(amps (make-float-vector 10607))
	(angle 0.0)
	(freq (hz->radians 1.0)))

   (do ((i 0 (+ i 1))
	(k 0 (+ k 2)))
       ((= i len))
     (set! (amps (peaks k)) (peaks (+ k 1))))

      (do ((i 0 (+ i 1)))
	  ((= i samps))
	(outa i (* (env ampf)
		   (mus-chebyshev-t-sum angle amps)))
	(set! angle (+ angle freq (rand-interp vib))))))
-->

<p>The last argument to make-oscil-bank, "stable", defaults to false.  If it is
true, oscil-bank can assume that the frequency, phase, and amplitude values passed to
make-oscil-bank will not change over the life of the generator.
</p>

<p>
Related generators are 
<a href="#ncos">ncos</a>, 
<a href="#nsin">nsin</a>,
<a href="#asymmetric-fm">asymmetric-fm</a>, and
<a href="#nrxydoc">nrxysin</a>.
Some instruments that use oscil are 
<a href="sndscm.html#birddoc">bird and bigbird</a>,
<a href="sndscm.html#fmviolin">fm-violin</a> (v),
<a href="sndscm.html#lbjpiano">lbj-piano</a> (clm-ins.scm), 
<a href="sndscm.html#fmvox">vox</a> (clm-ins.scm), and
<a href="sndscm.html#fmbell">fm-bell</a> (clm-ins.scm).  
Interesting extensions of oscil include the various
summation formulas in <a href="#othergenerators">generators.scm</a>.
To goof around with FM from a graphical interface, see bess.scm and bess1.scm.
</p>


<p>When oscil's frequency is high relative to the sampling rate,
the waveform it produces may not look very sinusoidal.  Here, for example, is oscil
at 440 Hz when the srate is 1000, 4000, and 16000:
</p>
<img src="pix/srates.png" alt="effect of different srates">


<!--
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! *axis-numbers-font* *tiny-font*)
(set! (x-axis-label 0 0 0) "srate: 1000")
(set! (x-axis-label 1 0 0) "srate: 4000")
(set! (x-axis-label 2 0 0) "srate: 16000")
(set! *axis-label-font* "12x24")

(with-sound (:srate 1000) ; 4000 16000
   (let ((gen (make-oscil 440.0)))
      (do ((i 0 (+ i 1)))
          ((= i 20000))
        (outa i (oscil gen)))))

-->





<!--  ENV  -->

<div class="innerheader" id="envdoc">env</div>

<pre class="indented">
<em class=def id="make-env">make-env</em> 
      envelope      ; list or float-vector of x,y break-point pairs
      (scaler 1.0)  ; scaler on every y value (before offset is added)
      duration      ; duration in seconds
      (offset 0.0)  ; value added to every y value
      base          ; type of connecting line between break-points
      end           ; end sample number (obsolete, use length)
      length        ; duration in samples

<em class=def id="env">env</em> e
<em class=def id="env?">env?</em> e

<em class=def id="env-interp">env-interp</em> x env (base 1.0) ;value of env at x
<em class=def id="env-any">env-any</em> e connecting-function
<em class=def id="envelopeinterp">envelope-interp</em> x env (base 1.0)

<em class=def id="make-pulsed-env">make-pulsed-env</em> envelope duration frequency
<em class=def id="pulsedenv">pulsed-env</em> gen (fm 0.0)
<em class=def id="pulsedenv?">pulsed-env?</em> gen
</pre>


<table class="method">
<tr><td colspan=2 class="methodtitle">env methods</td></tr>
<tr><td class="inner"><em class=gen>mus-location</em></td> <td class="inner">number of calls so far on this env</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">base</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td>     <td class="inner">original breakpoint list</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td>   <td class="inner">scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-offset</em></td>   <td class="inner">offset</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td>   <td class="inner">duration in samples</td></tr>
<tr><td class="inner"><em class=gen>mus-channels</em></td> <td class="inner">current position in the break-point list</td></tr>
</table>


<p>An envelope is a list or float-vector of break point pairs: <code>'(0 0  100 1)</code>  is
a ramp from 0 to 1 over an x-axis excursion from 0 to 100, as is <code>(float-vector 0 0 100 1)</code>.  
This data is passed
to make-env along with the scaler (multiplier)
applied to the y axis, the offset added to every y value,
and the time in samples or seconds that the x axis represents.  
make-env returns an env generator.  
env then returns the next sample of the envelope each time it is called.  
Say we want  a ramp moving from .3 to .5 during 1 second. 
</p>
<pre class="indented">
    (make-env '(0 0  100 1) :scaler .2 :offset .3 :duration 1.0)
    (make-env '(0 .3  1 .5) :duration 1.0)
</pre>
<p>
I find the second version easier to read.  The first is handy if you have a
bunch of stored envelopes.  To specify the breakpoints, you can also use the form <code>'((0 0) (100 1))</code>.
I used "scaler" decades ago because I didn't like the spelling "scalar".  According
to the OED, "scalar" goes back to the 17th century, and derives from "scala", a ladder, ultimately from
Latin.  "scaler" is also old, and refers to one who scales a mountain or a fish.  Well, I still
like "scaler" better:  We're staring at a "peak"! "gain" looks like an escapee from the EE lab.  "volume" is too specific.
Maybe "scl" or "*"?
</p>

<img src="pix/pyr.png" alt="an envelope">
<br>


<table><tr><td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-oscil 440.0))
        (ampf (make-env '(0 0  .01 1  .25 .1 1 0)
	        :scaler 0.5
                :length 44100)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* (env ampf) (oscil gen))))))
</pre>
</div>
</td></tr><tr><td>

<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_oscil(440.0);
  ampf = make_env(
          [0, 0, 0.01, 1.0, 0.25, 0.1, 1, 0],
          :scaler, 0.5,
          :length, 44100);
  44100.times do |i| 
    outa(i, env(ampf) * oscil(gen), $output) 
    end
  end.output
</pre>
</div>
</td></tr><tr><td>

<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 make-oscil { gen }
  '( 0 0 0.01 1 0.25 0.1 1 0 )
  :scaler 0.5 :length 44100 make-env { ampf }
  44100 0 do
    i  gen 0 0 oscil  ampf env  f* *output*  outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td></tr></table>


<p>The base argument determines how the break-points are connected.  If it is 1.0 (the
default), you get straight line segments.  If base is 0.0, you get a step
function (the envelope changes its value suddenly to the new one without any
interpolation).  Any other positive value affects the exponent of the exponential curve
connecting the points.  A base less than 1.0 gives convex curves (i.e. bowed
out), and a base greater than 1.0 gives concave curves (i.e. sagging).
If you'd rather think in terms of e^-kt, set the base to <code>(exp k)</code>. 
</p>

<img src="pix/pyr03.png" alt="base .03 choice">

<img src="pix/pyr32.png" alt="base 32 choice">


<p>
You can get a lot from a couple of envelopes:
</p>

<pre class="indented">
&gt; (load "animals.scm")
#&lt;unspecified&gt;
&gt; (with-sound (:play #t) (pacific-chorus-frog 0 .5))
"test.snd"
&gt; (with-sound (:play #t) (house-finch 0 .5))
"test.snd"
</pre>


<p>
There are several ways to get arbitrary connecting curves between the break points.
The simplest method is to treat
the output of env as the input to the connecting function.  Here's an
instrument that maps the line segments into sin x^3:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (mapenv beg dur frq amp en)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
	 (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
	 (osc (<a class=quiet href="#make-oscil">make-oscil</a> frq))
	 (zv (<em class=red>make-env</em> <em class=red>en</em> 1.0 dur)))
   (do ((i start (+ i 1)))
       ((= i end))
     (let ((zval (<em class=red>env</em> zv))) 
       (<a class=quiet href="#outa">outa</a> i 
         (* amp 
            (sin (* 0.5 pi zval zval zval)) 
            (<a class=quiet href="#oscil">oscil</a> osc)))))))

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () 
  (mapenv 0 1 440 .5 '(0 0  50 1  75 0  86 .5  100 0)))
</pre>

<img src="pix/sincube.png" alt="sin cubed envelope">


<!--
(define (fixup-axes)
  (set! *selected-data-color* (make-color 0 0 0))(set! *selected-data-color* (make-color 0 0 0))
  (set! *selected-graph-color* (make-color 1 1 1))
  (set! (x-axis-label 0 0) "sin^3 of '(0 0  50 1  75 0  86 .5  100 0)"))
-->

<p id="bellcurve">Another method is to write a function that traces out the curve you want.
J.C.Risset's bell curve is:</p>

<pre class="indented">
(define (bell-curve x)
  ;; x from 0.0 to 1.0 creates bell curve between .64e-4 and nearly 1.0
  ;; if x goes on from there, you get more bell curves; x can be
  ;; an envelope (a ramp from 0 to 1 if you want just a bell curve)
  (+ .64e-4 (* .1565 (- (exp (- 1.0 (cos (* 2 pi x)))) 1.0))))
</pre>

<p>But the most flexible method is to use <b>env-any</b>.
env-any takes the env generator that produces the underlying envelope,
and a function to "connect the dots", and returns the new envelope
applying that connecting function between the break points.
For example, say we want to square each envelope value:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((e (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 .25 3 1 4 0) 
                     :duration 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>env-any</em> e (lambda (y) (* y y)))))))

;; or connect the dots with a sinusoid:

(define (sine-env e)
  (<em class=red>env-any</em> e (lambda (y)
	       (* 0.5 (+ 1.0 (sin (+ (* -0.5 pi) 
				     (* pi y))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((e (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 .25 3 1 4 0)
                     :duration 0.5)))
   (do ((i 0 (+ i 1)))
       ((= i 44100))
     (<a class=quiet href="#outa">outa</a> i (sine-env e)))))
</pre>

<img src="pix/envany.png" alt="env-any pix">


<!--
(define (fixup-axes)
  (set! *selected-data-color* (make-color 0 0 0))(set! *selected-data-color* (make-color 0 0 0))
  (set! *selected-graph-color* (make-color 1 1 1))
  (set! *axis-numbers-font* *tiny-font*)
  (set! (x-axis-label 0 0) "(env-any e (lambda (y) (* y y)))")
  (set! (x-axis-label 0 1) "(sine-env)"))
-->

<p>The env-any connecting function takes one argument, the current envelope value treated as
going between 0.0 and 1.0 between each two points.  It returns a value that is then
fitted back into the original (scaled, offset) envelope.  There are a couple more of these
functions in generators.scm, one to apply a blackman4 window between the points, and the
other to cycle through a set of exponents.
</p>


<p>
<a href="#mus-reset">mus-reset</a> of an env causes it
to start all over again from the beginning. 
mus-reset is called internally if you use mus-scaler to set an env's scaler (and similarly for offset and length).
To jump to any position in
an env, use <a href="#mus-location">mus-location</a>.
Here's a function that uses these methods to apply an envelope over and over:
</p>

<pre class="indented">
(define (strum e)
  (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y)
		 (if (&gt; (<em class=red>mus-location</em> e) (<em class=red>mus-length</em> e)) ; mus-length = dur
		     (<em class=red>mus-reset</em> e))     ; start env again (default is to stick at the last value)
		 (* y (<a class=quiet href="#env">env</a> e)))))

;;; (strum (make-env (list 0 0 1 1 10 .6 25 .3 100 0) :length 2000))
</pre>

<p>To copy an env while changing one aspect (say
duration), it's simplest to use make-env:
</p>

<pre class="indented">
(define (change-env-dur e dur)
  (<a class=quiet href="#make-env">make-env</a> (<a class=quiet href="#mus-data">mus-data</a> e) :scaler (<a class=quiet href="#mus-scaler">mus-scaler</a> e) :offset (<a class=quiet href="#mus-offset">mus-offset</a> e) :base (<a class=quiet href="#mus-increment">mus-increment</a> e)
	    :duration dur))
</pre>

<p>make-env signals an error if the envelope breakpoints are either out of order, or an x axis value
occurs twice.  The default error handler in with-sound may not give you the information you need to
track down the offending note, even given the original envelope.  Here's one way to trap the error
and get more info (in this case, the begin time and duration of the enclosing note):
</p>

<pre class="indented">
(define* (make-env-with-catch beg dur :rest args)
  (catch 'mus-error
	 (lambda ()
	   (apply <em class=red>make-env</em> args))
	 (lambda args
	   (<a class=quiet>format</a> #t ";~A ~A: ~A~%" beg dur args))))
</pre>

<p>(envelope-interp x env base) returns value of 'env' at 'x'.
If 'base' is 0, 'env' is treated as a step function; if 'base' is 1.0 (the
default), the breakpoints of 'env' are connected by a straight line, and
any other 'base' connects the breakpoints with a kind of exponential
curve:
</p>

<pre class="indented">
&gt; (envelope-interp .1 '(0 0 1 1))
0.1
&gt; (envelope-interp .1 '(0 0 1 1) 32.0)
0.0133617278184869
&gt; (envelope-interp .1 '(0 0 1 1) .012)
0.361774730775292
</pre>

<p>The corresponding function for a CLM env generator is <a href="sndclm.html#env-interp">env-interp</a>.
If you'd rather think in terms of e^-kt, set the 'base' to (exp k).  
</p>
<div class="spacer"></div>


<p>
pulsed-env produces a repeating envelope.  <a href="#env">env</a> sticks at its last value, but pulsed-env repeats it over and over.
"duration" is the envelope duration, and "frequency" is the repeitition rate, changeable via the "fm" argument to the pulsed-env generator.
</p>
<pre class="indented">
(with-sound ()
  (let ((e (make-pulsed-env '(0 0 1 1 2 0) .01 1)) 
        (frq (make-env '(0 0 1 1) :duration 1.0 :scaler (hz-&gt;radians 50))))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* .5 (pulsed-env e (env frq)))))))
</pre>

<p>
An envelope applied to the amplitude of a signal is a form of amplitude modulation,
and glissando is frequency modulation.  Both cause a broadening of the spectral components:
</p>

<table><tr>
<td>
<img src="pix/ampenvspectrum.png" alt="amp env spectrum">
</td><td>
<img src="pix/frqenvspectrum.png" alt="frq env spectrum">
</td></tr>
<tr>
<td class="center"><small>truncated pyramid amplitude envelope<br>multiplied by sinusoid at 50Hz</small>
</td>
<td class="center"><small>truncated pyramid frquency envelope<br>sinusoid from 100Hz to 300Hz</small>
</td>
</tr></table>


<!--
ampenvspectrum.png:
(with-sound (:srate 10000)
  (let* ((ampf (make-env '(0 0 1 1 15 1 16 0) :duration 15))
	 (osc (make-oscil 50))
	 (samps (seconds->samples 15))
	 (start (seconds->samples 7))
	 (end (+ start samps)))
       (do ((i 0 (+ i 1)))
	   ((= i end))
	 (outa (+ i start) (* (env ampf) (oscil osc))))))

;;; GL/ data cutoff .015 dark 78 jet invert blackman10 65536 db-100
;;; x 299 1.84 y 281 .082 z 342 1.25
;;; hop 3
(set! *spectrum-end* .02)
(set! *selected-graph-color* (make-color 1 1 1))

frqenvspectrum.png:
(with-sound (:srate 10000)
  (let* ((ampf (make-env '(0 0 10 0 11 1 25 1 26 0 40 0) :duration 40 :scaler (hz->radians 200)))
	 (osc (make-oscil 100))
	 (samps (seconds->samples 40))
	 (start (seconds->samples 0))
	 (end (+ start samps)))
       (do ((i 0 (+ i 1)))
	   ((= i end))
	 (outa (+ i start) (oscil osc (env ampf))))))

65536 GL blackman10 -100 dB 
x 299 1.84 y 281 0.82 z 10 1.25
hop 3 % 0.11
jet .015 78 invert
-->

<p>The amplitude case reflects the spectrum of the amplitude envelope all by itself, translated (by multiplication)
up to the sinusoid's pitch.  The sidebands are about 1 Hz apart (the envelope takes 1 second to go linearly from 0 to 1).
Despite appearances, we hear this (are you sitting down?) as a changing amplitude, not a timbral mess.
Spectra can be tricky to interpret, and I've tried to choose parameters for this display that emphasize 
the broadening.  
</p>

<br>


<table class="method">
<tr><td class="methodtitle">Envelopes</td></tr>
<tr><td>
<p>Various operations on envelopes: 
</p>
<pre class="indented">
<a href="sndscm.html#envdoc">env.scm</a>:
add-envelopes            add two envelopes
concatenate-envelopes    concatenate a bunch of envelopes
envelope-exp             interpolate points to approximate exponential curves
envelope-interp          return the value of an envelope given the x position
envelope-last-x          return the last x value in an envelope
intergrate-envelope      return the area under an envelope
make-power-env           exponential curves with multiple exponents (see also multi-expt-env in generators.scm)
map-envelopes            apply a function to the breakpoints in two envelopes, returning a new envelope
max-envelope             return the maximum y value in an envelope (also min-envelope)
multiply-envelopes       multiply two envelopes
normalize-envelope       scale the y values of an envelope to peak at 1.0
repeat-envelope          concatenate copies of an envelope
reverse-envelope         reverse the breakpoints in an envelope
scale-envelope           scale and offset the y values of an envelope
stretch-envelope         apply attack and decay times to an envelope ("adsr", or "divenv")
window-envelope          return the portion of an envelope within given x axis bounds
</pre>
<pre>
envelope sound: <a href="extsnd.html#envchannel">env-channel</a>, <a href="extsnd.html#envsound">env-sound</a>
other enveloping functions: <a href="extsnd.html#rampchannel">ramp-channel</a>, <a href="extsnd.html#xrampchannel">xramp-channel</a>, <a href="extsnd.html#smoothchannel">smooth-channel</a>
envelope editor: <a href="snd.html#editenvelope">Edit or View and Envelope</a>
panning: place-sound in examp.scm
read sound indexed through envelope: <a href="sndscm.html#envsoundinterp">env-sound-interp</a>
repeating envelope: <a href="#pulsedenv">pulsed-env</a>
step envelope in pitch: <a href="#rxyk!cos">brassy</a> in generators.scm
</pre>
</td></tr></table>




<!--  TABLE-LOOKUP  -->

<div class="innerheader" id="table-lookupdoc">table-lookup</div>

<pre class="indented">
<em class=def id="make-table-lookup">make-table-lookup</em> 
        (frequency 0.0) ; table repetition rate in Hz
        (initial-phase 0.0)                 ; starting point in radians (pi = mid-table)
        wave                                ; a float-vector containing the signal
        (size *clm-table-size*)             ; table size if wave not specified
        (type mus-interp-linear)            ; interpolation type

<em class=def id="table-lookup">table-lookup</em> tl (fm-input 0.0)
<em class=def id="table-lookup?">table-lookup?</em> tl

<em class=def id="make-table-lookup-with-env">make-table-lookup-with-env</em> frequency env size
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">table-lookup methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">wave float-vector</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">wave size (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner">interpolation choice (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">table increment per sample</td></tr>
</table>


<p>table-lookup performs interpolating table lookup with a lookup index that moves
through the table at a speed set by make-table-lookup's "frequency" argument and table-lookup's "fm-input" argument.
That is, the waveform in the table is produced repeatedly, the repetition rate set by the frequency arguments.
Table-lookup scales its
fm-input argument to make its table size appear to be two pi.
The intention here is that table-lookup with a sinusoid in the table and a given FM signal
produces the same output as oscil with that FM signal.
The "type" argument sets the type of interpolation used: <code>mus-interp-none</code>,
<code>mus-interp-linear</code>, <code>mus-interp-lagrange</code>, or <code>mus-interp-hermite</code>.
make-table-lookup-with-env (defined in generators.scm) returns a new table-lookup generator with the envelope 'env' loaded into its table.
table-lookup might be defined:
</p>

<pre class="indented">
(let ((result (<a class=quiet href="#array-interp">array-interp</a> wave phase)))
  (set! phase (+ phase 
                 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frequency)
                 (* fm-input
                    (/ (length wave) 
                       2 pi))))
  result)
</pre>


<table>
<tr><td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-table-lookup 440.0 :wave (partials-&gt;wave '(1 .5  2 .5)))))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (table-lookup gen))))))
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_table_lookup(440.0, :wave, partials2wave([1.0, 0.5, 2.0, 0.5]));
  44100.times do |i| 
    outa(i, 0.5 * table_lookup(gen), $output) 
    end
  end.output
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 :wave '( 1 0.5  2 0.5 ) #f #f partials-&gt;wave make-table-lookup { gen }
  44100 0 do
    i  gen 0 table-lookup  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>



<p>
In the past, table-lookup was often used for additive synthesis, so
there are two functions that make it easier to load up
various such waveforms:
</p>

<pre class="indented">
<em class=def id="partialstowave">partials-&gt;wave</em> synth-data wave (norm #t)
<em class=def id="phase-partialstowave">phase-partials-&gt;wave</em> synth-data wave (norm #t)
</pre>

<p>The "synth-data" argument is a list or float-vector of (partial amp) pairs: '(1 .5  2 .25)
gives a combination of a sine wave at the carrier (partial = 1) at amplitude .5, and
another at the first harmonic (partial = 2) at amplitude .25.  The partial amplitudes are
normalized to sum to a total amplitude of 1.0 unless the argument "norm"
is #f.  If the initial phases matter (they almost never do), you can use
phase-partials-&gt;wave; in this case the synth-data is a list or float-vector of (partial amp phase) triples with phases in radians.
If "wave" is not passed, these functions return a new float-vector.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (simple-table dur)
  (let ((tab (<em class=red>make-table-lookup</em> :wave (<em class=red>partials-&gt;wave</em> '(1 .5  2 .5)))))
    (do ((i 0 (+ i 1))) ((= i dur))
      (<a class=quiet href="#outa">outa</a> i (* .3 (<em class=red>table-lookup</em> tab))))))
</pre>

<p>table-lookup can also be used as a sort of "freeze" function, looping through a sound repeatedly,
based on some previously chosen loop positions:
</p>

<pre class="indented">
(define (looper start dur sound freq amp)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (loop-data (<a class=quiet href="extsnd.html#mussoundloopinfo">mus-sound-loop-info</a> sound)))
    (if (or (null? loop-data)
            (&lt;= (cadr loop-data) (car loop-data)))
        (error 'no-loop-positions)
        (let* ((loop-start (car loop-data))
               (loop-length (- (+ (cadr loop-data) 1) loop-start))
               (sound-section (<a class=quiet href="#filetoarray">file-&gt;array</a> sound 0 loop-start loop-length (make-float-vector loop-length)))
               (original-loop-duration (/ loop-length (srate sound)))
               (tbl (<em class=red>make-table-lookup</em> :frequency (/ freq original-loop-duration) :wave sound-section)))
               ;; "freq" here is how fast we read (transpose) the sound &mdash; 1.0 returns the original
         (do ((i beg (+ i 1)))
             ((= i end))
           (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>table-lookup</em> tbl))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:srate 44100) (looper 0 10 "/home/bil/sf1/forest.aiff" 1.0 0.5))
</pre>

<p>And for total confusion, here's a table-lookup that modulates a sound where we specify the
modulation deviation in samples:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (fm-table file start dur amp read-speed modulator-freq index-in-samples)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (table-length (<a class=quiet href="extsnd.html#mussoundframples">mus-sound-framples</a> file))
         (tab (<em class=red>make-table-lookup</em> :frequency (/ read-speed (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> file)) 
                                 :wave (<a class=quiet href="#filetoarray">file-&gt;array</a> file 0 0 table-length (make-float-vector table-length))))
         (osc (<a class=quiet href="#make-oscil">make-oscil</a> modulator-freq))
         (index (/ (* (<a class=quiet href="#hztoradians">hz-&gt;radians</a> modulator-freq) 2 pi index-in-samples) table-length)))
   (do ((i beg (+ i 1)))
       ((= i end))
     (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>table-lookup</em> tab (* index (<a class=quiet href="#oscil">oscil</a> osc))))))))
</pre>

<p>Lessee.. there's a factor of table-length/(2*pi) in table-lookup, so that a table with a sinusoid
behaves the same as an oscil even with FM; hz-&gt;radians
adds a factor of (2*pi)/srate; so we've cancelled the internal 2*pi and table-length, and we have
an actual deviation of mfreq*2*pi*index/srate, which looks like FM; hmmm.  See <a href="#srcer">srcer</a>
below for an <a href="#src">src</a>-based way to do the same thing.
</p>

<p>
There is one annoying problem with table-lookup: noise.
Say we have a sine wave in a table with L elements, and we want to read it at a frequency of
f Hz at a sampling rate of Fs.  This requires that we read the table at locations that are multiples of
L * f / Fs.  This is ordinarily not an integer (that is, we've fallen between the
table elements).  We have no data between the elements, but we can make (plenty of)
assumptions about what ought to be there.  In the no-interpolation case (type = <code>mus-interp-none</code>), we take the floor of
the table-relative phase, returning a squared-off sine-wave:
</p>

<img src="pix/interp1.png" alt="squared-off sine spectra">

<!--
(with-sound (:srate 1000000 :channels 2) 
  (let ((gen1 (make-table-lookup 100.0 :wave (partials->wave '(1 1) (make-float-vector 100)) :type mus-interp-none))
        (sine (make-oscil 100.0)))
       (do ((i 0 (+ i 1))) 
           ((= i 1000000))
	 (let ((qsine (table-lookup gen1))
	       (tsine (oscil sine)))
	   (outa i qsine)
	   (outb i (- tsine qsine))))))

(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (x-axis-label 0 0 0) "no interpolation, table size=100, sine at 100 Hz")
(set! (x-axis-label 0 1 0) "difference between sine and squared-off sine")
(set! (x-axis-label 0 0 1) "squared-off sine spectrum: srate=1000000")
(set! (x-axis-label 0 1 1) "spectrum of the error")
(set! *axis-label-font* *axis-numbers-font*)
(set! *transform-normalization* normalize-by-sound)
(set! *graphs-horizontal* #f)
-->

<!-- 
     maxamp of sawtooth is 2pi/L (it's a max at 0 when sin x ~ x, and each phase increment is 2pi/L) 
-->

<p>
In addition to the sine at 100 Hz, we're getting lots of pairs of components, each pair centered around n * L * f, (10000 = 100 * 100 is the first),
and separated from it by f, (9900 and 10100),
and the amplitude of each pair is 1/(nL): -40 dB is 1/100 for the n=1 case.
This spectrum says "amplitude modulation" (the fast square wave times the slow sinusoid).
After scribbling a bit on the back of an envelope, we announce with a confident air that
the sawtooth error signal gives us the 1/n (it is a sum of sin nx/n), and its amplitude gives us the 1/L.
Now we try linear interpolation (<code>mus-interp-linear</code>), and get the same components as before, but
the amplitude is going (essentially) as 1.0 / (n * n * L * L).  So the interpolation
reduces the original problem by a factor of n * L:
</p>

<img src="pix/interp2.png" alt="squared-off sine spectra">

<!--
(with-sound (:srate 1000000 :channels 2) 
  (let ((gen1 (make-table-lookup 100.0 :wave (partials->wave '(1 1) (make-float-vector 100)) :type mus-interp-linear))
	(sine (make-oscil 100.0)))
       (do ((i 0 (+ i 1))) 
	   ((= i 1000000))
	 (let ((qsine (table-lookup gen1))
	       (tsine (oscil sine)))
	   (outa i qsine)
	   (outb i (- tsine qsine))))))

(set! (x-axis-label 0 0 0) "linear interpolation, table size=100, sine at 100 Hz")
(set! (x-axis-label 0 1 0) "difference between sine and interpolated sine")
(set! (x-axis-label 0 0 1) "interpolated sine spectrum: srate=1000000")
(set! (x-axis-label 0 1 1) "spectrum of the error")
-->

<p>
We can view this also as amplitude modulation:
the sinusoid at frequency f times the little blip during each table sample at frequency L * f.
Each component
is at n * L * f, as before, and split in half by the modulation.
Since L * f is normally a very high frequency, and sampling rates are not in the megahertz range (as in our examples),
these components
alias to such an extent that they look like noise, but they are noise only in the
sense that we wish they weren't there.  
</p>

<p>
The table length (L above) is the "effective" length.  If we store an nth harmonic
in the table, each period gets L/n elements (we want to avoid clicks caused by discontinuities between the first and last table elements), 
so the amplitude of the nth harmonic's noise components
is higher (by n^2) than the fundamental's.  We either have to use enormous
tables or stick to low
numbered partials.  To keep the noise components out of sight in 16-bit output (down 90 dB),
we need 180 elements per period.  So a table with a 50th harmonic has to be at least length 8192.
It's odd that the cutoff here is so similar to
the waveshaping case; a 50-th harmonic is trouble in either case.
(This leaves an opening for <a href="#ncos">ncos</a> and friends even when dynamic spectra aren't the issue).
</p>

<p>
We can try fancier interpolations.  <code>mus-interp-lagrange</code> and <code>mus-interp-hermite</code>
reduce the components (which are at the same frequencies as before) by about another factor of L.
But these interpolations are expensive and ugly.
If you're trying to produce a sum of sinusoids, use polywave &mdash; it makes a monkey out of table lookup in every case.
</p>


<!-- an earlier example showing the interpolation waveforms:

(with-sound (:channels 4 :clipped #f :statistics #t)
  (let* ((pitch 1000.0)
	 (size 64)
	 (tbl1 (make-table-lookup pitch 0.0 (partials->wave '(1 1) (make-float-vector size)) size mus-interp-none))
	 (tbl2 (make-table-lookup pitch 0.0 (partials->wave '(1 1) (make-float-vector size)) size mus-interp-linear))
	 (tbl3 (make-table-lookup pitch 0.0 (partials->wave '(1 1) (make-float-vector size)) size mus-interp-lagrange))
	 (tbl4 (make-table-lookup pitch 0.0 (partials->wave '(1 1) (make-float-vector size)) size mus-interp-hermite)))
       (do ((i 0 (+ i 1)))
	   ((= i 100000))
	 (outa i (table-lookup tbl1))
	 (outb i (table-lookup tbl2))
	 (out-any i (table-lookup tbl3) 2)
	 (out-any i (table-lookup tbl4) 3))))

(with-sound (:channels 5 :clipped #f :statistics #t)
  (let* ((pitch 2.0)
	 (size 64)
	 (wave (let ((v (make-float-vector size)))
		 (set! (v (/ size 2)) 1.0)
		 v))
	 (tbl1 (make-table-lookup pitch 0.0 wave size mus-interp-none))
	 (tbl2 (make-table-lookup pitch 0.0 wave size mus-interp-linear))
	 (tbl3 (make-table-lookup pitch 0.0 wave size mus-interp-lagrange))
	 (tbl4 (make-table-lookup pitch 0.0 wave size mus-interp-hermite))
	 (tbl5 (make-table-lookup pitch 0.0 wave size mus-interp-all-pass)))
       (do ((i 0 (+ i 1)))
	   ((= i 100000))
	 (outa i (table-lookup tbl1))
	 (outb i (table-lookup tbl2))
	 (out-any i (table-lookup tbl3) 2)
	 (out-any i (table-lookup tbl4) 3)
	 (out-any i (table-lookup tbl5) 4))))
-->


<div class="inset">
<p>table-lookup of a sine (or some facsimile thereof) probably predates Ptolemy.
One neat method of generating the table is that of Bhaskara I, AD 600, India, mentioned
in van Brummelen, "The Mathematics of the Heavens and the Earth": use the rational
approximation 4x(180-x)/(40500-x(180-x)), x in degrees, or more readably:
4x(pi-x)/(12.337-x(pi-x)), x in radians.  The maximum error is 0.00163 at x=11.54 (degrees)!
</p>
</div>

<!--
(define (bhaskara-sine x) ; x degrees
  (list (/ (* 4.0 x (- 180 x))
	   (- 40500 (* x (- 180 x))))
	(sin (degrees->radians x))
	(let* ((dx (degrees->radians x))
	       (px (- pi dx))
	       (cs (degrees->radians (degrees->radians 40500))))
	  (/ (* 4 dx px)
	     (- cs (* dx px))))
	(let ((dx (degrees->radians x)))
	  (/ (* 4 dx (- pi dx))
	     (- 12.337 (* dx (- pi dx)))))))

Ayyangar: Ganesh; same thing using n=pi/x: 16(n-1)/(5n^2-4n+4)
(define (ganesh-sine x) ; x radians
  (list (if (= x 0.0)
	    0.0
	    (let ((n (/ pi x)))
	      (/ (* 16 (- n 1))
		 (+ (* 5 n n) (* -4 n) 4))))
	(if (= x 0.0)
	    0.0
	    (let* ((n (/ pi x))
		   (n2 (* n n))
		   (n-2 (- n 2))
		   (n2-2 (* n-2 n-2)))
	      (/ (- n2 n2-2)
		 (+ n2 (/ n2-2 4)))))
	(sin x)))

(define (pade-sine x) ; x < pi/4, Martin Brown
  (list (* x (/ (- 60 (* 7 x x))
		(+ 60 (* 3 x x))))
	(sin x)))

(define (koren-sine ux) ; |ux| < pi/4, Kren and Zinaty
  (let* ((x (/ (* 4 ux) pi))
	 (x2 (* x x))
	 (a0 1805490264.6910)
	 (a1 -164384678.2275)
	 (a2    3664210.6476)
	 (a3     -28904.1402)
	 (a4         76.5690)
	 (b0 2298821602.6389)
	 (b1   27037050.1189)
	 (b2     155791.3885)
	 (b3        540.5675))
    (* x (/ (+ a0 (* x2 (+ a1 (* x2 (+ a2 (* x2 (+ a3 (* x2 a4))))))))
	    (+ b0 (* x2 (+ b1 (* x2 (+ b2 (* x2 (+ b3 x2)))))))))))
-->

<p><a href="spectr.scm">spectr.scm</a> has a steady state spectra of
several standard orchestral instruments, courtesy of James A. Moorer.
The <a href="sndscm.html#drone">drone</a> instrument in clm-ins.scm uses table-lookup for the
bagpipe drone.  <a href="sndscm.html#twotab">two-tab</a> in the same file interpolates between two tables.
See also <a href="sndscm.html#granidoc">grani</a>.
</p>




<!--  POLYWAVE, POLYSHAPE  -->

<div class="innerheader" id="polywavedoc">polywave, polyshape</div>

<pre class="indented">
<em class=def id="make-polywave">make-polywave</em> 
         (frequency 0.0) 
         (partials '(1 1))                   ; a list of harmonic numbers and their associated amplitudes
         (type mus-chebyshev-first-kind)     ; Chebyshev polynomial choice
         xcoeffs ycoeffs                     ; tn/un for tu-sum case

<em class=def id="polywave">polywave</em> w (fm 0.0)
<em class=def id="polywave?">polywave?</em> w

<em class=def id="make-polyshape">make-polyshape</em> 
        (frequency 0.0) 
        (initial-phase 0.0) 
        coeffs 
        (partials '(1 1)) 
        (kind mus-chebyshev-first-kind)

<em class=def id="polyshape">polyshape</em> w (index 1.0) (fm 0.0)
<em class=def id="polyshape?">polyshape?</em> w

<em class=def id="partialstopolynomial">partials-&gt;polynomial</em> partials (kind mus-chebyshev-first-kind)
<em class=def id="normalizepartials">normalize-partials</em> partials

<em class=def id="mus-chebyshev-tu-sum">mus-chebyshev-tu-sum</em> x t-coeffs u-coeffs
<em class=emdef>mus-chebyshev-t-sum</em> x t-coeffs
<em class=emdef>mus-chebyshev-u-sum</em> x u-coeffs
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">polywave methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">index</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">polynomial coeffs</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">number of partials</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>

<p>
These two generators
drive a sum of scaled Chebyshev polynomials with
a cosine, creating a sort of cross between additive synthesis and FM; see
"Digital Waveshaping Synthesis" by Marc Le Brun in JAES 1979 April, vol 27, no 4, p250.
The basic idea is:
</p>

<img class="indented" src="pix/sceq16.png" alt="Cheby eqs">

<p>
We can add scaled Tns (polynomials) to get the spectrum we want, producing
in the simplest case an inexpensive additive synthesis.  We can vary the peak amplitude of the
input (cos theta) to get effects similar to those of FM. 
polyshape uses a prebuilt sum of Chebyshev polynomials,
whereas polywave uses the underlying Chebyshev recursion.  
polywave is stable and noise-free even with high partial numbers (I've tried it with 16384 harmonics).
The "partials" argument to the make function can
be either a list or a float-vector ("vct" in Ruby and Forth).
The "type" or "kind" argument determines which kind of Chebyshev polynomial
is used internally:  mus-chebyshev-first-kind (Tn) which produces a sum of cosines,
or mus-chebyshev-second-kind (Un), which produces a sum of sines.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-polywave 440.0 :partials '(1 .5  2 .5))))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (polywave gen))))))
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_polywave(440.0, :partials, [1.0, 0.5, 2.0, 0.5]);
  44100.times do |i| 
    outa(i, 0.5 * polywave(gen), $output) 
    end
  end.output
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 :partials '( 1 0.5 2 0.5 ) make-polywave { gen }
  44100 0 do
    i  gen 0 polywave  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<!-- LATEX: sceq16
\begin{align*}
&T_{n}(\cos \theta)=\cos n\theta \\
&U_{n}(\cos \theta)=\frac{\sin(n+1) \theta}{\sin \theta}
\end{align*}

A&S 22.3.15
-->


<p>normalize-partials takes the list or float-vector of partial number and amplitudes, and
returns a float-vector with the amplitudes normalized so that their magnitudes add to 1.0. 
</p>

<pre class="indented">
&gt; (normalize-partials '(1 1 3 2 6 1))
#(1.0 0.25 3.0 0.5 6.0 0.25);
&gt; (normalize-partials (float-vector 1 .1 2 .1 3 -.2))
#(1.0 0.25 2.0 0.25 3.0 -0.5)
</pre>

<p>
partials-&gt;polynomial
takes a list or float-vector of partial numbers and amplitudes
and returns the Chebyshev polynomial coefficients that 
produce that spectrum.  These coefficients can be passed to
polyshape (the coeffs argument), or used directly by <a href="#polynomial">polynomial</a> (there are examples of both below).
</p>

<pre class="indented">
&gt; (partials-&gt;polynomial '(1 1 3 2 6 1))
#(-1.0 -5.0 18.0 8.0 -48.0 0.0 32.0)
&gt; (partials-&gt;polynomial '(1 1 3 2 6 1) mus-chebyshev-second-kind)
#(-1.0 6.0 8.0 -32.0 0.0 32.0 0.0)
&gt; (partials-&gt;polynomial (float-vector 1 .1 2 .1 3 -.2))
#(-0.1 0.7 0.2 -0.8)
</pre>

<p>mus-chebyshev-tu-sum and friends perform the same function as partials-&gt;polynomial, but
use the much more stable and accurate underlying recursion (see below for a long-winded
explanation).  They are the innards of the polywave and <a href="#polyoid">polyoid</a> generators.
The arguments are "x" (normally a phase), and one or two
float-vectors of component amplitudes.  
These functions makes it easy to do additive synthesis
with any number of harmonics (I've tried 16384), each with arbitrary
initial-phase and amplitude, and each harmonic independently changeable 
in phase and amplitude at run-time by setting a float-vector value.
</p>

<pre class="indented">
(let ((result (<a class=quiet href="#polynomial">polynomial</a> wave (cos phase))))
  (set! phase (+ phase (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frequency) fm))
  result)
</pre>

<p>In its simplest use, waveshaping is additive synthesis:
</p>

<table>
<tr><td>
<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((wav (<em class=red>make-polyshape</em> 
               :frequency 500.0
               :partials '(1 .5  2 .3  3 .2))))
    (do ((i 0 (+ i 1))) ((= i 40000))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>polyshape</em> wav)))))
</pre>
</td>
<td>
<img src="pix/polyshape.png" alt="waveshaping">
</td>
</tr></table>

<p>Say we want every third harmonic at amplitude 1/sqrt(harmonic-number) for 5 harmonics total:
</p>


<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let ((gen (<em class=red>make-polywave</em> 200 
               (do ((harms (make-float-vector (* 5 2))) ; 5 harmonics, 2 numbers for each
                    (k 1 (+ k 3))
		    (i 0 (+ i 2)))
	           ((= i 10) harms)
	         (set! (harms i) k) ; harmonic number (k*freq)
	         (set! (harms (+ i 1)) (/ 1.0 (sqrt k)))))) ; harmonic amplitude
	(ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 10 1 11 0) :duration 1.0 :scaler .5)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>polywave</em> gen))))))
</pre>


<p>See animals.scm for many more examples along these lines.
normalize-partials makes sure that the component amplitudes (magnitudes) add to 1.0.  Its argument can be either a list or float-vector,
but it always returns a float-vector.
The <a href="sndscm.html#fmviolin">fm-violin</a> uses polyshape for the multiple FM section in some cases.
The <a href="sndscm.html#pqw">pqw</a> and <a href="sndscm.html#pqwvox">pqwvox</a> instruments use
both kinds of Chebyshev polynomials to produce single side-band spectra.
Here is a somewhat low-level example:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (pqw start dur spacing carrier partials)
  (let* ((spacing-cos (<a class=quiet href="#make-oscil">make-oscil</a> spacing (/ pi 2.0)))
	 (spacing-sin (<a class=quiet href="#make-oscil">make-oscil</a> spacing))
	 (carrier-cos (<a class=quiet href="#make-oscil">make-oscil</a> carrier (/ pi 2.0)))
	 (carrier-sin (<a class=quiet href="#make-oscil">make-oscil</a> carrier))
	 (sin-coeffs (<em class=red>partials-&gt;polynomial</em>
                       partials mus-chebyshev-second-kind))
	 (cos-coeffs (<em class=red>partials-&gt;polynomial</em>
                       partials mus-chebyshev-first-kind))
	 (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
    (do ((i beg (+ i 1))) 
        ((= i end))
      (let ((ax (<a class=quiet href="#oscil">oscil</a> spacing-cos)))
        (<a class=quiet href="#outa">outa</a> i (- (* (<a class=quiet href="#oscil">oscil</a> carrier-sin) 
                      (<a class=quiet href="#oscil">oscil</a> spacing-sin) 
	              (<em class=red>polynomial</em> sin-coeffs ax))
	           (* (<a class=quiet href="#oscil">oscil</a> carrier-cos) 
	              (<em class=red>polynomial</em> cos-coeffs ax))))))))
</pre>

<table class="pb">
<tr><td>
<img src="pix/pqw.png" alt="pqw example">
</td></tr>
<tr><td class="br">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (pqw 0 1 200.0 1000.0 '(2 .2  3 .3  6 .5)))
</td></tr>
</table>


<p>We can use waveshaping to make a band-limited triangle-wave:
</p>

<pre class="indented">
(define* (make-band-limited-triangle-wave (frequency 0.0) (order 1))
  (do ((freqs ())
       (i 1 (+ i 1))
       (j 1 (+ j 2)))
      ((&gt; i order)
       (<em class=red>make-polywave</em> frequency :partials (reverse freqs)))
    (set! freqs (cons (/ 1.0 j j) (cons j freqs)))))

(define* (band-limited-triangle-wave gen (fm 0.0))
  (<em class=red>polywave</em> gen fm))
</pre>

<p>Band-limited square or sawtooth waves:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (bl-saw start dur frequency order)
  (let ((norm (cond ((assoc order '((1 . 1.0) (2 . 1.3)) =) =&gt; cdr) ; these peak amps were determined empirically
                     ((&lt; order 9) 1.7)                              ;   actual limit is supposed to be pi/2 (G&amp;R 1.441)
                     (else 1.852)))                                 ;   but Gibbs phenomenon pushes it to 1.851
        (freqs ()))
    (do ((i 1 (+ i 1)))
	((&gt; i order))
      (set! freqs (cons (/ 1.0 norm i) (cons i freqs))))
    (let* ((gen (<em class=red>make-polywave</em> frequency :partials (reverse freqs) :type <em class=red>mus-chebyshev-second-kind</em>))
	   (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	   (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
     (do ((i beg (+ i 1))) 
         ((= i end))
       (<a class=quiet href="#outa">outa</a> i (<em class=red>polywave</em> gen))))))
</pre>

<p>The "fm" argument to these generators is intended mainly for vibrato and frequency envelopes. 
If you use it for frequency modulation, you'll notice that the result is not the necessarily same as applying that
modulation to the equivalent bank of oscillators, but it is the same as (for example) applying it to an ncos
generator, or most of the other generators (table-lookup, nsin, etc).  The polynomial in cos(x) produces
a sum of cos(nx) for various "n", but if "x" is itself a sinusoid, its
effective index includes the factor of "n" (the partial number). 
This is what you want
if all the components should move together (as in vibrato).  If you need better control of the FM spectrum,
use a bank of oscils where you can set each index independently.  Here we used '(1 1 2 1 3 1) and polyshape
with sinusoidal FM with an index of 1.
</p>

<img class="indented" src="pix/polyfm.png" alt="polyshape fm">


<p>The same thing happens if you use polyshape or ncos (or whatever) as the (complex) modulating signal to an oscil
(the reverse of the situation above).
The effective index of each partial is divided by the partial number (and in ncos, for example, the output
is scaled to be -1..1, so that adds another layer of confusion). There's a longer discussion of this under
<a href="#ncosdoc">ncos</a>.
</p>

<!-- actually you get either cos(nx) or +/-cos(nx) depending on which algorithm is actually chosen
-->
<!--
(define* (fmsin beg dur freq amp mc-ratio index type)
  (let* ((start (seconds->samples beg))
         (end (+ start (seconds->samples dur)))
	 (carrier (if (= type 0)
		      (let ((oscs (make-vector 3 #f)))
			(do ((i 0 (+ i 1)))
			    ((= i 3))
			  (set! (oscs i) (make-oscil (* freq (+ i 1)))))
			oscs)
		      (if (= type 1)
			  (make-ncos freq 3)
			  (if (= type 2)
			      (make-polyshape freq :coeffs (partials->polynomial '(1 1 2 1 3 1)))
			      (if (= type 3)
				  (make-table-lookup freq :wave (partials->wave '(1 1 2 1 3 1)))
				  (if (= type 4)
				      (make-waveshape freq :partials '(1 1 2 1 3 1))
				      (if (= type 5)
					  (make-nsin freq 3)
					  (if (= type 6)
					      (make-ncos2 freq 3)
					      (if (= type 7)
						  (make-ncos4 freq 3)
						  (if (= type 8)
						  (make-nrcos freq 3 .99)
						  (if (= type 9)
						      (make-nkssb freq freq 3)
						      )))))))))))
	 (modulator (make-oscil (* freq mc-ratio)))
	 (fm-index (hz->radians (* index freq mc-ratio)))
	 (ampf (make-env '(0 0 1 1 10 1 11 0) :scaler amp :duration dur)))
    (do ((i start (+ i 1)))
	((= i end))
      (let ((md (* fm-index (oscil modulator))))
	(outa i (* (env ampf)
		   (if (= type 0)
		       (let ((sum 0.0))
			 (do ((k 0 (+ k 1)))
			     ((= k 3))
			   (set! sum (+ sum (oscil (carrier k) (* (+ k 1) md))))) ; or leave unscaled
			 (/ sum 3))
		       (if (= type 1)
			   (sum-of-cosines carrier md)
			   (if (= type 2)
			       (/ (polyshape carrier 1.0 md) 3)
			       (if (= type 3)
				   (/ (table-lookup carrier md) 3)
				   (if (= type 4)
				       (waveshape carrier 1.0 md)
				       (if (= type 5)
					   (sum-of-sines carrier md)
					   (if (= type 6)
					       (ncos2 carrier md)
					       (if (= type 7)
						   (ncos4 carrier md)
						   (if (= type 8)
						       (nrcos carrier md)
						       (if (= type 9)
							   (nkssb carrier md)
							   0.0))))))))))))))))
-->

<p>To get the FM effect of a spectrum centered around a carrier, multiply the waveshaping output by the carrier (the 0Hz term gives us the carrier):
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((modulator (<em class=red>make-polyshape</em> 100.0 :partials (list 0 .4  1 .4  2 .1  3 .05  4 .05)))
	(carrier (<a class=quiet href="#make-oscil">make-oscil</a> 1000.0)))
    (do ((i 0 (+ i 1))) ((= i 20000))
      (<a class=quiet href="#outa">outa</a> i (* .5 (<a class=quiet href="#oscil">oscil</a> carrier) (<em class=red>polyshape</em> modulator))))))
</pre>


<p>The simplest way to get 
changing spectra is to interpolate between two or more sets of coefficients.
</p>

<pre class="indented">
(+ (* interp (polywave p1 ...))  ; see animals.scm for many examples
   (* (- 1.0 interp) (polywave p2 ...)))
</pre>

<p>Or use mus-chebyshev-*-sum and set the component amplitudes directly:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let* ((dur 1.0)
	 (samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))
	 (coeffs (float-vector 0.0 0.5 0.25 0.125 0.125))
	 (x 0.0)
	 (incr (<a class=quiet href="#hztoradians">hz-&gt;radians</a> 100.0))
	 (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 10 1 11 0) :duration dur :scaler .5))
	 (harmf (<a class=quiet href="#make-env">make-env</a> '(0 .125 1 .25) :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((harm (<a class=quiet href="#env">env</a> harmf)))
	(set! (coeffs 3) harm)
	(set! (coeffs 4) (- .25 harm)))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf)
		   (<em class=red>mus-chebyshev-t-sum</em> x coeffs)))
      (set! x (+ x incr)))))
</pre>

<p>
But we can also vary 
the index (the amplitude of the cosine driving the sum of polynomials), much as in FM.
The kth partial's amplitude
at a given index, given a set h[k] of coefficients, is:
</p>

<img class="indented" src="pix/sceq43.png" alt="cheby hka calc">

<!-- LATEX:
    &h_{k}(a) = \sum_{j=0}^{\infty} \binom{p}{j} a^{p} \sum_{i=0}^{\infty} (-1)^{i}\Big(\tbinom{p+i}{i} + \tbinom{p+i-1}{i-1}\Big) h_{p+2i}(1) & p=k+2j \\
-->

<p>(This formula is implemented by <a href="sndscm.html#chebyhka">cheby-hka</a> in dsp.scm).
The function traced out by the harmonic (analogous to the role the Bessel function Jn plays in FM)
is a polynomial in the index whose order depends on the number of coefficients.  When the index is less than 1.0,
energy appears in lower harmonics even if they are not included in the index=1.0 list:
</p>

<pre class="indented">
&gt; (cheby-hka 3 0.25 (float-vector 0 0 0 0 1.0 1.0))
-0.0732421875
&gt; (cheby-hka 2 0.25 (float-vector 0 0 0 0 1.0 1.0))
-0.234375
&gt; (cheby-hka 1 0.25 (float-vector 0 0 0 0 1.0 1.0))
1.025390625
&gt; (cheby-hka 0 0.25 (float-vector 0 0 0 0 1.0 1.0))
1.5234375
</pre>

<p>
Below we sweep the index from 0.0
to 1.0 (sticking at 1.0 for a moment at the end), with a partials list of '(11 1.0 20 1.0).  These numbers were chosen to show that the even and
odd harmonics are independent:
</p>

<pre class="indented">
  (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
    (let ((gen (<em class=red>make-polyshape</em> 100.0 :partials (list 11 1 20 1)))
	  (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 20 1 21 0) :scaler .4 :length 88200))
	  (indf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 1.1 1) :length 88200)))
      (do ((i 0 (+ i 1)))
	  ((= i 88200))
        (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>polyshape</em> gen (<a class=quiet href="#env">env</a> indf)))))))
</pre>

<table>
<tr><td>
<img src="pix/waver.png" alt="picture of waveshaping sweep">
</td><td>
<img src="pix/waver2.png" alt="time domain">
</td></tr>
</table>

<!--
;;; data cutoff .015 light 56 jet
;;; xangle 292 scale 1.45 yangle 0 scale .68 zangle 0 scale 1.39, % 43
-->

<p>You can see there's
another annoying "gotcha":  the DC component can be arbitrarily large.
If we don't counteract it in some way, we lose dynamic range, and we get a big click when the generator stops.
In addition (as the right graph shows, although in this case the effect is minor), the peak amplitude is dependent on the index.  We can reduce this
problem somewhat by changing the signs of the harmonics to follow the
pattern + + - -: 
</p>

<pre class="indented">
(list 1 .5  2 .25  3 -.125  4 -.125) ; squeeze the amplitude change toward index=0
</pre>

<p>but now the peak amplitude is hard to predict (it's .6242 in this example).  Perhaps <a href="sndscm.html#flattenpartials">flatten-partials</a>
would be a better choice here.
To follow an amplitude envelope despite a changing index, we can use a <a href="#moving-max">moving-max</a> generator:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((gen (<em class=red>make-polyshape</em> 1000.0 :partials (list 1 .25 2 .25 3 .125 4 .125 5 .25)))
	(indf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 0) :duration 2.0))     ; index env
	(ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 1 3 0) :duration 2.0)) ; desired amp env
	(mx (<a class=quiet href="#moving-max">make-moving-max</a> 256))                         ; track actual current amp
	(samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> 2.0)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((val (<em class=red>polyshape</em> gen (<a class=quiet href="#env">env</a> indf))))              ; polyshape with index env
	(<a class=quiet href="#outa">outa</a> i (/ (* (<a class=quiet href="#env">env</a> ampf) val)
		   (max 0.001 (<a class=quiet href="#moving-max">moving-max</a> mx val))))))))
</pre>

<p>The harmonic amplitude formula for the Chebyshev polynomials of the second kind is:
</p>

<img class="indented" src="pix/sceq44.png" alt="more cheby hka calcs">

<!-- LATEX:
    &h_{k}(a) = \sum_{j=0}^{\infty} \Big(\tbinom{p-1}{j} - \tbinom{p-1}{j-1}\Big) a^p \sum_{i=0}^{\infty} (-1)^{i} \tbinom{p+i-1}{i} h_{p+2i}(1) & p=k+2j \\
-->

<p>
On a related topic, if we drive the sum of Chebyshev polynomials with more than one sinusoid,
we get sum and difference tones, much as in complex FM:
</p>

<!-- LATEX t5sum:
\lefteqn{T_{5}\Big(  \frac{\cos(x) + \cos(20x)}{2}\Big) = } \\
\frac{1}{32} \big( & \cos (100x)+5 \cos (81x)+5 \cos (79x)+10 \cos (62x)+5 \cos (60x)+ \\
                   & 10 \cos (58x)+ 10 \cos (43x)-10  \cos (41x)-10 \cos (39x)+10 \cos (37x)+ \\
                   & 5 \cos (24x)-10 \cos (22x)- 10 \cos (18x)+5 \cos (16x)+ \cos (5x)+5 \cos (3x) \big)
-->

<table class="method">
<tr><td>
<div class="center">T5 driven with sinusoids at 100Hz and 2000Hz</div>
<hr>
<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((pcoeffs (<em class=red>partials-&gt;polynomial</em> (float-vector 5 1)))
	(gen1 (<a class=quiet href="#make-oscil">make-oscil</a> 100.0))
	(gen2 (<a class=quiet href="#make-oscil">make-oscil</a> 2000.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>polynomial</em> pcoeffs 
                (* 0.5 (+ (<a class=quiet href="#oscil">oscil</a> gen1)
		          (<a class=quiet href="#oscil">oscil</a> gen2))))))))
</pre>
<hr>
<div class="center"><img src="pix/t5sum.png" alt="t5"></div>
</td>
<td>
<img class="indented" src="pix/crosswave.png" alt="cross">
</td></tr></table>

<p>This kind of output is typical; I get the impression that the cross products are
much more noticeable here than in FM. 
Of course, we can take advantage of that:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let* ((dur 2.0)
	 (samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))
	 (p1 (<em class=red>make-polywave</em> 800 (list 1 .1  2 .3  3 .4 5 .2)))
	 (p2 (<em class=red>make-polywave</em> 400 (list 1 .1  2 .3  3 .4 5 .2)))
	 (interpf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :duration dur))
	 (p3 (<em class=red>partials-&gt;polynomial</em> (list 1 .1  2 .3  3 .4  5 .2)))
	 (g1 (<a class=quiet href="#make-oscil">make-oscil</a> 800))
	 (g2 (<a class=quiet href="#make-oscil">make-oscil</a> 400))
	 (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 10 1 11 0) :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((interp (<a class=quiet href="#env">env</a> interpf))
	    (amp (<a class=quiet href="#env">env</a> ampf)))
	;; chan A: interpolate from one spectrum to the next directly
	(<a class=quiet href="#outa">outa</a> i (* amp (+ (* interp (<em class=red>polywave</em> p1))
			  (* (- 1.0 interp) (<em class=red>polywave</em> p2)))))
        ;; chan B: interpolate inside the sum of Tns!
	(<a class=quiet href="#outa">outb</a> i (* amp (<em class=red>polynomial</em> p3 (+ (* interp (<a class=quiet href="#oscil">oscil</a> g1))
					 (* (- 1.0 interp) (<a class=quiet href="#oscil">oscil</a> g2))))))))))
</pre>

<p>
If we use an arbitrary sound as the argument
to the polynomial, the output is a brightened or distorted version of the
original:
</p>

<!-- 
(The comparison in the T5 case above is between
T5(a+b) = 16(a+b)^5 - 20(a+b)^3 + 5(a+b) and the complex FM equation cos(5*(a+b))).
-->

<pre class="indented">
  (define (brighten-slightly coeffs)
    (let ((pcoeffs (partials-&gt;polynomial coeffs))
	  (mx (<a class=quiet href="extsnd.html#maxamp">maxamp</a>)))
      (<a class=quiet href="extsnd.html#mapchannel">map-channel</a>
       (lambda (y)
         (* mx (<a class=quiet href="#polynomial">polynomial</a> pcoeffs (/ y mx)))))))
</pre>

<p>but watch out for clicks from the DC component if any of the "n" in the Tn are even.
When I use this idea, I either use only odd numbered partials in the partials-&gt;polynomial list,
or add an amplitude envelope to make sure the result ends at 0.  I suppose you could also subtract out
the DC term (coeffs[0]), but I haven't tried this.
</p>

<!--
(with-sound (:channels 3 :clipped #f :statistics #t)
  (let* ((dur 1.0)
	 (samps (seconds->samples dur))
	 (coeffs (partials->polynomial '(5 1)))
	 (gen (make-oscil 100.0))
	 (gen1 (make-oscil 500.0)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let* ((val (oscil gen))
	     (nval (oscil gen1))
	     (aval (polynomial coeffs (- 1.0 (* 2 val val))))
	     (bval (- 1.0 (* 2 nval nval)))
	     (cval (- aval bval)))
	(outa i aval)
	(outb i bval)
	(outc i cval)))))
-->

<p>If you push the polyshape generator into high harmonics (above say 30), you'll
run into numerical trouble (the polywave generator is immune to this bug).
Where does the trouble lie?
The polynomials are related to each other
via the recursion: <img src="pix/sceq17.png" alt="Cheby recurse">, so the first
few polynomials are:
</p>

<!-- LATEX:
\begin{align*}
&T_{0}(x)=1 \\
&T_{1}(x)=x \\
&T_{2}(x)=2x^{2}-1\\
&T_{3}(x)=4x^{3}-3x \\
&T_{4}(x)=8x^{4}-8x^{2}+1
\end{align*}

\begin{align*}
&U_{0}(x)=1 \\
&U_{1}(x)=2x \\
&U_{2}(x)=4x^{2}-1 \\
&U_{3}(x)=8x^{3}-4x \\
&U_{4}(x)=16x^{4}-12x^{2}+1
\end{align*}

-->

<table>
<tr>
<td><img class="indented" src="pix/sceq18.png" alt="some Chebys"></td>
<td><img class="indented" src="pix/sceq19.png" alt="more Chebys"></td>
</tr></table>

<p>The first coefficient is 2^n or 2^(n-1).  This is bad news if "n" is large because
we are expecting a bunch of huge numbers 
to add up to something in the vicinity of 0.0 or 1.0.  
If we're using 32-bit floats, the first sign of trouble comes when the order is around 26.
If you look at some of the coefficients, you'll see numbers like -129026688.000 (in the 32 bit case), which
should be -129026680.721 &mdash;  we have run out of bits in the mantissa!
With doubles
we can only push the order up to around 46. 
polywave, on the other hand, builds up the sum of sines from the underlying recursion, which is only slightly
slower than using the polynomial, and it is not bothered by these numerical problems.
I have run polywave with 16384 harmonics, and the maximum error compared to the
equivalent sum of sinusoids was around 5.0e-12.
</p>

<p>Since it is primarily used for additive synthesis, and we can always do that with oscils or table-lookup,
we might ask why we'd want polywave at all.  Leaving aside
speed (the Chebyshev computation is 10 to 20 times faster than the equivalent sum of oscils)
and memory (the defunct table-lookup based waveshape generator and table-lookup itself use a table that has to be loaded),
the main reason to use polywave is accuracy.  polywave
produces output that is as clean as the equivalent sum of oscils, whereas table-lookup 
and poor old waveshape, both of which interpolate into a sampled version of the desired function, are noisy.
To make the difference almost appalling, here are spectra comparing a sum of oscils, polyshape,
(table-lookup based) waveshape, and table-lookup. 
</p>

<img src="pix/4grfs.png" alt="compare ffts">

<!--
(with-sound (:channels 4)
  (let ((poly (make-polyshape 100.0 :partials '(1 1 8 1 16 1)))
	(wave (make-waveshape 100.0 :partials '(1 1 8 1 16 1))) ; this is normalized
	(gen1 (make-oscil 100))
	(gen2 (make-oscil 800))
	(gen3 (make-oscil 1600))
	(table (make-table-lookup 100.0 :wave (partials->wave '(1 1 8 1 16 1))))
	)
       (do ((i 0 (+ i 1)))
	   ((= i 500000))
	 (out-any i (* .3 (+ (oscil gen1) (oscil gen2) (oscil gen3))) 0)
	 (out-any i (* .3 (polyshape poly)) 1)
	 (out-any i (* .9 (waveshape wave)) 2)
	 (out-any i (* .3 (table-lookup table)) 3))))
	 
(set! (x-axis-label 0 0 1) "sum of oscils: frequency")
(set! (x-axis-label 0 1 1) "polyshape: frequency")
(set! (x-axis-label 0 2 1) "waveshape: frequency")
(set! (x-axis-label 0 3 1) "table-lookup: frequency")
-->

<div class="inset">
<p>
The table size is 512, but that almost doesn't matter; you'd have to use a table size of at least 8192
to approach the oscil and polyshape cases.  The FFT size is 1048576, with no data window ("rectangular"), and the y-axis
is in dB, going down to -120 dB.  The choice of fft window
can make a big difference; using no window, but a huge fft seems like the least confusing
way to present this result.
</p>
<p>
Notice the lower peaks in the table-lookup case.  partials-&gt;wave puts n periods of the nth harmonic
in the table, so the nth harmonic has an effective table length of table-length/n.  n * 1/n = 1, so all
our components have their first interpolation noise peak centered (in this case) around 7100 Hz ((512 * 100) mod 22050).
Since the 1600 Hz component has an effective table size of only 32 samples, it creates big sidebands at 5500 Hz
and 8700 Hz.  The 800 Hz component makes smaller peaks (by a factor of 4, since this is proportional to n^2) at
6300 Hz and 7900 Hz, and the 100 Hz
cases are at 7000 Hz and 7200 Hz (down in amplitude by 16^2).  The highest peaks are down only 60 dB.
See <a href="#table-lookup">table-lookup</a> for more discussion of interpolation noise (it's actually
amplitude modulation of the stored signal and the linear interpolating signal with severe aliasing).
</p>
<p>
The waveshaping noise is much worse because the polynomial is so 
sensitive numerically.  Here is a portion of the error signal at the point where the driving sinusoid
is at its maximum:
</p>
<img class="indented" src="pix/errorwave.png" alt="cheby error">
</div>

<!--
;;; omitted 100 component since it is clean and I couldn't get it to cancel...
(with-sound (:srate 1000000)
  (let ((wave (make-waveshape 100.0 :partials '(8 1 16 1) :size 512))
	(osc1 (make-oscil 1600.0 (* 0.5 pi))) 
	(osc2 (make-oscil 800.0 (* 0.5 pi))))
    (do ((i 0 (+ i 1)))
	((= i 1000000))
      (outa i (- (waveshape wave)
		 (* 1/2 (+ (oscil osc1) 
			   (oscil osc2))))))))
-->


<!-- this works: (make-waveshape 100.0 :partials '(1 1) :size 2)
     because the initial "polynomial" is a straight line: 
       :(mus-data (make-waveshape 100.0 :partials '(1 1) :size 2))
       #(-1.000 1.000)
     and we use array-interp to drive it with a sinusoid, so x=x!
-->

<p>
See also <a href="#polyoid">polyoid and noid</a> in generators.scm.
</p>





<!--  SAWTOOTH ETC  -->

<div class="innerheader" id="sawtoothdoc">sawtooth-wave, triangle-wave, pulse-train, square-wave</div>

<pre class="indented">
<em class=def id="make-triangle-wave">make-triangle-wave</em> (frequency 0.0) (amplitude 1.0) (initial-phase pi)
<em class=def id="triangle-wave">triangle-wave</em> s (fm 0.0)
<em class=def id="triangle-wave?">triangle-wave?</em> s

<em class=def id="make-square-wave">make-square-wave</em> (frequency 0.0) (amplitude 1.0) (initial-phase 0)
<em class=def id="square-wave">square-wave</em> s (fm  0.0)
<em class=def id="square-wave?">square-wave?</em> s

<em class=def id="make-sawtooth-wave">make-sawtooth-wave</em> (frequency 0.0) (amplitude 1.0) (initial-phase pi)
<em class=def id="sawtooth-wave">sawtooth-wave</em> s (fm 0.0)
<em class=def id="sawtooth-wave?">sawtooth-wave?</em> s

<em class=def id="make-pulse-train">make-pulse-train</em> (frequency 0.0) (amplitude 1.0) (initial-phase (* 2 pi))
<em class=def id="pulse-train">pulse-train</em> s (fm 0.0)
<em class=def id="pulse-train?">pulse-train?</em> s
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">saw-tooth and friends' methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">amplitude arg used in make-&lt;gen&gt;</td></tr>
<tr><td class="inner"><em class=gen>mus-width</em></td><td class="inner">width of square-wave pulse (0.0 to 1.0)</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>

<p>These generators produce some standard old-timey wave forms that are still occasionally useful (well, triangle-wave
is useful; the others are silly).
One popular kind of vibrato is:
</p>

<pre class="indented">
  (+ (triangle-wave pervib) 
     (<a class=quiet href="#rand-interp">rand-interp</a> ranvib))
</pre>

<p>sawtooth-wave ramps from -1 to 1, then goes immediately back to -1.
Use a negative frequency to turn the "teeth" the other way.
To get a sawtooth from 0 to 1, you can use modulo:
</p>
<pre class="indented">
(with-sound () (do ((i 0 (+ i 1)) (x 0.0 (+ x .01))) ((= i 22050)) (outa i (modulo x 1.0))))
</pre>

<p>
triangle-wave ramps from -1 to 1, then ramps from 1 to -1.
pulse-train produces a single sample of 1.0, then zeros.
square-wave produces 1 for half a period, then 0.  All have a period
of two pi, so the "fm" argument should have an effect comparable to the
same FM applied to the same waveform in <a href="#table-lookup">table-lookup</a>.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-triangle-wave 440.0)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (triangle-wave gen))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_triangle_wave(440.0);
  44100.times do |i| 
    outa(i, 0.5 * triangle_wave(gen), $output) 
    end
  end.output
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 make-triangle-wave { gen }
  44100 0 do
    i  gen 0 triangle-wave  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>To get a square-wave with control over the "duty-factor":
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let* ((duty-factor .25) ; ratio of pulse duration to pulse period
	 (p-on (<em class=red>make-pulse-train</em> 100 0.5))
	 (p-off (<em class=red>make-pulse-train</em> 100 -0.5 (* 2 pi (- 1.0 duty-factor)))))
    (do ((sum 0.0)
         (i 0 (+ i 1)))
	((= i 44100))
      (set! sum (+ sum (<em class=red>pulse-train</em> p-on) (<em class=red>pulse-train</em> p-off)))
      (<a class=quiet href="#outa">outa</a> i sum))))
</pre>

<p>
This is the <a href="#adjustable-square-wave">adjustable-square-wave</a> generator in generators.scm.
That file also defines <a href="#adjustable-triangle-wave">adjustable-triangle-wave</a> and
<a href="#adjustable-sawtooth-wave">adjustable-sawtooth-wave</a>.
All of these generators produce non-band-limited output; if the frequency is too high, you can get foldover.
A more reasonable square-wave can be generated via
<code>(tanh (* B (sin theta)))</code>, where "B" (a float) sets how squared-off it is:
</p>

<!-- the maxima experiments are in maxima.clm -->

<table>
<tr>
<td class="br">B: 1.0</td>
<td class="br">B: 3.0</td>
<td class="br">B: 100.0</td>
</tr>
<tr>
<td class="br">
<img src="pix/tanh1.png" alt="tanh 1">
</td>
<td class="br">
<img src="pix/tanh3.png" alt="tanh 1">
</td>
<td class="br">
<img src="pix/tanh100.png" alt="tanh 1">
</td>
</tr></table>

<!-- LATEX: sceq11
 \tanh(x) = x-\frac{x^{3}}{3}+\frac{2x^{5}}{15}-\frac{17x^{7}}{315}+\frac{62x^{9}}{2835}-\frac{1382x^{11}}{155925}\cdots 

long form:

\tanh(x) = x-\frac{x^{3}}{3}+\frac{2x^{5}}{15}-\frac{17x^{7}}{315}+\frac{62x^{9}}{2835}-\frac{1382x^{11}}{155925}+\frac{21844x^{13}}{6081075}-\frac{929569x^{15}}{638512875}\cdots

\tanh(x) = x-\frac{x^{3}}{3}+\frac{2x^{5}}{15}-\frac{17x^{7}}{315}+\frac{62x^{9}}{2835}-\frac{1382x^{11}}{155925}+\frac{21844x^{13}}{6081075}-\frac{929569x^{15}}{638512875}+\frac{6404582x^{17}}{10854718875}-\frac{443861162x^{19}}{1856156927625}\cdots

-->
<!-- LATEX: sceq12
\tanh(\sin(x)) = \frac{140069}{172800} \sin(x) + \frac{13319}{241920} \sin(3x) + \frac{1973}{483840} \sin(5x) + \frac{799}{1451520} \sin(7x) - \frac{71}{7257600} \sin(9x) + \frac{691}{79833600} \sin(11x) + \cdots 
-->

<!-- LATEX: tanhsum.png
& \tanh(B \sin(x)) = \frac{\sinh(B \sin(x))}{\cosh(B \sin(x))} = \frac{2 \sum_{k=0}^{\infty} (-1)^{k} I_{2k+1}(B) \sin(2k+1)x}{\cosh(B \sin(x))}

second try:
& \tanh(B \sin(x)) = \frac{-i \sin(iB \sin(x))}{\cos(iB \sin(x))} = \frac{2 \sum_{k=0}^{\infty} (-1)^{k} I_{2k+1}(B) \sin(2k+1)x}{\cos(iB \sin(x))} = \frac{e^{2B\sin(x)} - 1}{e^{2B\sin(x)}+1}

third try:
\tanh(B \sin(x)) = \frac{-i \sin(iB \sin(x))}{\cos(iB \sin(x))} = \frac{2 \sum_{k=0}^{\infty} (-1)^{k} I_{2k+1}(B) \sin(2k+1)x}{\cos(iB \sin(x))} = \frac{e^{2B\sin(x)} - 1}{e^{2B\sin(x)}+1}

fourth try (break it in 2!!):
\tanh(B \sin(x)) = \frac{-i \sin(iB \sin(x))}{\cos(iB \sin(x))}
= \frac{2 \sum_{k=0}^{\infty} (-1)^{k} I_{2k+1}(B) \sin(2k+1)x}{\cos(iB \sin(x))} = \frac{e^{2B\sin(x)} - 1}{e^{2B\sin(x)}+1}

fifth try: do it as one, and set the "MediaBox" line in the pdf file by hand!!
\tanh(B \sin(x)) = \frac{-i \sin(iB \sin(x))}{\cos(iB \sin(x))} = \frac{2 \sum_{k=0}^{\infty} (-1)^{k} I_{2k+1}(B) \sin(2k+1)x}{\cos(iB \sin(x))} = \frac{e^{2B\sin(x)} - 1}{e^{2B\sin(x)}+1}
-->


<p>
The spectrum of tanh(sin) can be obtained by expanding tanh as a power series:
</p>

<img class="indented" src="pix/sceq11.png" alt="tanh power series">

<p>
plugging in "sin" for "x", expanding the sine powers, and collecting terms (very tedious &mdash; 
use maxima!):
</p>

<img class="indented" src="pix/sceq12.png" alt="tanh sin power series">

<p>
which is promising since a square wave is made up of odd harmonics with amplitude 1/n.
As the "B" in tanh(B sin(x)) increases above pi/2, this series doesn't apply.
</p>

<img class="indented" src="pix/tanhsum.png" alt="more tanh">

<p>but I haven't found a completion of this expansion that isn't ugly when B &gt; pi/2. 
In any case, we can check the
formula for tanh, and see that the e^-x term will vanish (in the positive x case), giving 1.0.
So we do get a square wave, but it's not band limited.  If a complex signal replaces the sin(x),
we get "intermodulation products" (sum and difference tones); this use of tanh as a soft clipper
goes way back &mdash; I don't know who invented it.
</p>

<p>If you try to make a square wave by adding harmonics at amplitude 1/n,
you run into "Gibb's phenomenon": although the sum
converges on a square wave, it does so "pointwise" &mdash; each point converges to the square wave,
but the sum always has an overshoot.  To get something that looks square, we need to round-off the
corners. 
Bill Gosper shows one mathematical
way to do this (<a href="http://www.tweedledum.com/rwg/gibbs.html">gibbs.html</a>).
We could also use <a href="sndscm.html#withmixedsound">with-mixed-sound</a> and the Mixes dialog:
</p>

<pre class="indented">
(definstrument (sine-wave start dur freq amp)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
	 (osc (<a class=quiet href="#make-oscil">make-oscil</a> freq)))
   (do ((i beg (+ i 1))) 
       ((= i end))
     (<a class=quiet href="#outa">outa</a> i (* amp (<a class=quiet href="#oscil">oscil</a> osc))))))

(<em class=red>with-mixed-sound</em> ()
  (sine-wave 0 1 10.0 1.0)
  (sine-wave 0 1 30.0 .333)
  (sine-wave 0 1 50.0 .2)
  (sine-wave 0 1 70.0 .143))
</pre>

<p>
Now we can play with the
individual sinewave amplitudes in the Mixes dialog, seeing "in realtime" what
effect an amplitude has on the waveform.  In the graph below, we've taken the original set of four sines
and chosen amplitudes 1.16, .87, .46, .14 (these are multipliers on the original 1/n amps).
The first graph is the original waveform, the last is the result of the
amplitude changes, and the middle one shows 100 sines (it is the usual demo that
the Gibbs overshoot is not reduced by adding lots more components).
The peak amplitude should be pi/4, but the Gibbs phenomenon adds .14.
</p>

<img class="indented" src="pix/smoothsq.png" alt="reduce Gibbs">

<!--
(definstrument (sine-wave start dur freq amp)
  (let* ((beg (seconds->samples start))
	 (end (+ beg (seconds->samples dur)))
	 (osc (make-oscil freq)))
       (do ((i beg (+ i 1))) 
	   ((= i end))
	 (outa i (* amp (oscil osc))))))

(with-sound ("4-sines.snd")
  (sine-wave 0 1 10.0 1.0)
  (sine-wave 0 1 30.0 .333)
  (sine-wave 0 1 50.0 .2)
  (sine-wave 0 1 70.0 .143))

(with-sound ("100-sines.snd")
  (do ((i 1 (+ i 2)))
      ((> i 200))
    (sine-wave 0 1 (* i 10.0) (/ 1.0 i))))

(with-mixed-sound (:output "4-sines-mixed.snd")
  (sine-wave 0 1 10.0 1.0)
  (sine-wave 0 1 30.0 .333)
  (sine-wave 0 1 50.0 .2)
  (sine-wave 0 1 70.0 .143))
-->

<p>But goofing with individual amplitudes quickly becomes tiresome.  This "realtime" business
depends on luck; if we have some idea of what we're doing, we don't have to get lucky.
Since 
tanh(B sin(x)) produces a nice square wave, 
we can truncate its spectrum at the desired number of harmonics:
</p>

<pre class="indented">
(define square-wave-&gt;coeffs
  (let ((previous-results (make-vector 128 #f)))
    (lambda* (n B)
      (or (and (&lt; n 128)
	       (not B)
	       (previous-results n))
	  (let* ((coeffs (make-float-vector (* 2 n)))
		 (size (expt 2 12))
		 (rl (make-float-vector size)))
            (do ((incr (/ (* 2 pi) size))
                 (index (or B (max 1 (floor (/ n 2)))))
                 (i 0 (+ i 1))
		 (x 0.0 (+ x incr)))
	        ((= i size))
	      (set! (rl i) (<em class=red>tanh</em> (* index (<em class=red>sin</em> x))))) ; make our desired square wave
 	    (<a class=quiet href="#spectrum">spectrum</a> rl (make-float-vector size) #f 2)  ; get its spectrum
	    (do ((i 0 (+ i 1))
		 (j 0 (+ j 2)))
		((= i n))
	      (set! (coeffs j) (+ j 1))
	      (set! (coeffs (+ j 1)) (/ (* 2 (rl (+ j 1))) size)))
	    (if (and (&lt; n 128)                          ; save this set so we don't have to compute it again
		     (not B))
		(set! (previous-results n) coeffs))
	    coeffs)))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let* ((samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> 1.0))
	 (wave (<a class=quiet href="#make-polywave">make-polywave</a> 100.0 
			      :partials (<em class=red>square-wave-&gt;coeffs</em> 16)
			      :type mus-chebyshev-second-kind)))
   (do ((i 0 (+ i 1)))
       ((= i samps))
     (<a class=quiet href="#outa">outa</a> i (* 0.5 (<a class=quiet href="#polywave">polywave</a> wave))))))
</pre>

<table class="method"><tr><td>
<img src="pix/tanhexs.png" alt="tanh">
</td></tr></table>


<p>See also <a href="#tanhsin">tanhsin</a> in generators.scm.
Another square-wave choice is <a href="#eoddcos">eoddcos</a> in <a href="#othergenerators">generators.scm</a>, 
based on atan; as its "r" parameter approaches 0.0, you get closer to a square wave.
Even more amusing is this algorithm (related to tanh(sin)):
</p>

<img class="indented" src="pix/sceq13.png" alt="square">

<!-- CMJ 37 4 sept 2006 p326 -->
<!-- LATEX: \frac{(c+1)^{\cos t}-(c-1)^{\cos t}}{(c+1)^{\cos t}+(c-1)^{\cos t}} -->

<pre class="indented">
(define (cossq c theta)   ; as c -&gt; 1.0+, more of a square wave (try 1.00001)
  (let* ((cs (cos theta)) ; (+ theta pi) if matching sin case (or (- ...))
	 (cm1c (expt (- c 1.0) cs))
	 (cp1c (expt (+ c 1.0) cs)))
    (/ (- cp1c cm1c)
       (+ cp1c cm1c))))  ; from "From Squares to Circles..." Lasters and Sharpe, Math Spectrum 38:2

(define (sinsq c theta) (cossq c (- theta (* 0.5 pi))))
(define (sqsq c theta) (sinsq c (- (sinsq c theta)))) ; a sharper square wave

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((angle 0.0))
    (do ((i 0 (+ i 1))
	 (angle 0.0 (+ angle 0.02)))
	((= i 44100))
      (outa i (* 0.5 (+ 1.0 (sqsq 1.001 angle)))))))
</pre>

<p>And in the slightly batty category is this method which uses only nested sines:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((angle 0.0) (z 1.18)
        (incr (<a class=quiet href="#hztoradians">hz-&gt;radians</a> 100.0)))
    (do ((i 0 (+ i 1)))
        ((= i 20000))
      (let ((result (* z (sin angle))))
        (do ((k 0 (+ k 1)))
            ((= k 100))  ; the limit here sets how square it is, and also the overall amplitude
          (set! result (* z (sin result))))
        (set! angle (+ angle incr))
        (<a class=quiet href="#outa">outa</a> i result)))))
</pre>


<p>The continuously variable square-wave, tanh(B sin), can be differentiated to get a variable pulse-train,
or integrated to get a variable triangle-wave.
The derivative is B * cos(x) / (cosh^2(B * sin(x))):
</p>

<pre class="indented">
(with-sound ()
  (let ((Benv (make-env '(0 .1 .1 1 .7 2 2 5) :end 10000))
        (osc (make-oscil 100)))	 
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (let* ((B (env Benv))
	     (num (cos (mus-phase osc)))
	     (den (cosh (* B (oscil osc)))))
	(outa i (/ num den den))))))
</pre>

<img class="indented" src="pix/tanhsinderiv.png" alt="tanh(sin) as pulse train">


<p>
Similar, but simpler is B*cos(x)/(e^(B*cos(x)) - 1):
</p>

<pre class="indented">
(with-sound ()
  (let ((gen (make-oscil 40.0))
        (Benv (make-env '(0 .75 1 1.5 2 20) :end 10000)))
   (do ((i 0 (+ i 1)))
       ((= i 10000))
     (let* ((B (env Benv))
            (arg (* B pi (+ 1.0 (oscil gen)))))
       (outa i (/ arg (- (exp arg) 1)))))))
</pre>

<img class="indented" src="pix/xex.png" alt="another pulse train">


<p>
When we integrate tanh(B sin), the peak amp depends
on both the frequency and the "B" factor (which sets how close we get to a triangle wave):
</p>

<pre class="indented">
(with-sound ()
  (let ((gen (make-oscil 30.0))
	(Benv (make-env '(0 .1 .25 1 2 3 3 10) 
                :end 20000))
	(scl (hz-&gt;radians 30.0))
	(sum 0.0))
    (do ((i 0 (+ i 1)))
	((= i 20000))
      (let* ((B (env Benv))
	     (val (/ (* scl (max 1.0 (log B)) 
	                (tanh (* B (oscil gen)))) 
                     B)))
	(outa i (- sum 1.0))
	(set! sum (+ sum val))))))
</pre>

<img class="indented" src="pix/tanhsininteg.png" alt="tanh(sin) as triangle-wave">


<!--
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (x-axis-label 0 0 0) "derivative of tanh(B*sin), B from .1 to 5")
(set! (x-axis-label 0 0 0) "integration of tanh(B*sin), B from .1 to 10")
-->

<p>The amplitude scaling is obviously not right (if "B" &gt; 3, it works to use (* (/ scl 1.6) (tanh (* B (oscil gen))))
and (outa i (- sum .83)), but if "B" is following an envelope, the integration makes it hard to keep everything
centered and normalized).
For sawtooth output, see also <a href="#rksin">rksin</a>.
In these generators, the "fm" argument is useful mainly for various sci-fi sound effects:
</p>

<pre class="indented">
(define (tritri start dur freq amp index mcr)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
	 (carrier (<em class=red>make-triangle-wave</em> freq))
	 (modulator (<em class=red>make-triangle-wave</em> (* mcr freq))))
   (do ((i beg (+ i 1)))
       ((= i end))
     (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>triangle-wave</em> carrier 
                    (* index (<em class=red>triangle-wave</em> modulator))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:srate 44100) (tritri 0 1 1000.0 0.5 0.1 0.01)) ; sci-fi laser gun
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:srate 44100) (tritri 0 1 4000.0 0.7 0.1 0.01)) ; a sparrow?
</pre>

<p>On the other hand, animals.scm uses pulse-train's fm argument to track a frequency envelope,
triggering a new peep each time the pulse goes by.
I think just about every combination of oscil/triangle-wave/sawtooth-wave/square-wave has been
used.  Even triangle-wave(square-wave) can make funny noises.  See <a href="#ncosdoc">ncos</a>
for more dicussion about using these generators as FM modulators.
</p>





<!--  NCOS, NSIN  -->

<div class="innerheader" id="ncosdoc">ncos and nsin</div>

<pre class="indented">
<em class=def id="make-ncos">make-ncos</em> (frequency 0.0) (n 1)
<em class=def id="ncos">ncos</em> nc (fm 0.0)
<em class=def id="ncos?">ncos?</em> nc

<em class=def id="make-nsin">make-nsin</em> (frequency 0.0) (n 1)
<em class=def id="nsin">nsin</em> ns (fm 0.0)
<em class=def id="nsin?">nsin?</em> ns
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">ncos methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">(/ 1.0 cosines)</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">n or cosines arg  used in make-&lt;gen&gt;</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>

<p>ncos produces a band-limited pulse train containing
"n" cosines.  I think this was originally viewed as a way to get a speech-oriented
pulse train that would then be passed through formant filters (see pulse-voice in examp.scm).  
Set "n" to srate/2 to get a pulse-train (a single non-zero sample).  These generators are based on the Dirichlet kernel:
</p>

<!-- LATEX: \sum_{k=0}^{n}\cos kx = \frac{1}{2}\Bigg(1+\frac{\sin(n+\frac{1}{2})x}{\sin \frac{x}{2}}\Bigg) -->
<img class="indented" src="pix/sceq2.png" alt="sum of cosines">
<!--
  cos(x) + cos(2x) + ... cos(nx) = 
    (sin((n + .5)x) / (2 * sin(x / 2))) - 1/2
-->
<pre>
</pre>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-ncos 440.0 10)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (ncos gen))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_ncos(440.0, 10);
  44100.times do |i| 
    outa(i, 0.5 * ncos(gen), $output) 
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 10 make-ncos { gen }
  44100 0 do
    i  gen 0 ncos  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>There are many similar formulas:
see <a href="#ncos2">ncos2</a> and friends in <a href="#othergenerators">generators.scm</a>. "Trigonometric Delights" by Eli Maor has
a derivation of the nsin formula and a neat
geometric explanation.  For a derivation of the ncos formula, see "Fourier
Analysis" by Stein and Shakarchi, or (in the formula given below) multiply the left side (the cosines) by sin(x/2), use the trig
formula 2sin(a)cos(b) = sin(b+a)-sin(b-a), and notice that all the terms in the series
cancel except the last. 
</p>


<pre class="indented">
(define (simple-soc beg dur freq amp)
  (let* ((os (<em class=red>make-ncos</em> freq 10))
         (start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
   (do ((i start (+ i 1))) ((= i end))
     (outa i (* amp (<em class=red>ncos</em> os))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (simple-soc 0 1 100 1.0))
</pre>

<img class="indented" src="pix/cosines.png" alt="sum of cosines example">


<p>The <a href="#sinc-train">sinc-train</a> generator (in generators.scm) is very similar to ncos.
If you use ncos as the FM modulating signal, you may be surprised and disappointed.
As the modulating signal approaches a spike (as n increases), the bulk of the energy collapses back onto the carrier:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (for-each
    (lambda (arg)
      (let ((car1 (<a class=quiet href="#make-oscil">make-oscil</a> 1000))
            (mod1 (<em class=red>make-ncos</em> 100 (cadr arg)))
            (start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> (car arg)))
            (samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> 1.0))
            (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 20 1 21 0) 
                    :duration 1.0 :scaler .8))
            (index (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (* 100 3.0))))
        (do ((i start (+ i 1)))
            ((= i (+ start samps)))
            (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf)
                       (<a class=quiet href="#oscil">oscil</a> car1 (* index
                         (<em class=red>ncos</em> mod1))))))))
    '((0.0 1) (2.0 2) (4.0 4) (6.0 8) (8.0 16) (10.0 32) (12.0 64) (14.0 128))))
</pre>

<img class="indented" src="pix/ncosfm.png" alt="ncos as FM">


<!--
ncosfm.png:
jet .001 59 invert
x 317 1.53
y 237 0.65
z 0 1.28
hop 4 % 0.14
blackman2 8192
-->

<!--
pulsefm.png:
(with-sound (:channels 2)
  (let* ((car1 (make-oscil 1000))
         (mod1 (make-pulse-train 100))
         (samps (seconds->samples 1.0))
         (ampf (make-env '(0 0 1 1 20 1 21 0) :duration 1.0 :scaler .8))
	 (index (hz->radians (* 100 3.0))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((amp (env ampf))
	    (fm (* index (pulse-train mod1))))
	(outa i fm)
	(outb i (* amp (oscil car1 fm)))))))

(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (show-transform-peaks 0 0) #f)
cursor 10584
(set! *axis-label-font* *axis-numbers-font*)
(set! (x-axis-label 0 0 0) "pulse train modulating signal, FM index: 3.0")
(set! (x-axis-label 0 1 0) "modulated signal")
-->

<p>If you go all the way and use a pulse-train as the FM source, you get a
large component for the carrier, and all the others are very small.
</p>

<img class="indented" src="pix/pulsefm.png" alt="pulse-train as FM">

<!-- LATEX jprod.png \prod_{i=1}^{k}J_{k_{i}}(B_{i}) -->

<!-- j0j1.png:
(with-sound (:channels 2 :srate 10000)
  (do ((x 0.0 (+ x .0001))
       (i 0 (+ i 1)))
      ((= i 40000))
    (outa i (bes-j0 x))
    (outb i (bes-j1 x))))


(set! (x-axis-label 0 0) "J0 and J1")
(set! (x-axis-label 0 1) "")
(set! *axis-label-font*"9x15")
-->


<img class="indented" src="pix/j0j1.png" alt="j0 and j1">

<pre class="indented">
(define (ncfm freq-we-want wc modfreq baseindex n)
  ;; get amplitude of "freq-we-want" given ncos as FM, 
  ;;   "wc" as carrier, "modfreq" as ncos freq,
  ;;   "baseindex" as FM-index of first harmonic, 
  ;;   "n" as number of harmonics
  (do ((harms ())
       (amps ())
       (i 1 (+ i 1)))
      ((&gt; i n)
       (<a class=quiet href="sndscm.html#fmparallelcomponent">fm-parallel-component</a> freq-we-want wc 
          (reverse harms) (reverse amps) () () #f))
    (set! harms (cons (* i modfreq) harms))
    (set! amps (cons (/ baseindex i n) amps))))
</pre>

<table class="method">
<tr><td colspan=3 class="methodtitle">4 components: (ncfm x 1000 100 3.0 4)</td></tr>
<tr><td class="br">x=1000</td><td class="br"> 0.81</td><td class="br"> 0.81 from J0(3/(4*k)) '(0 0 0 0)</td></tr>
<tr><td class="br">x=900</td><td class="br">-0.44</td><td class="br">-0.32 from J1(3/4)*J0s  '(-1 0 0 0)</td></tr>
<tr><td class="br">x=800</td><td class="br">-0.14</td><td class="br">-0.16 from J1(3/8)*J0s  '(0 -1 0 0)</td></tr>
<tr><td class="br">x=700</td><td class="br">-0.06</td><td class="br">-0.10 from J1(3/12)*J0s '(0 0 -1 0)</td></tr>
</table>

<pre>
</pre>

<table class="method">
<tr><td colspan=3 class="methodtitle">24 components: (ncfm x 1000 100 3.0 24)</td></tr>
<tr><td class="br">x=1000</td><td class="br">0.99</td><td class="br"> 0.99 from J0(3/(24*k)) '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)</td></tr>
<tr><td class="br">x=900</td><td class="br">-0.06</td><td class="br">-0.06 from J1(3/24)*J0s '(-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)</td></tr>
<tr><td class="br">x=800</td><td class="br">-0.03</td><td class="br">-0.03 from J1(3/48)*J0s '(0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)</td></tr>
<tr><td class="br">x=700</td><td class="br">-0.02</td><td class="br">-0.02 from J1(3/96)*J0s '(0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)</td></tr>
</table>


<p>You can multiply the index by n to counteract the effect of the n modulators
(in the n=128 case mentioned above, the index becomes 384!).
I find it surprising how smooth the spectral evolution is in this context.
Here we sweep the index from 0 to 48 using n=16:
</p>

<table class="pb">
<tr><td>
<img src="pix/ncossweep.png" alt="ncos">
</td></tr>
<tr><td class="center">ncos (n=16) as FM, index from 0 to 48</td></tr>
</table>


<!--
(with-sound (:statistics #t)
  (let* ((dur 10.0)
	 (samps (seconds->samples dur))
	 (car1 (make-oscil 1000))
	 (mod1 (make-sum-of-cosines 16 100))
	 (ampf (make-env '(0 0 1 1 20 1 21 0) :duration dur :scaler .8))
	 (index (hz->radians (* 100 16 3.0)))
	 (indf (make-env '(0 0 1 1) :scaler index :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (* (env ampf)
		 (oscil car1 (* (env indf)
				(sum-of-cosines mod1))))))))

4096 blackman2 100(dark) 0 cutoff invert jet
319 1.5
289 0.71
0 1.0
4 0.25
-->

<p>But if our second analysis is correct, there's nothing special about the spike waveform that ncos produces.
We only need a lot of components of decreasing effective FM index.  If we randomize the initial
phases of the n harmonically related equal amplitude sinusoids, we can minimize the peak amplitude (to reduce the
spike), 
getting waveforms and results like these:
</p>

<table class="pb">
<tr><td>
<img src="pix/nsinfm.png" alt="ncos case but random phases">
</td></tr>
<tr><td class="center">FM of sum of n sinusoids</td></tr>
</table>


<table class="pb">
<tr><td>
<img src="pix/randomsins.png" alt="ncos case but random phases">
</td></tr>
<tr><td class="center">sum of n sinusoids minimizing resemblance to pulse-train</td></tr>
</table>


<!-- same setting as above

(defgenerator (ngencos 
	       :make-wrapper (lambda (g)
			       (let ((n (g 'n))
				     (frq (g 'frequency))
				     (phases (g 'phases)))
				 (set! (g 'arr) (make-vector n 0.0))
				 (do ((i 0 (+ i 1)))
				     ((= i n))
				   (if (float-vector? phases)
				       (set! ((g 'arr) i) (make-oscil (* frq (+ i 1)) (phases i)))
				       (set! ((g 'arr) i) (make-oscil (* frq (+ i 1)) (random (* 2 pi)))))))
			       g))
  frequency (n 1) (phases #f) (arr #f) fm)


(define* (ngencos gen (fm 0.0)) ; polyoid now, I think
  (set! (gen 'fm) fm)
  (with-let gen	 
    (let ((sum 0.0))
      (do ((i 0 (+ i 1)))
	  ((= i n))
        (set! sum (+ sum (oscil (arr i) (* (+ i 1) fm)))))
      (/ sum n))))

(with-sound (:channels 1 :clipped #f)
  (for-each
    (lambda (arg)
      (let ((car1 (make-oscil 1000))
	    (norm (/ 1.0 (caddr arg)))
	    (mod1 (make-ngencos 100 (cadr arg) (cadddr arg)))
	    (start (seconds->samples (car arg)))
	    (samps (seconds->samples 1.0))
	    (ampf (make-env '(0 0 1 1 20 1 21 0) 
	            :duration 1.0 :scaler .8))
	    (index (hz->radians (* 100 3.0)))
	    (mx 0.0))
	(do ((i start (+ i 1)))
	    ((= i (+ start samps)))
	  (let ((md (ngencos mod1)))
	    (outa i (* (env ampf)
                       (oscil car1 (* index norm md))))
	    (set! mx (max mx (abs md)))
	    ))
	(snd-display ";~A ~A ~A" (cadr arg) (caddr arg) mx)))
    (list
     (list 0.0 1    1.0    (float-vector 0))
     (list 2.0 2    0.881 (float-vector 0 0))
     (list 4.0 4    0.5184 (float-vector 1.295 0.248 0.304 2.785))
     (list 6.0 8    0.393  (float-vector 4.515 1.780 4.259 1.771 1.166 0.254 1.419 2.735))
     (list 8.0 16   0.302  (float-vector 0.432 2.086 2.763 2.344 2.811 3.409 1.836 6.173 3.770 2.339 6.158 1.530 6.132 3.006 4.967 0.859))
     (list 10.0 32  0.266  (float-vector 6.208 4.197 3.109 1.718 5.050 1.317 4.334 3.778 4.936 0.069 3.025 2.115 5.060 1.286 3.499 5.191 1.822 5.985 4.384 1.394 3.453 2.579 3.031 3.255 3.834 2.621 1.390 0.717 0.409 3.370 6.042 6.052))
     (list 12.0 64  0.2124 (float-vector 4.913 5.507 5.262 1.926 4.819 3.794 0.355 1.178 4.959 1.012 3.433 2.855 2.191 4.792 3.740 1.865 5.196 1.078 4.139 5.518 3.053 3.958 3.131 6.260 2.157 4.279 2.352 4.314 1.102 5.967 3.551 2.439 5.456 4.833 5.213 3.523 3.263 2.810 0.433 0.639 2.554 3.469 2.682 4.765 0.125 3.824 1.137 6.166 0.019 2.240 4.406 4.734 5.451 6.230 4.943 4.160 3.577 5.086 2.444 0.900 1.952 2.234 4.794 3.424))
     (list 14.0 128 0.16121 (float-vector 1.531 4.987 1.847 0.632 6.101 4.309 0.517 1.910 4.921 4.949 6.040 5.611 2.831 5.338 0.891 5.388 0.599 2.677 6.248 5.592 1.977 1.794 3.572 2.638 1.903 3.083 2.412 6.125 3.799 5.619 5.949 1.241 3.044 5.395 5.865 4.846 4.899 2.267 4.537 3.979 1.783 3.826 1.325 5.278 5.799 4.977 2.066 3.029 1.036 4.606 1.691 6.079 4.957 6.138 2.603 1.111 1.335 1.765 5.767 2.730 0.702 1.122 1.628 1.848 0.712 2.338 5.099 6.249 2.009 3.379 1.653 4.831 2.245 1.831 1.113 5.462 5.533 2.944 4.376 4.734 3.285 4.361 1.015 2.100 5.022 3.269 0.796 0.317 5.244 2.613 4.609 3.415 4.454 0.228 2.025 0.216 1.785 3.599 3.207 5.019 3.591 5.138 4.333 3.005 6.208 5.296 0.763 3.741 3.446 3.962 0.204 1.715 4.054 2.402 1.455 1.842 4.637 4.427 0.536 2.700 4.289 3.066 0.574 6.106 1.472 5.793 4.294 2.287)))))
-->


<div class="inset">
<p>Compare the sound of the n=64 and n=128 cases using ncos and random phases: they sound very different
despite having the same spectrum.  We confront the burning question: given n equal amplitude
harmonically related sinusoids, what is the minimum peak amplitude? 
For my current best results, see <a href="sndscm.html#peakphasesdoc">peak-phases</a>.
</p>
</div>

<p>
If you use ncos (or nsin) as both the carrier and modulator, you get a very similar effect.  As n increases,
the ncos(wc + ncos(wm)) output gradually approaches the unmodulated ncos output &mdash; the crunch happens on each carrier component,
but most strongly on the earlier ones (the "effective index" is less on those components, as mentioned
under <a href="#polywave">polywave</a>).  
And (for some reason this makes me smile), polywave modulated by ncos behaves the same way:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((modulator (<em class=red>make-ncos</em> 100 :n 128))
        (carrier (<em class=red>make-polywave</em> 1000 (list 1 .5 3 .25 6 .25))))
    (do ((i 0 (+ i 1))) 
        ((= i 20000))
      (<a class=quiet href="#outa">outa</a> i (* .5 (<em class=red>polywave</em> carrier 
                      (* (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (* 3 100)) 
                         (<em class=red>ncos</em> modulator 0.0))))))))
</pre>

<p>So, a pulse-train modulated by a pulse-train is a pulse-train.
Are there any other cases where gen(wc + gen(wm)) = gen(wc)?  My first thought was rand, but that has a hidden
surprise: the modulation obscures the underlying square-wave!
</p>

<img class="indented" src="pix/randfm.png" alt="rand(rand) spectrum">

<!-- randfm.png:

(with-sound (:channels 3)
  (let* ((car1 (make-rand 1000))
         (car2 (make-rand 1000))
         (mod1 (make-rand 100))
	 (samps (seconds->samples 1.0))
	 (ampf (make-env '(0 0 1 1 20 1 21 0) :duration 1.0 :scaler .8))
	 (index (hz->radians (* 100 3.0))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((amp (env ampf))
	    (fm (* index (rand mod1))))
	(outa i fm)
	(outb i (* amp (rand car2)))
	(outc i (* amp (rand car1 fm)))))))

(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (x-axis-label 0 0 1) "100Hz rand modulating signal spectrum")
(set! (x-axis-label 0 1 1) "1000Hz rand, no modulation")
(set! (x-axis-label 0 2 1) "1000Hz rand, 100Hz modulation (from chan 0), index: 3")
-->

<!--
compare ncos as FM and direct sum of cos:

(with-sound (:channels 2)
  (for-each
    (lambda (arg)
      (let* ((beg (car arg))
	     (n (cadr arg))
	     (car1 (make-oscil 1000))
	     (mod1 (make-sum-of-cosines n 100 (random pi)))
	     (start (seconds->samples beg))
	     (dur 1.0)
	     (samps (seconds->samples dur))
	     (stop (+ start samps))
	     (ampf (make-env '(0 0 1 1 20 1 21 0) :duration dur :scaler .8))
	     (index (hz->radians (* 100 3.0)))
	     (car2 (make-oscil 1000))
	     (mods (make-vector n)))
	(do ((i 0 (+ i 1)))
	    ((= i n))
	  (set! (mods i) (make-oscil (* (+ i 1) 100) (* 0.5 pi))))
	(do ((i start (+ i 1)))
	    ((= i stop))
	  (let ((amp (env ampf)))
	    (outa i (* amp (oscil car1 (* index (sum-of-cosines mod1)))))
	    (let ((sum 0.0))
	      (do ((k 0 (+ k 1)))
		  ((= k n))
		(set! sum (+ sum (oscil (mods k)))))
	      (outb i (* amp (oscil car2 (* (/ index n) sum)))))))))
    (list
     (list 0.0 1)
     (list 2.0 2)
     (list 4.0 4)
     (list 6.0 8)
     (list 8.0 16)
     (list 10.0 32)
     (list 12.0 64)
     (list 14.0 128))))
-->


<p>What FM input (to oscil, for a given index) would give the most dispersed output?  My first guess was square-wave, but looking at graphs,
I'd say rand gives it a good contest.
If you sweep ncos upwards in frequency, you'll eventually
get foldover; the generator produces its preset number of cosines no
matter what.  It is possible to vary the spectrum smoothly:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((os (<em class=red>make-ncos</em> 100.0 4))
        (pow (<a class=quiet href="#make-env">make-env</a> '(0 1.0 1 30.0) :length 10000))) ; our "index" envelope in FM jargon
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (let ((val (<em class=red>ncos</em> os)))
	(<a class=quiet href="#outa">outa</a> i (* (signum val) ; signum is in dsp.scm
		   (expt (abs val) (<a class=quiet href="#env">env</a> pow))))))))
</pre>

<p>This is not a very polite sound.  The same trick works on all the <a href="#ncos2">pulse-train</a> functions in generators.scm (or an oscil for that matter!), 
but perhaps a filter is a simpler approach.  There are a lot more of these "kernels" in <a href="#othergenerators">generators.scm</a>.
</p>

<table class="method">
<tr>
<td class="methodtitle">ncos2 (Fejer, n=10)</td>
<td class="methodtitle">npcos (Poussin, n=5)</td>
<td class="methodtitle">ncos4 (Jackson, n=10)</td>
</tr><tr>
<td class="br"><img src="pix/fejer.png" alt="fejer sum"></td>
<td class="br"><img src="pix/poussin.png" alt="poussin sum"></td>
<td class="br"><img src="pix/jackson.png" alt="jackson sum"></td>
</tr></table>




<p>nsin produces a sum of equal amplitude sines.  It is very similar (good and bad) to <a href="#ncos">ncos</a>.
For n greater than 10 or so, its peak amplitude occurs at approximately 3pi/4n, and is about .7245*n (that is, 8n*(sin^2(3pi/8))/3pi).
The nsin generator scales its output to be between -1 and 1 for any n.  We can use nxysin to try any initial-phase in a
sum of equal sinusoids.  The peak amp in this case varys sinusoidally from a sum of sines n * 0.7245 to a sum of cosines n * 1.0;
the peak amp is nsin-max(n) + abs(sin(initial-phase))*(1 - nsin-max(n)).  nsin is based on the conjugate Dirichlet kernel:
</p>

<!-- LATEX: \sum_{k=1}^{n}\sin kx = \frac{\sin\frac{n+1}{2}x \: \sin\frac{nx}{2}}{\sin\frac{x}{2}} -->

<img class="indented" src="pix/sceq1.png" alt="sum of sines">
<pre>
</pre>
<img class="indented" src="pix/sos.png" alt="sum of sines graphs">
<pre>
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">nsin methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">dependent on number of sines</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">n or sines arg used in make-&lt;gen&gt;</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>

<p>
As with all the paired cos/sin generators (waveshaping, generators.scm, etc), we can vary
the initial phase by taking advantage of the trig identity:
</p>

<img class="indented" src="pix/fmeq18.png" alt="sin split">

<p>that is,
</p>

<pre class="indented">
 (+ (* (ncos nc) (sin initial-phase))
    (* (nsin ns) (cos initial-phase)))
</pre>

<p>Or vary it via an envelope at run-time:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((nc (<em class=red>make-ncos</em> 500.0 6))
	(ns (<em class=red>make-nsin</em> 500.0 6))
	(phase (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) 
                  :length 1000 :scaler (/ pi 2))))
    (do ((i 0 (+ i 1)))
	((= i 1000)) 
      (let ((angle (<a class=quiet href="#env">env</a> phase)))
	(<a class=quiet href="#outa">outa</a> i (+ (* (<em class=red>ncos</em> nc) (sin angle))
		   (* (<em class=red>nsin</em> ns) (cos angle))))))))
</pre>

<img class="indented" src="pix/varyphase.png" alt="ncos+nsin example">


<p>Compared to ncos or nsin, polywave is probably always faster and more accurate, but less convenient to set up.
Both ncos and nsin could be implemented as polynomials in cos x, just as in polyshape; in fact, ncos is
almost the same as the Chebyshev polynomial of the fourth kind. 
See also the <a href="#nrxydoc">nrxycos</a> generator, 
and <a href="#othergenerators">generators.scm</a>.
</p>


<!-- LATEX:
sceq14:
\small
\begin{align*}
&\sum_{k=0}^{n}\sin(x+ky)=\frac{\sin\Big(x+\frac{n-1}{2}y\Big)\sin\frac{ny}{2}}{\sin\frac{y}{2}} \\
&\sum_{k=0}^{n}\cos(x+ky)=\frac{\cos\Big(x+\frac{n-1}{2}y\Big)\sin\frac{ny}{2}}{\sin\frac{y}{2}} \\
&\sum_{k=0}^{2n-1}(-1)^{k}\cos(x+ky)=\frac{\sin\Big(x+\frac{2n-1}{2}y\Big)\sin ny}{\cos\frac{y}{2}} \\
&\sum_{k=0}^{n-1}(-1)^{k}\sin(x+ky)=\frac{\sin\Big(x+\frac{n-1}{2}(y+\pi)\Big)\sin\frac{n(y+\pi)}{2}}{\cos\frac{y}{2}} \\
&\sum_{k=1}^{n}\sin(2k-1)x=\frac{\sin^{2}nx}{\sin x} \\
&\sum_{k=1}^{n}\cos(2k-1)x=\frac{1}{2}\frac{\sin 2nx}{\sin x} \\
&\sum_{k=1}^{n}(-1)^{k}\cos kx=-\frac{1}{2}+\frac{(-1)^{n}\cos(\frac{2n+1}{2}x)}{2\cos\frac{x}{2}} \\
&\sum_{k=1}^{n}(-1)^{k+1}\sin(2k-1)x = (-1)^{n+1}\frac{\sin 2nx}{2\cos x} \\
&\sum_{k=1}^{n-1}k\sin kx=\frac{\sin nx}{4 \sin^{2}\frac{x}{2}} - \frac{n \cos \frac{2n-1}{2}x}{2\sin\frac{x}{2}} \\
&\sum_{k=1}^{n-1}k\cos kx=\frac{n\sin\frac{2n-1}{2}x}{2\sin\frac{x}{2}} - \frac{1-\cos nx}{4\sin^{2}\frac{x}{2}} \\
&2^{1-n} \sum_{0}^{\lfloor n/2 \rfloor} \binom{n}{k} \cos (n-2k)\theta = \cos^{n}\theta \\

sceq15:
&\sum_{k=1}^{n-1}p^{k}\sin kx=\frac{p\sin x - p^{n}\sin nx + p^{n+1}\sin(n-1)x}{1-2p\cos x+p^{2}} \\
&\sum_{k=0}^{n-1}p^{k}\cos kx=\frac{1-p\cos x - p^{n}\cos nx + p^{n+1}\cos(n-1)x}{1-2p\cos x + p^{2}} \\
&\sum_{k=1}^{\infty}p^{k}\sin kx=\frac{p\sin x}{1-2p\cos x + p^{2}} \\
&\sum_{k=0}^{\infty}p^{k}\cos kx=\frac{1-p\cos x}{1-2p\cos x + p^{2}} \\
&\sum_{k=1}^{\infty}\frac{p^{k}\sin kx}{k} = \arctan \frac{p\sin x}{1-p\cos x} \\
&\sum_{k=1}^{\infty}\frac{p^{k}\cos kx}{k} = \ln \frac{1}{\sqrt{1-2p\cos x + p^{2}}} \\
&\sum_{k=1}^{\infty}\frac{p^{2k-1}\sin(2k-1)x}{2k-1} = \frac{1}{2}\arctan \frac{2p\sin x}{1-p^{2}} \\
&\sum_{k=1}^{\infty}\frac{p^{2k-1}\cos(2k-1)x}{2k-1} = \frac{1}{4}\ln \frac{1+2p\cos x + p^{2}}{1-2p\cos x + p^{2}} \\
&\sum_{k=1}^{\infty}e^{-kt}\sin kx = \frac{1}{2}\frac{\sin x}{\cosh t - \cos x} \\
&1 + 2\sum_{k=1}^{\infty}e^{-kt}\cos kx = \frac{\sinh t}{\cosh t - \cos x} \\
&\sum_{k=0}^{\infty} \frac{(2n+2k)(2n+k-1)!}{k!}J_{2n+2k}(2z \sin \theta) = (z \sin \theta)^{2n} \\
&J_{0}^{2}\Big(\frac{z}{2}\Big)+2\sum_{k=1}^{\infty} J_{k}^{2}\Big(\frac{z}{2}\Big)\cos2k\theta = J_{0}(z \sin \theta) \\
\end{align*}


old in second col (replaced by JO cases):
&\sum_{k=1}^{\infty}\frac{p^{k}\sin kx}{k!} = e^{p\cos x}\sin(p\sin x) \\
&\sum_{k=0}^{\infty}\frac{p^{k}\cos kx}{k!} = e^{p\cos x}\cos(p\sin x) \\
rk!sin and cos

original last of first col:
&\sum_{k=1}^{\infty} \frac{\sin^{2k} x}{k} = -2 \ln \cos x & (x^{2} < \frac{pi^{2}}{4}) \\


sceq20:
\begin{align*}
&\sum_{k=0}^{\infty} p^{k} \cos(x + ky) = \frac{\cos x - p \cos(x - y)}{1 - 2p\cos y + p^{2}} \\
&\sum_{k=0}^{\infty} p^{k} \sin(x + ky) = \frac{\sin x - p \sin(x - y)}{1 - 2p\cos y + p^{2}} \\
&\sum_{k=1}^{\infty} \frac{\sin kx}{2^{k-1}} = \frac{4\sin x}{5 - 4\cos x} \\
&\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{(2k-1)a} \cos(2k-1)x}{2k-1} = \frac{1}{2}\arctan \bigg(\frac{\cos x}{\sinh a}\bigg) \\
&\sum_{k=1}^{\infty} \frac{\sin nx}{n(n^{2}-4)} = -\frac{\pi}{8}\sin^{2}x \\
\end{align*}


sceq21:
\begin{align*}
&\sum_{k=0}^{\infty} \frac{a^{k}}{k!} \cos(x + ky) = e^{a \cos y} \cos (x + a \sin y) \\
&\sum_{k=0}^{\infty} \frac{a^{k}}{k!} \sin(x + ky) = e^{a \cos y} \sin (x + a \sin y) \\
&\sum_{k=0}^{\infty} \frac{a^{2k}\cos 2kx}{(2k)!} = \cosh(a \cos x) \cos (a \sin x) & (a^{2}<1) \\
&\sum_{k=1}^{\infty} \frac{a^{2k}\sin 2kx}{(2k)!} = \sinh(a \cos x) \sin (a \sin x) & (a^{2}<1) \\
&\frac{1}{a} + 2a \sum_{k=1}^{\infty} \frac{\cos kx}{a^{2}+k^{2}} = \pi \frac{\cosh a(\pi-x)}{\sinh a\pi} & (0 \leq x \leq 2\pi)\\
\end{align*}

sceq23 (old):
& \ln (1 - 2xt + t^{2})^{-1} = 2 \sum_{n=1}^{\infty} \frac{t^{n}}{n} T_{n}(x) \\
& (1 - 2xt + t^{2})^{-1} = \frac{1}{\sqrt{1 - x^{2}}} \sum_{n=0}^{\infty} t^{n} U_{n+1}(x) \\
& e^{z cos x}J_{\nu-\frac{1}{2}}(z \sin x) = \frac{\Gamma(\nu)}{\Gamma(\frac{1}{2})}(2 \sin x)^{\nu-\frac{1}{2}} \sum_{k=0}^{\infty}\frac{z^{\nu+k-\frac{1}{2}}}{\Gamma(2\nu + k)} \mathrm{C}^{\nu}_{k}(\cos x)

sceq25 old:
\sum_{n=0}^{\infty} r^{n} \sum_{k=0}^{\infty} \sin (k+1/2)\theta = \frac{(1+r)\sin(\theta / 2)}{(1-r)(1-2r\cos\theta + r^{2})}

sceq26 old:
\sum_{n=0}^{\infty} r^{n} \sum_{k=0}^{\infty} (n+1-k)\sin (k+1)\theta = \frac{\sin\theta}{(1-r)^{2}(1-2r\cos\theta + r^{2})}

sceq7: (p73)
&\sum_{k=1}^{\infty} \frac{\cos kx}{k} = -\ln \big(2 \sin \frac{x}{2}\big)  & (0\leq x \leq \pi) \\

sceq27: (p183)
1 + 2 &\sum_{n=1}^{\infty} \frac{(-a + \sqrt{a^{2} - b^{2}})^{n} \cos nx}{b^{n}} = \frac{\sqrt{a^{2} - b^{2}}}{a + b \cos x} & (b < a, a \neq 0) \\

sceq25:
&\sum_{k=1}^{\infty} k r^{k} \sin kx = \frac{r(1-r^{2})\sin x}{(1 - 2r\cos x + r^{2})^{2}}
Z 352

sceq26:
original: & \frac{8}{\pi} \sum_{k=1}^{\infty} \frac{\sin^{2}kx}{4k^{2}-1} = |\sin x|
& \frac{8}{\pi} \sum_{k=1}^{\infty} \frac{\sin^{2}kx}{4k^{2}-1} = | \sin x \, | = \frac{2}{\pi} - \frac{8}{\pi} \sum_{k=1}^{\infty} \frac{\cos 2kx}{4k^{2} - 1}

sceq31:
J_{0}(ka)J_{0}(kr) + 2 \sum_{m=1}^{\infty} J_{m}(kr)J_{m}(ka) \cos m\theta = J_{0}\Big(k \sqrt{r^{2}+a^{2}-2ar\cos \theta}\Big)

sceq32 old form (redundant):
1 + 2 \sum_{n=1}^{\infty} J_{n}(nz)\cos n(x-z\sin x) = \frac{1}{1-z\cos x}
sceq32 new form:
&2^{n} \Gamma(n) \sum_{m=0}^{\infty} (n+m)\frac{J_{n+m}(r)}{r^{n}} \frac{J_{n+m}(a)}{a^{n}} C_{m}^{n}(\cos \theta) = \frac{J_{n}\big(\sqrt{r^{2}+a^{2}-2ar\cos \theta}\big)}{\big(\sqrt{r^{2}+a^{2}-2ar\cos \theta}\big)^{n}} \\

sceq33:
\sum_{m=0}^{\infty}(m+\frac{1}{2})\frac{J_{m+\frac{1}{2}}(ka)}{\sqrt{a}} \frac{J_{m+\frac{1}{2}}(kr)}{\sqrt{r}} P_{m}(\cos \theta) = \frac{\sin\Big(k \sqrt{r^{2}+a^{2}-2ar\cos \theta}\Big)}{\pi \sqrt{r^{2}+a^{2}-2ar\cos \theta}}

Pn(cos x) is p776 A&S (P=Jacobi)

sceq34:
old form: \sum_{m=0}^{\infty} (n+m)\Big(\frac{J_{n+m}(z)}{z^{n}}\Big)^{2} C_{m}^{n}(\cos \theta) = \frac{J_{n}(2z \sin \frac{\theta}{2})}{2^{n}\Gamma(n)(2z\sin \frac{\theta}{2})}
\sum_{m=0}^{\infty} (n+m)\Big(\frac{J_{n+m}(z)}{z^{n}}\Big)^{2} \sum_{k=0}^{m} \frac{(n)_{k}(n)_{m-k}}{k!(m-k)!} \cos(m-2k)\theta = \frac{J_{n}(2z \sin \frac{\theta}{2})}{2^{n}\Gamma(n)(2z\sin \frac{\theta}{2})}


from Gray and Mathews, "A Treatise on Bessel Functions and Their Applications to Physics" p 28, 29, 92, 240
sceq36:
& J_{0}^{2}\Big(\frac{z}{2}\Big)+2\sum_{k=1}^{\infty} (-1)^{k} J_{k}^{2}\Big(\frac{z}{2}\Big)\cos2kx = J_{0}(z \cos x) \\
& 2\sum_{k=0}^{\infty} (-1)^{k} J_{k}\Big(\frac{z}{2}\Big)J_{k+1}\Big(\frac{z}{2}\Big)\cos (2k+1)x = J_{1}(z \cos x) \\

sceq37:
& Y_{0}(b)J_{0}(c) + 2 \sum_{m=1}^{\infty} Y_{m}(b)J_{m}(c) \cos m\theta = Y_{0}\Big(\sqrt{b^{2}+c^{2}-2bc\cos \theta}\Big) & (b > c)\\
& \sum_{n=0}^{\infty} \frac{r^{n}}{n!}P_{n}(\cos \theta) = e^{r \cos \theta}J_{0}(r \sin \theta) \\

from Abramowitz and Stegun, "Handbook of Mathematical Functions"
9.6.34 (p376)  (9.1.42 is the FM formula)
sceq39:
I_{0}(z) + 2 \sum_{k=1}^{\infty} I_{k}(z) \cos k\theta = e^{z \cos \theta}

sceq40: 27.8.6 (p1005)
&\sum_{n=1}^{\infty} \frac{\sin n\theta}{n^{3}} = \frac{\pi^{2}\theta}{6} - \frac{\pi \theta^{2}}{4} + \frac{\theta^{3}}{12} & (0 \leq \theta \leq 2\pi)


from Askey "Ramanujan and Hypergeometric Series" in Berndt and Rankin "Ramanujan: Essays and Surveys" p283 (the formula was found by Gauss):
   this is r2k!cos in generators.scm [sceq30.png]
&(1 - 2r \cos \theta + r^{2})^{-k} = \frac{{}_{2}F_{1}(k, k; 1; r^{2})}{2} + \sum_{n=1}^{\infty} \frac{(k)_{n}}{n!} r^{n} {}_{2}F_{1}(k, k+n; n+1; r^{2}) \cos n\theta


Montgomery and Vorhauer:
&\sum_{n=1}^{\infty} \frac{\sin \frac{k \pi}{n+1}}{\sin \frac{\pi}{n+1}} \cos k\theta = \frac{(\cos \frac{1}{2}(n+1)\theta)^{2}}{\cos \theta - \cos \frac{\pi}{n+1}}


;;; Bessel funcs as confluent hypergeometric series
&J_{n}(x) = \frac{(\frac{x}{2})^{n}}{\Gamma(n+1)} e^{-ix} \Phi(n+\frac{1}{2}, 2n+1; 2ix) \\
&I_{n}(x) = \frac{(\frac{x}{2})^{n}}{\Gamma(n+1)} e^{-x} \Phi(n+\frac{1}{2}, 2n+1; 2x) \\

from Klapper, Selected Papers on Frequency Modulation, p 156
&\sum_{n=-\infty}^{\infty} (-1)^{n} J_{2n}(x) J_{2n}(y(\omega + B \cos z)) = J_{0}( \sqrt{x^{2} + y^{2} (\omega + B\cos z)^{2}})

another kernel set: binomial coeffs G&R 1.320 etc, not different enough
-->


<table class="grayborder">
<tr><td colspan=2 class="methodtitle">various sums</td></tr>

<tr>
<td>
<img class="noborder" src="pix/sceq14.png" alt="many sums" usemap="#GR1">
<map name="GR1">
  <area shape=rect coords="0,0,300,60" href="#nxysin" alt="nxysin">
  <area shape=rect coords="0,61,300,100" href="#nxycos" alt="nxycos">
  <area shape=rect coords="0,101,300,150" href="#nxy1cos" alt="nxy1cos">
  <area shape=rect coords="0,151,300,200" href="#nxy1sin" alt="nxy1sin">
  <area shape=rect coords="0,201,300,240" href="#noddsin" alt="noddsin">
  <area shape=rect coords="0,241,300,280" href="#noddcos" alt="noddcos">
  <area shape=rect coords="0,361,300,410" href="#nkssb" alt="nkssb">
  <area shape=rect coords="0,411,300,450" href="#nkssb" alt="nkssb">
  <area shape=rect coords="0,450,300,485" href="#nchoosekcos" alt="nchoosekcos">
</map>
</td>
<td>
<img class="noborder" src="pix/sceq15.png" alt="many more sums" usemap="#GR2">
<map name="GR2">
  <area shape=rect coords="0,0,300,40" href="#nrsin" alt="nrsin">
  <area shape=rect coords="0,41,300,90" href="#nrcos" alt="nrcos">
  <area shape=rect coords="0,91,300,140" href="#rssb" alt="rssb">
  <area shape=rect coords="0,141,300,180" href="#rcos" alt="rcos">
  <area shape=rect coords="0,181,300,220" href="#rksin" alt="rksin">
  <area shape=rect coords="0,221,300,250" href="#rkcos" alt="rkcos">
  <area shape=rect coords="0,251,300,300" href="#rkoddssb" alt="rkoddssb">
  <area shape=rect coords="0,301,300,340" href="#rkoddssb" alt="rkoddssb">
  <area shape=rect coords="0,341,300,380" href="#erssb" alt="erssb">
  <area shape=rect coords="0,381,300,420" href="#ercos" alt="ercos">
  <area shape=rect coords="0,465,300,490" href="#j0evencos" alt="j0evencos">
</map>
</td>
</tr>

<tr><td colspan=2 class="sumtitle">Gradshteyn and Ryzhik, "Table of Integrals, Series, and Products", 1.341.., 1.352.., 1.447.., 1.461, 1.518, 8.516, 8.531</td></tr>

<tr><td class="hightop">
<img class="noborder" src="pix/sceq20.png" alt="more sums" usemap="#J1">
<map name="J1">
    <area shape=rect coords="0,0,300,30" href="#rxycos" alt="rxycos">
    <area shape=rect coords="0,31,300,60" href="#rxysin" alt="rxysin">
    <area shape=rect coords="0,61,300,100" href="#k2sin" alt="k2sin">
    <area shape=rect coords="0,101,300,140" href="#eoddcos" alt="eoddcos">
</map>
</td>
<td class="hightop"><img class="noborder" src="pix/sceq21.png" alt="more sums" usemap="#J2">
<map name="J2">
    <area shape=rect coords="0,0,300,30" href="#rxyk!cos" alt="rxyk!cos">
    <area shape=rect coords="0,31,300,60" href="#rxyk!cos" alt="rxyk!sin">
</map>
</td></tr>
<tr><td colspan=2 class="sumtitle">Jolley, "Summation of Series", 521 587 623 635 638 685 686 691 692 728</td></tr>

<tr><td class="hightop"><a class=invisible href="#izcos"><img src="pix/sceq39.png" alt="I(k) sum"></a></td>
<td class="hightop"><a class=invisible href="#k3sin"><img src="pix/sceq40.png" alt="n3 case"></a></td></tr>

<tr><td colspan=2 class="sumtitle">Abramowitz and Stegun, "Handbook of Mathematical Functions", 9.6.34, 27.8.6</td></tr>

<tr><td class="hightop"><a class=invisible href="#krksin"><img src="pix/sceq25.png" alt="more sums"></a></td>

<td class="hightop"><img src="pix/sceq26.png" alt="more sums"></td></tr>

<tr><td colspan=2 class="sumtitle">Zygmund, "Trigonometric Series" p34, 352</td></tr>

<tr><td class="hightop"><img src="pix/sceq7.png" alt="more sums"></td>
<td class="hightop"><a class=invisible href="#abcos"><img src="pix/sceq27.png" alt="more sums"></a></td></tr>


<tr><td colspan=2 class="sumtitle">Sansone, "Orthogonal Functions"</td></tr>

<tr><td class="hightop"><img class="noborder" src="pix/sceq36.png" alt="more sums" usemap="#GM1">
<map name="GM1">
    <area shape=rect coords="0,0,300,50" href="#j0j1cos" alt="j0j1cos">
    <area shape=rect coords="0,51,300,80" href="#j0j1cos" alt="j0j1cos">
</map>
</td>
<td class="hightop"><img class="noborder" src="pix/sceq37.png" alt="more sums" usemap="#GM2">
<map name="GM2">
    <area shape=rect coords="0,0,300,50" href="#jycos" alt="jycos">
</map>
</td></tr>

<tr><td colspan=2 class="sumtitle">Gray and Mathews, "A Treatise on Bessel Functions and Their Applications to Physics" p 28, 29, 92, 240</td></tr>

<tr>
<td class="hightop"><a class=invisible href="#jncos"><img src="pix/sceq32.png" alt="more sums"></a></td>
<td class="hightop"><a class=invisible href="#jjcos"><img src="pix/sceq31.png" alt="more sums"></a></td>
</tr><tr>
<td><a class=invisible href="#j2cos"><img src="pix/sceq34.png" alt="more sums"></a></td>
<td><a class=invisible href="#jpcos"><img src="pix/sceq33.png" alt="more sums"></a></td>
</tr><tr>

<td colspan=2 class="sumtitle">Watson, "A Treatise on the Theory of Bessel Functions": 4.82, 11.41, 17.31</td></tr>

<tr><td class="hightop"><a class=invisible href="#r2k!cos"><img src="pix/sceq30.png" alt="kosines"></a></td>
<td class="hightop">
<a class=invisible href="#n1cos"><img src="pix/sceq45.png" alt="linear cosines"></a>
</td>
</tr>
 
<tr><td class="sumtitle">Askey, "Ramanujan and Hypergeometric Series"</td>

<td class="sumtitle">Ramanujan, "On certain Arithmetical Functions"</td>
</tr>
</table>




<!-- LATEX
sceq38:
\sum_{k=-\infty}^{\infty} J_{k}(m\rho) Z_{\nu+k}(mr) e^{ik\phi} = e^{i \nu \psi}Z_{\nu}(mR)
-->

<!-- LATEX
sceq45.png
& 2n-1 + 4\sum_{k=1}^{n-1} (n-k)\cos k\theta + \cos n\theta = \cot^{2}\frac{\theta}{2}\  (1 - \cos n\theta) \\
-->

<p>
There are many formulas that produce exponentially decaying or bell-curve shaped spectra;
I think these all sound about the same, so I have included only a representative sample of them.
A couple of the formulas are special cases of the "Bessel function summation theorem", G&amp;R 8.530:
<img src="pix/sceq38.png" alt="summation formula">,
where Z stands for any of the various Bessel functions (J, Y, etc),
and R stands for the Poisson-like business (or is it Legendre?) in the square root.
Most of the formulas above are implemented as generators in <a href="#othergenerators">generators.scm</a>,
along with the single side-band cases, where possible.
Don't shy away from the sums to infinity just because you've heard shouting about "band-limited waveforms" &mdash; FM is an infinite sum:
</p>


<!-- LATEX:
\small
\begin{align*}
& \cos(B \sin x) = J_{0}(B) + 2 \sum_{k=1}^{\infty} J_{2k}(B) \cos 2kx \\
& \cos(B \cos x) = J_{0}(B) + 2 \sum_{k=1}^{\infty} (-1)^{k} J_{2k}(B) \cos 2kx \\
& \sin(B \sin x) = 2 \sum_{k=0}^{\infty} J_{2k+1}(B) \sin (2k+1)x \\
& \sin(B \cos x) = 2 \sum_{k=0}^{\infty} (-1)^{k} J_{2k+1}(B) \cos (2k+1)x \\
\end{align*}
-->


<img src="pix/fmeq49.png" alt="cos cos cases">

<img src="pix/fmeq50.png" alt="cos cos cases">

<br>
<div class="inset_inline">(Is cos(sin(x)) always greater than sin(cos(x))?)</div>







<!--  NRXYSIN and NRXYCOS  -->

<div class="innerheader" id="nrxydoc">nrxysin and nrxycos</div>

<pre class="indented">
<em class=def id="make-nrxysin">make-nrxysin</em> 
      (frequency 0.0) 
      (ratio 1.0)               ; ratio between frequency and the spacing between successive sidebands
      (n 1)                     ; number of sidebands
      (r .5)                    ; amplitude ratio between successive sidebands (-1.0 &lt; r &lt; 1.0)
<em class=def id="nrxysin">nrxysin</em> s (fm 0.0)
<em class=def id="nrxysin?">nrxysin?</em> s

<em class=def id="make-nrxycos">make-nrxycos</em> (frequency 0.0) (ratio 1.0) (n 1) (r .5)
<em class=def id="nrxycos">nrxycos</em> s (fm 0.0)
<em class=def id="nrxycos?">nrxycos?</em> s
</pre>
<br>

<table class="method">
<tr><td colspan=2 class="methodtitle">nrxysin methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">"r" parameter; sideband scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">"n" parameter</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
<tr><td class="inner"><em class=gen>mus-offset</em></td><td class="inner">"ratio" parameter</td></tr>
</table>

<p>These three generators 
produce a kind of additive synthesis.
"n" is the number of sidebands (0 gives a sine wave), "r" is the amplitude
ratio between successive sidebands (don't set it to 1.0), and "ratio" is the ratio between the
carrier frequency and the spacing between successive sidebands.
A "ratio" of 2 gives odd-numbered harmonics for a (vaguely) clarinet-like sound.
A negative ratio puts the side-bands below the carrier.
A negative r is the same as shifting the initial phase by pi (instead of lining up
for the spike at multiples of 2*pi, the (-1)^n causes them to line up at (2k-1)*pi,
but the waveform is the same otherwise).
The basic idea is very similar to that used in the
<a href="#ncos">ncos</a> generator, but you have control of the
fall-off of the spectrum and the spacing of the partials.
Here are the underlying formulas:
</p>

<!-- sinesummation.png:
(with-sound (:clipped #f)
  (let ((gen (make-sine-summation 400.0 0.0 5 0.5)))
       (do ((i 0 (+ i 1)))
	   ((= i 30000))
	 (outa i (sine-summation gen 0.0)))))
-->

<!-- Jolley 475 is different [it runs 0 .. n-1 in our terminology, whereas Moorer's runs 0 .. n] -->

<!-- LATEX:
& \sum_{k=0}^{n} r^{k}\sin(x+ky) = \frac{\sin(x) - r\sin(x-y) - r^{n+1}\Big(\sin(x+(n+1)y) - r\sin(x+ny)\Big)}{1+r^{2}-2r\cos(y)} \\
& \sum_{k=0}^{n} r^{k}\cos(x+ky) = \frac{\cos(x) - r\cos(x-y) - r^{n+1}\Big(\cos(x+(n+1)y) - r\cos(x+ny)\Big)}{1+r^{2}-2r\cos(y)} \\
-->

<img src="pix/sceq8.png" alt="nxry formulas">

<table class="method">
<tr><td>
<img src="pix/sinesummation.png" alt="nxry formula">
</td></tr>
<tr><td class="center">nrxysin, n=5, r=0.5
</td></tr>
</table>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-nrxycos 440.0 :n 10)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (nrxycos gen))))))
</pre>
</div>
</td></tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  gen = make_nrxycos(440.0, 1.0, 10, 0.5);
  44100.times do |i| 
    outa(i, 0.5 * nrxycos(gen), $output) 
    end
  end.output
</pre>
</div>
</td></tr>

<tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 :n 10 make-nrxycos { gen }
  44100 0 ?do
    i  gen 0 nrxycos  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>



<p>The peak amplitude of nrxysin is hard to predict.
I think nrxysin is close to the -1.0..1.0 ideal, and won't go over 1.0.
<a href="#nrxycos">nrxycos</a> is normalized correctly.
Besides the usual FM input, you can also vary the "r" parameter (via mus-scaler) to get changing spectra.  In the
next example, we add a glissando envelope, and use the same envelope to vary "r" so that as the frequency
goes up, "r" goes down (to avoid foldover, or whatever).
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (ss beg dur freq amp (n 1) (r .5) (ratio 1.0) frqf)
  (let* ((st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (sgen (<em class=red>make-nrxysin</em> freq ratio n r))
         (frq-env (and frqf (<a class=quiet href="#make-env">make-env</a> frqf :scaler (<a class=quiet href="#hztoradians">hz-&gt;radians</a> freq) :duration dur)))
         (spectr-env (and frqf (<a class=quiet href="#make-env">make-env</a> frqf :duration dur)))
         (amp-env (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 1 3 0) :scaler amp :duration dur)))
    (do ((i st (+ i 1))) 
        ((= i nd))
      (if spectr-env
          (set! (<em class=red>mus-scaler</em> sgen) (* r (exp (- (<a class=quiet href="#env">env</a> spectr-env))))))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> amp-env)
                 (<em class=red>nrxysin</em> sgen (if frq-env (<a class=quiet href="#env">env</a> frq-env) 0.0)))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (ss 0 1 400.0 1.0 5 0.5 1.0 '(0 0 1 2)))
</pre>

<p>"r" can also be used in the same way as an FM index, but with much simpler spectral evolution (x^n, x between -1.0 and 1.0, rather than Jn(x)).
In the graph, r is 0 at the midpoint, r goes from -1.0 to 1.0 along the horizontal axis &mdash; I forgot to label the axes.
</p>

<img class="indented" src="pix/nrxy-r.png" alt="nrxycos changing r">

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((gen1 (<em class=red>make-nrxycos</em> 400 1 15 0.95))
        (indr (<a class=quiet href="#make-env">make-env</a> '(0 -1 1 1) 
                :length 80000 :scaler 0.9999)))
    (do ((i 0 (+ i 1)))
        ((= i 80000))
      (set! (<em class=red>mus-scaler</em> gen1) (env indr)) ; this sets r
      (<a class=quiet href="#outa">outa</a> i (* .5 (<em class=red>nrxycos</em> gen1 0.0))))))
</pre>



<!-- MLB's index idea is not so great:
(with-sound (:clipped #f :statistics #t)
  (let* ((dur 2.0)
         (ampf (make-env '(0 1 10 1 11 0) :duration dur :scaler .5))
	 (indf (make-env '(0 0 1 .999) :duration dur))
	 (samps (seconds->samples dur))
	 (N 60))

    (do ((i 0 (+ i 1))
	 (th 0.0 (+ th (hz->radians 1000.0))))
	((= i samps))
  
      (let* ((a .999)
	     (index (env indf))
	     (a2 (+ 1.0 (* a a)))
	     (an (expt a (+ N 1)))
	     (b 1/10)
	     (B (* b th))
	     (thB (- th B))
	     (divisor (* (- a2 (* 2 a index (cos B)))
			 (/ (- (expt a N) 1.0)
			    (- a 1.0))))
	     (val (/ (- (sin th) (* a (sin thB))
			(* an (- (sin (+ th (* (+ N 1) B))) 
				 (* a (sin (+ th (* N B)))))))
		     divisor)))
	(outa i (* (env ampf) val))))))
-->





<!--  SSB-AM  -->

<div class="innerheader" id="ssb-amdoc">ssb-am</div>

<pre class="indented">
<em class=def id="make-ssb-am">make-ssb-am</em> (frequency 0.0) (order 40)
<em class=def id="ssb-am">ssb-am</em> gen (insig 0.0) (fm 0.0)
<em class=def id="ssb-am?">ssb-am?</em> gen
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">ssb-am methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase (of embedded sin osc) in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">embedded delay line size</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">same as mus-order</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner"><code>mus-interp-none</code></td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeff</em></td><td class="inner">FIR filter coeff</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeffs</em></td><td class="inner">embedded Hilbert transform FIR filter coeffs</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">embedded filter state</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>


<p>ssb-am provides single sideband suppressed carrier amplitude modulation, normally used for frequency shifting.
The basic notion is to shift a spectrum up or down while cancelling either the upper or lower half of the spectrum.
See <a href="sndscm.html#ssbbank">dsp.scm</a> for a number of curious possibilities (time stretch without pitch shift for example).
When this works, which it does more often than I expected, it is much better than the equivalent
phase-vocoder or granular synthesis kludges.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t :srate 44100)
  (let ((shifter (make-ssb-am 440.0 20))
	(osc (make-oscil 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (ssb-am shifter (oscil osc)))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :srate, 44100) do
  shifter = make_ssb_am(440.0, 20);
  osc = make_oscil(440.0);
  44100.times do |i|
    outa(i, 0.5 * ssb_am(shifter, oscil(osc)), $output);
    end
  end.output
</pre>
</div>
</td></tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 20 make-ssb-am { shifter }
  440.0 make-oscil { osc }
  44100 0 ?do
    i  shifter  osc 0 0 oscil  0 ssb-am f2/ *output* outa drop
  loop
; :play #t :srate 44100 with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<pre class="indented">
(define* (ssb-am freq (order 40)) 
  ;; higher order = better cancellation
  (let* ((car-freq (abs freq))
	 (cos-car (<a class=quiet href="#make-oscil">make-oscil</a> car-freq (* .5 pi)))
	 (sin-car (<a class=quiet href="#make-oscil">make-oscil</a> car-freq))
	 (dly (<a class=quiet href="#make-delay">make-delay</a> order))
	 (hlb (<a class=quiet href="sndscm.html#makehilberttransform">make-hilbert-transform</a> order)))
    (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> 
      (lambda (y)
        (let ((ccos (<a class=quiet href="#oscil">oscil</a> cos-car))
	      (csin (<a class=quiet href="#oscil">oscil</a> sin-car))
	      (yh (<a class=quiet href="sndscm.html#hilberttransform">hilbert-transform</a> hlb y))
  	      (yd (<a class=quiet href="#delay">delay</a> dly y)))
          (if ((&gt; freq 0.0) - +)
	       (* ccos yd)
               (* csin yh)))))))

(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (shift-pitch beg dur file freq (order 40))
  (let* ((st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
	 (gen (<em class=red>make-ssb-am</em> freq order))
	 (rd (<a class=quiet href="#make-readin">make-readin</a> file)))
    (do ((i st (+ i 1))) 
        ((= i nd))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>ssb-am</em> gen (<a class=quiet href="#readin">readin</a> rd))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (shift-pitch 0 3 "oboe.snd" 1108.0))
</pre>


<p>
Normal amplitude modulation, cos(x) * (amp + Y(t)), where Y is some signal, 
produces the carrier (cos(x)), and symmetric sidebands at x+/-frq where frq is each spectral
component of Y.  This is just an elaboration of 
</p>

<pre class="indented">
cos(x) * (amp + cos(y)) = amp * cos(x) + 1/2(cos(x - y) + cos(x + y))
</pre>

<p>
So, the Y spectrum (the first picture below) is shifted up by cos(x) and mirrored on either side of it (the second picture below; the spectral components
on the left side are folding under 0).  In single side-band
AM, we create both the Y spectrum, and, via the hilbert transform, a version of Y in which the phases are shifted too.
Then we can add these two copies, using the phase differences to cancel one side of the symmetric
spectrum (this is the third picture below; the new spectral components are not harmonically related however).  
Once we can shift a pitch without creating its symmetric twin, we can split a spectrum
into many bands, shift each band separately, and thereby retain its original harmonic spacing (the fourth picture).
We have the original, but at a higher pitch.  If we then use <a href="#src">src</a> to convert it back to
its pre-shift pitch, we have the original, but with a different length.
We have decoupled the pitch from the duration, much as in a phase vocoder (which uses an FFT
rather than a filter bank, and an inverse FFT of the moved spectrum, rather than ssb-am).
</p>


<table class="method">
<tr>
<td><img src="pix/orig-oboe.png" alt="unaltered oboe"></td>
<td><img src="pix/am.png" alt="am oboe"></td>
<td><img src="pix/ssbam.png" alt="ssbam oboe"></td>
<td><img src="pix/ssbambank.png" alt="ssbambank oboe"></td>
</tr>
<tr>
<td class="center">original</td>
<td class="center">amplitude modulation</td>
<td class="center">ssb-am</td>
<td class="center">ssb-am bank</td>
</tr>
</table>


<p>The second picture was created from oboe.snd (the original) via:
</p>
<pre class="indented">
(let ((osc (<a class=quiet href="#make-oscil">make-oscil</a> 1000.0))) 
  (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> 
    (lambda (y) 
      (* .5 (<a class=quiet href="#amplitude-modulate">amplitude-modulate</a> .01 (<a class=quiet href="#oscil">oscil</a> osc) y)))))
</pre>

<p>The third picture was created by:
</p>
<pre class="indented">
(let ((am (<em class=red>make-ssb-am</em> 1000 40))) 
  (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> 
    (lambda (y) 
      (<em class=red>ssb-am</em> am y))))
</pre>

<p>
And the fourth used the ssb-am-bank function in dsp.scm rewritten here for with-sound:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (repitch beg dur sound old-freq new-freq 
                 (amp 1.0) (pairs 10) (order 40) (bw 50.0))
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (ssbs (make-vector pairs))
         (bands (make-vector pairs))
         (factor (/ (- new-freq old-freq) old-freq))
         (rd (<a class=quiet href="#make-readin">make-readin</a> sound)))
    (do ((i 1 (+ i 1)))
        ((&gt; i pairs))
      (let ((aff (* i old-freq))
            (bwf (* bw (+ 1.0 (/ i 2 pairs)))))
        (set! (ssbs (- i 1)) (<em class=red>make-ssb-am</em> (* i factor old-freq)))
        (set! (bands (- i 1)) (<a class=quiet href="sndscm.html#makebandpass">make-bandpass</a> (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (- aff bwf)) ; bandpass is in dsp.scm
                                             (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (+ aff bwf)) 
                                             order))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (let ((sum 0.0)
            (y (<a class=quiet href="#readin">readin</a> rd)))
        (do ((band 0 (+ 1 band)))
            ((= band pairs))
          (set! sum (+ sum (<em class=red>ssb-am</em> (ssbs band) 
                                   (<a class=quiet href="sndscm.html#makebandpass">bandpass</a> (bands band) y)))))
        (<a class=quiet href="#outa">outa</a> i (* amp sum))))))

 (let* ((sound "oboe.snd")
        (mx (maxamp sound))
        (dur (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> sound)))
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:scaled-to mx  :srate (srate sound))
      (repitch 0 dur sound 554 1000)))
</pre>


<p>If you'd like to move formants independently of the fundamental, add
or subtract integer multiples of the new fundamental from the make-ssb-am
frequency argument.  In the repitch instrument above, say we wanted to 
add a "stretch" argument to spread out or squeeze down the spectrum.
We would replace the current make-ssb-am line with:
</p>

<pre class="indented">
(set! (ssbs (- i 1)) (<em class=red>make-ssb-am</em> (+ (* i factor old-freq)
                                   (* new-freq (round (* i <em class=red>stretch</em>))))))
</pre>





<!--  WAVE-TRAIN  -->

<div class="innerheader" id="wave-traindoc">wave-train</div>

<pre class="indented">
<em class=def id="make-wave-train">make-wave-train</em> 
        (frequency 0.0) 
        (initial-phase 0.0) 
        wave 
        (size *clm-table-size*) 
        (type mus-interp-linear)

<em class=def id="wave-train">wave-train</em> w (fm 0.0)
<em class=def id="wave-train?">wave-train?</em> w

<em class=def id="make-wave-train-with-env">make-wave-train-with-env</em> frequency env size
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">wave-train methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">wave array (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">length of wave array (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner">interpolation choice (no set!)</td></tr>
</table>

<p>wave-train adds a copy of its wave (a "grain" in more modern parlance) into its output at frequency times per second.
These copies can overlap or have long intervals of silence in between, so
wave train can be viewed either as an extension of pulse-train and table-lookup,
or as a primitive form of granular synthesis.
make-wave-train-with-env (defined in generators.scm) returns a new wave-train generator with the envelope 'env' loaded into its table.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((gen (make-wave-train 440.0
               :wave (let ((v (make-float-vector 64)) 
                           (g (make-ncos 400 10)))
                       (set! (mus-phase g) (* -0.5 pi))
                       (do ((i 0 (+ i 1))) 
                           ((= i 64)) 
                         (set! (v i) (ncos g))) 
                       v))))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (wave-train gen))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  v = make_vct(64);
  g = make_ncos(400, 10);
  g.phase =  -0.5 * 3.14159;
  64.times do |i|
    v[i] = ncos(g);
    end
  gen = make_wave_train(440.0, :wave, v);
  44100.times do |i| 
    outa(i, 0.5 * wave_train(gen), $output) 
    end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  400 10 make-ncos { g }
  g -0.5 pi f* set-mus-phase drop
  64 make-vct map! g 0 ncos end-map { v }
  440.0 :wave v make-wave-train { gen }
  44100 0 do
    i  gen 0 wave-train  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<img src="pix/wt.png" alt="wave-train example">

<!--
(with-sound (:clipped #f :statistics #t :scaled-to .5 :play #t)
  (let ((gen (make-wave-train 300.0 :wave (let ((v (make-float-vector 64)) 
                                                (g (make-sum-of-cosines 10 400 (* -0.5 pi)))) 
                                            (do ((i 0 (+ i 1))) 
                                                ((= i 64)) 
                                              (set! (v i) (sum-of-cosines g))) 
                                            v))))
       (do ((i 0 (+ i 1)))
           ((= i 1000))
         (outa i (wave-train gen)))))
-->

<p>
With some simple envelopes or filters, you can
use this for VOSIM and other related techniques. 
Here is a FOF instrument based loosely on fof.c of Perry Cook and the article
"Synthesis of the Singing Voice" by Bennett and Rodet in 
"Current Directions in Computer Music Research".
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (fofins beg dur frq amp vib f0 a0 f1 a1 f2 a2 ve ae)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (ampf (<a class=quiet href="#make-env">make-env</a> (or ae '(0 0 25 1 75 1 100 0)) :scaler amp :duration dur))
         (frq0 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> f0))
         (frq1 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> f1))
         (frq2 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> f2))
         (foflen (if (= *clm-srate* 22050) 100 200))
         (vibr (<a class=quiet href="#make-oscil">make-oscil</a> 6))
         (vibenv (<a class=quiet href="#make-env">make-env</a> (or ve '(0 1 100 1)) :scaler vib :duration dur))
         (win-freq (/ (* 2 pi) foflen))
         (foftab (make-float-vector foflen))
         (wt0 (<em class=red>make-wave-train</em> :wave foftab :frequency frq)))
    (do ((i 0 (+ i 1)))
        ((= i foflen))
      (set! (foftab i) ;; this is not the pulse shape used by B&amp;R
            (* (+ (* a0 (sin (* i frq0))) 
                  (* a1 (sin (* i frq1))) 
                  (* a2 (sin (* i frq2)))) 
               .5 (- 1.0 (cos (* i win-freq))))))
    (do ((i start (+ i 1)))
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>wave-train</em> wt0 (* (<a class=quiet href="#env">env</a> vibenv) (<a class=quiet href="#oscil">oscil</a> vibr))))))))

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (fofins 0 1 270 .2 .001 730 .6 1090 .3 2440 .1)) ; "Ahh"

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () ; one of JC's favorite demos
  (fofins 0 4 270 .2 0.005 730 .6 1090 .3 2440 .1 '(0 0 40 0 75 .2 100 1) 
          '(0 0 .5 1 3 .5 10 .2 20 .1 50 .1 60 .2 85 1 100 0))
  (fofins 0 4 (* 6/5 540) .2 0.005 730 .6 1090 .3 2440 .1 '(0 0 40 0 75 .2 100 1) 
          '(0 0 .5 .5 3 .25 6 .1 10 .1 50 .1 60 .2 85 1 100 0))
  (fofins 0 4 135 .2 0.005 730 .6 1090 .3 2440 .1 '(0 0 40 0 75 .2 100 1) 
          '(0 0 1 3 3 1 6 .2 10 .1 50 .1 60 .2 85 1 100 0)))
</pre>


<p>The wave-trains's wave is a float-vector accessible via mus-data.  The "fm" argument affects the frequency of
repetition.  Here is a wave-train instrument that increasingly filters its grain (the word "now", for example) 
while increasing the repetition rate.  We're also using a pulse train as a sort of internal click track,
using the same frequency envelope as the wave-train, so we have some idea when to refilter the grain.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (when? start-time duration start-freq end-freq grain-file)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start-time))
         (len (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> duration))
         (end (+ beg len))
         (grain-dur (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> grain-file))
         (frqf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :scaler (<a class=quiet href="#hztoradians">hz-&gt;radians</a> (- end-freq start-freq)) :duration duration))
         (click-track (<em class=red>make-pulse-train</em> start-freq))
         (grain-size (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> grain-dur))
         (grains (<em class=red>make-wave-train</em> :size grain-size :frequency start-freq))
         (ampf (<a class=quiet href="#make-env">make-env</a> '(0 1 1 0) :scaler .7 :offset .3 :duration duration :base 3.0))
         (grain (<em class=red>mus-data</em> grains)))
    (<a class=quiet href="#filetoarray">file-&gt;array</a> grain-file 0 0 grain-size grain)
    (let ((original-grain (copy grain)))
      (do ((i beg (+ i 1)))
          ((= i end))
        (let ((gliss (<a class=quiet href="#env">env</a> frqf)))
          (outa i (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>wave-train</em> grains gliss)))
          (let ((click (<em class=red>pulse-train</em> click-track gliss)))
            (if (&gt; click 0.0)
                (let* ((scaler (max 0.1 (* 1.0 (/ (- i beg) len))))
                       (comb-len 32)
                       (c1 (<a class=quiet href="#make-comb">make-comb</a> scaler comb-len))
                       (c2 (<a class=quiet href="#make-comb">make-comb</a> scaler (floor (* comb-len .75))))
                       (c3 (<a class=quiet href="#make-comb">make-comb</a> scaler (floor (* comb-len 1.25)))))
                  (do ((k 0 (+ k 1)))
                      ((= k grain-size))
                    (let ((x (original-grain k)))
                     (set! (grain k) (+ (<a class=quiet href="#comb">comb</a> c1 x) (<a class=quiet href="#comb">comb</a> c2 x) (<a class=quiet href="#comb">comb</a> c3 x)))))))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (when? 0 4 2.0 8.0 "right-now.snd"))
</pre>

<p>wave-train is built on table-lookup and shares all of its questionable aspects.  See also the <a href="#pulsedenv">pulsed-env</a>e generator
in generators.scm, used in animals.scm.  It is often simpler to use <a href="#pulse-train">pulse-train</a> as the repetition
trigger, and mus-reset to restart an envelope.  
</p>




<!--  RAND, RAND-INTERP  -->

<div class="innerheader" id="randdoc">rand, rand-interp</div>

<pre class="indented">
<em class=def id="make-rand">make-rand</em> 
        (frequency 0.0) ; frequency at which new random numbers occur
        (amplitude 1.0)                     ; numbers are between -amplitude and amplitude
        (envelope '(-1 1 1 1))              ; distribution envelope (uniform distribution is the default)
        distribution                        ; pre-computed distribution

<em class=def id="rand">rand</em> r (sweep 0.0)
<em class=def id="rand?">rand?</em> r

<em class=def id="make-rand-interp">make-rand-interp</em> 
        (frequency 0.0) 
        (amplitude 1.0)
        (envelope '(-1 1 1 1)
        distribution)

<em class=def id="rand-interp">rand-interp</em> r (sweep 0.0)
<em class=def id="rand-interp?">rand-interp?</em> r

<em class=def id="mus-random">mus-random</em> amp
<em class=def id="mus-rand-seed">mus-rand-seed</em>
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">rand and rand-interp methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">amplitude arg used in make-&lt;gen&gt;</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">distribution table (float-vector) length</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">distribution table (float-vector), if any</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>


<p>rand produces a sequence of random numbers between -amplitude and
amplitude (a sort of step function).
rand-interp interpolates between successive
random numbers.
rand-interp could be defined as (<a class=quiet href="#moving-average">moving-average</a> agen (rand rgen)) where the
averager has the same period (length) as the rand.  
In both cases, the "envelope" argument or the "distribution" argument determines the random number distribution.
mus-random returns a random number between -amplitude and amplitude.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:channels 2 :play #t)
  (let ((ran1 (make-rand 5.0 (hz-&gt;radians 220.0)))
        (ran2 (make-rand-interp 5.0 (hz-&gt;radians 220.0)))
	(osc1 (make-oscil 440.0))
	(osc2 (make-oscil 1320.0)))
    (do ((i 0 (+ i 1)))
	((= i 88200))
      (outa i (* 0.5 (oscil osc1 (rand ran1))))
      (outb i (* 0.5 (oscil osc2 (rand-interp ran2)))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :channels, 2) do
  ran1 = make_rand(5.0, hz2radians(220.0));
  ran2 = make_rand_interp(5.0, hz2radians(220.0));
  osc1 = make_oscil(440.0);  
  osc2 = make_oscil(1320.0);
  88200.times do |i|
    outa(i, 0.5 * oscil(osc1, rand(ran1)), $output);
    outb(i, 0.5 * oscil(osc2, rand_interp(ran2)), $output);
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  5.0 220.0 hz-&gt;radians make-rand { ran1 }
  5.0 330.0 hz-&gt;radians make-rand-interp { ran2 }
   440.0 make-oscil { osc1 }
  1320.0 make-oscil { osc2 }
  88200 0 do
    i  osc1  ran1 0 rand         0 oscil  f2/ *output* outa drop
    i  osc2  ran2 0 rand-interp  0 oscil  f2/ *output* outb drop
  loop
; :channels 2 :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>The "frequency" is the rate at which new values are produced, so it makes sense to request a frequency above srate/2.
If rand's frequency is the current srate, it produces a new random value on every sample.  
Since rand is (normally) producing a sequence of square-waves, and rand-interp a sequence of triangle-waves,
both reflect that in their spectra (spectrum y axis is in dB):
</p>

<!--
(with-sound ()
  (let ((gen (make-rand 2000)))
    (do ((i 0 (+ i 1)))
	((= i 50000))
      (outa i (* .5 (rand gen))))))

(with-sound ()
  (let ((gen (make-rand-interp 2000)))
    (do ((i 0 (+ i 1)))
	((= i 50000))
      (outa i (* .5 (rand-interp gen))))))

(with-sound ()
  (let ((gen (make-square-wave 1000)))
    (do ((i 0 (+ i 1)))
	((= i 50000))
      (outa i (* .5 (square-wave gen))))))

(with-sound ()
  (let ((gen (make-triangle-wave 1000)))
    (do ((i 0 (+ i 1)))
	((= i 50000))
      (outa i (* .5 (triangle-wave gen))))))
-->

<table class="method">
<tr>
<td><img src="pix/sqsq.png" alt="sqwave spectrum"></td><td><img src="pix/tritri.png" alt="triwave spectrum"></td>
</tr>
<tr>
<td class="center">square-wave (freq=1000)</td><td class="center">triangle-wave (freq=1000)</td>
</tr>

<tr>
<td><img src="pix/randsq.png" alt="rand spectrum"></td><td><img src="pix/randtri.png" alt="rand-interp spectrum"></td>
</tr>
<tr>
<td class="center">rand (freq=2000)</td><td class="center">rand-interp (freq=2000)</td>
</tr>
</table>


<p>There are a variety of ways to get a non-uniform random number distribution:
<code>(random (random 1.0))</code> or <code>(sin (mus-random pi))</code> are examples. Exponential distribution could be:
</p>

<pre class="indented">
(log (max .01 (random 1.0)) .01)
</pre>

<p>where the ".01"'s affect how tightly the resultant values cluster toward 0.0 &mdash;
set them to .0001, for example, to get most of the random values close to 0.0.
The central-limit theorem says that you can get closer and closer to gaussian
noise by adding rand's together.  Orfanidis in 
"Introduction to Signal Processing" says 12 calls on rand will
do perfectly well:
</p>

<pre class="indented">
(define (gaussian-noise)
  (do ((val 0.0)
       (i 0 (+ i 1))) 
      ((= i 12) (/ val 12.0))
    (set! val (+ val (random 1.0)))))
</pre>

<p>You can watch this (or any other distribution) in action via:
</p>

<pre class="indented">
(define (add-rands n)
  (let ((bins (make-vector 201 0))
	(rands (make-vector n #f)))
    (do ((i 0 (+ i 1)))
	((= i n))
      (set! (rands i) (<em class=red>make-rand</em> :frequency *clm-srate* :amplitude (/ 100 n)))
      (rand (rands i)))
    (do ((i 0 (+ i 1)))
	((= i 100000))
      (do ((sum 0.0)
	   (k 0 (+ k 1)))
	  ((= k n)
	   (let ((bin (floor (+ 100 (round sum)))))
	     (set! (bins bin) (+ (bins bin) 1))))
        (set! sum (+ sum (<em class=red>rand</em> (rands k))))))
    bins))

(let ((ind (<a class=quiet href="extsnd.html#newsound">new-sound</a> "test.snd")))
  (do ((n 1 (+ n 1)))
      ((= n 12))
    (let* ((bins (vector-&gt;float-vector (add-rands n)))
	   (pk (maxamp bins)))
      (float-vector-&gt;channel (float-vector-scale! bins (/ 1.0 pk)))
      (set! (<a class=quiet href="extsnd.html#xaxislabel">x-axis-label</a>) (<a class=quiet>format</a> #f "n: ~D" n))
      (<a class=quiet href="extsnd.html#updatetimegraph">update-time-graph</a>))))
</pre>

<p>
Another way to get different distributions is the "rejection method" in which we generate random number
pairs until we get a pair that falls within the
desired distribution; see <a href="sndscm.html#anyrandom">any-random</a> in dsp.scm.
The rand and rand-interp generators, however, use the "transformation method".
The make-rand and make-rand-interp "envelope" arguments specify
the desired distribution function; the generator takes the
inverse of the integral of this envelope, loads that into an array, and uses
<code>(array-interp (random array-size))</code>.  This gives
random numbers of any arbitrary distribution at a computational cost
equivalent to the old waveshape generator.
The x axis of the envelope sets the output range (before scaling by the "amplitude" argument), and
the y axis sets the relative weight of the corresponding x axis value.
So, the default is <code>'(-1 1 1 1)</code> which says "output numbers between -1 and 1,
each number having the same chance of being chosen".
An envelope of <code>'(0 1 1 0)</code> outputs values between 0 and 1, denser toward 0.
If you already have the distribution table (a float-vector, the result of <code>(inverse-integrate envelope)</code> for example),
you can pass it through the "distribution" argument.  Here is gaussian noise
using the "envelope" argument:
</p>

<pre class="indented">
(define (gaussian-envelope s)
  (do ((e ())
       (den (* 2.0 s s))
       (i 0 (+ i 1))
       (x -1.0 (+ x .1))
       (y -4.0 (+ y .4)))
      ((= i 21)
       (reverse e))
    (set! e (cons (exp (- (/ (* y y) den))) (cons x e)))))

(<em class=red>make-rand</em> :envelope (gaussian-envelope 1.0))
</pre>

<p>If you want a particular set of values, it's simplest to fill a float-vector with those values,
then use random as the index into the array.  Say we want 0.0, 0.5, and 1.0 at random,
but 0.5 should happen three times as often as either of the others:
</p>

<pre class="indented">
(do ((vals (float-vector 0.0 0.5 0.5 0.5 1.0))
     (i 0 (+ i 1)))
    ((= i 10))
  (<a class=quiet>format</a> () ";~A " (vals (random 5))))
</pre>

<p>These "distributions" refer to the values returned by the random number
generator, but all of them produce white noise (all frequencies are equally
likely).  
You can, of course, filter the output of rand to get a different
frequency distribution.  See, for example, <a href="#round-interp">round-interp</a> in generators.scm.
It uses a <a href="#moving-average">moving-average</a> generator to low-pass filter the output of a rand-interp
generator; the result is a rand-interp signal with rounded corners.
Orfanidis also mentions a clever way to get reasonably good 1/f noise:
sum together n rand's, where each rand is running an octave slower
than the preceding:
</p>

<pre class="indented">
(define (make-1f-noise n)
  ;; returns an array of rand's ready for the 1f-noise generator
  (do ((rans (make-vector n))
       (i 0 (+ i 1))) 
      ((= i n) rans)
    (set! (rans i) (<em class=red>make-rand</em> :frequency (/ *clm-srate* (expt 2 i))))))

(define (1f-noise rans)
  (let ((val 0.0) 
        (len (length rans)))
    (do ((i 0 (+ i 1)))
        ((= i len) (/ val len))
      (set! val (+ val (<em class=red>rand</em> (rans i)))))))
</pre>

<p>This is the <a href="#pink-noise">pink-noise</a> generator in generators.scm.
See also <a href="#green-noise">green-noise</a> &mdash; bounded brownian noise that can mimic 1/f noise in some cases.
(The brownian graph below has a different dB range, and the rand graph would be flat if we used a frequency of 44100).
</p>

<table class="method">
<tr>
<td class="center">random</td>
<td class="center">rand</td>
<td class="center">rand-interp</td>
</tr><tr>
<td><img src="pix/random.png" alt="random spectrum"></td>
<td><img src="pix/rand.png" alt="rand spectrum"></td>
<td><img src="pix/randi.png" alt="rand-interp spectrum"></td>
</tr>
<tr>
<td class="center">1/f</td>
<td class="center">brownian</td>
<td class="center">green</td>
</tr><tr>
<td><img src="pix/1f.png" alt="1/f spectrum"></td>
<td><img src="pix/brownian.png" alt="brownian spectrum"></td>
<td><img src="pix/green.png" alt="green spectrum"></td>
</tr></table>


<!-- CLM:
;; 1f.png
(with-sound ()
  (let ((noise (make-1f-noise 12)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (1f-noise noise)))))

;; rand.png
(with-sound ()
  (let ((noise (make-rand 10000.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rand noise)))))

;; randi.png
(with-sound ()
  (let ((noise (make-rand-interp 10000.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (rand-interp noise)))))

;; random.png
(with-sound ()
  (do ((i 0 (+ i 1)))
      ((= i 10000))
    (outa i (- 0.5 (random 1.0)))))

;; brownian.png
(with-sound ()
  (let ((val 0.0))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (set! val (+ val -.005 (random 0.01)))
      (outa i val))))

;; green.png
(with-sound ()
  (let ((noise (make-green-noise 10000.0 1)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (outa i (green-noise noise 0.0)))))
-->


<p>And we can't talk about noise without mentioning fractals:</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (fractal start duration m x amp)
  ;; use formula of M J Feigenbaum
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> duration))))
    (do ((i beg (+ i 1)))
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* amp x))
      (set! x (- 1.0 (* m x x))))))

;;; this quickly reaches a stable point for any m in[0,.75], so:
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (fractal 0 1 .5 0 .5)) 
;;; is just a short "ftt"
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (fractal 0 1 1.5 .20 .2))
</pre>

<p>With this instrument you can hear
the change over from the stable equilibria, to the period doublings,
and finally into the combination of noise and periodicity that
has made these curves famous. See appendix 2 to Ekeland's "Mathematics and the Unexpected" for more details.
Another instrument based on similar ideas is:</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (attract beg dur amp c) ; c from 1 to 10 or so
  ;; by James McCartney, from CMJ vol 21 no 3 p 6
  (let ((st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg)))
    (do ((nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (a .2) 
         (b .2) 
         (dt .04)
         (scale (/ (* .5 amp) c))
         (x1 0.0) 
         (x -1.0) 
         (y 0.0) 
         (z 0.0)
         (i st (+ i 1)))
        ((= i nd))
     (set! x1 (- x (* dt (+ y z))))
     (set! y (+ y (* dt (+ x (* a y)))))
     (set! z (+ z (* dt (- (+ b (* x z)) (* c z)))))
     (set! x x1)
     (<a class=quiet href="#outa">outa</a> i (* scale x)))))
</pre>

<p>which gives brass-like sounds!
We can also get all the period doublings and so on from sin:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#withsound">with-sound</a> (:clipped #f :scaled-to 0.5)
  (do ((x 0.5)
       (i 0 (+ i 1)))
      ((= i 44100))
    (outa i x)
    (set! x (* 4 (sin (* pi x))))))
</pre>

<p>For an extended discussion of this case, complete with pictures of the
period doublings, see Strogatz, "Nonlinear Dynamics and Chaos". 
</p>

<p>
mus-rand-seed provides access to the seed for mus-random's random number generator:
</p>
<pre class="indented">
&gt; (set! (mus-rand-seed) 1234)
1234
&gt; (mus-random 1.0)
-0.7828369138846
&gt; (mus-random 1.0)
-0.880371093652
&gt; (set! (mus-rand-seed) 1234) ; now start again with the same sequence of numbers
1234
&gt; (mus-random 1.0)
-0.7828369138846
&gt; (mus-random 1.0)
-0.880371093652
</pre>

<p>The clm random functions discussed here are different from s7's random function.
The latter has a random-state record to guide the sequence (and uses a different
algorithm), whereas the clm functions just use an integer, mus-rand-seed.
</p>



<p>See also 
<a href="sndscm.html#ditherchannel">dither-channel</a> (dithering),
<a href="sndscm.html#maracadoc">maraca.scm</a> (physical modelling), 
<a href="sndscm.html#noisedoc">noise.scm, noise.rb</a> (a truly ancient noise-maker),
<a href="sndscm.html#anyrandom">any-random</a> (arbitrary distribution via the rejection method),
and <a href="#green-noise">green-noise</a> (bounded Brownian noise).
</p>




<!--  SIMPLE FILTERS  -->

<div class="innerheader" id="one-poledoc">one-pole, one-zero, two-pole, two-zero</div>

<pre class="indented">
 <em class=def id="make-one-pole">make-one-pole</em> a0 b1    ; b1 &lt; 0.0 gives lowpass, b1 &gt; 0.0 gives highpass
 <em class=def id="one-pole">one-pole</em> f input 
 <em class=def id="one-pole?">one-pole?</em> f

 <em class=def id="make-one-zero">make-one-zero</em> a0 a1    ; a1 &gt; 0.0 gives weak lowpass, a1 &lt; 0.0 highpass
 <em class=def id="one-zero">one-zero</em> f input 
 <em class=def id="one-zero?">one-zero?</em> f

 <em class=def id="make-two-pole">make-two-pole</em> frequency [or a0] radius [or b1] b2
 <em class=def id="two-pole">two-pole</em> f input 
 <em class=def id="two-pole?">two-pole?</em> f

 <em class=def id="make-two-zero">make-two-zero</em> frequency [or a0] radius [or a1] a2
 <em class=def id="two-zero">two-zero</em> f input 
 <em class=def id="two-zero?">two-zero?</em> f
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">simple filter methods</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeff</em></td><td class="inner">a0, a1, a2 in equations</td></tr>
<tr><td class="inner"><em class=gen>mus-ycoeff</em></td><td class="inner">b1, b2 in equations</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">1 or 2 (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">two-pole and two-zero radius</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">two-pole and two-zero center frequency</td></tr>
</table>

<p>These are the simplest of filters. If you're curious about filters, 
Julius Smith's on-line <a href="http://www-ccrma.stanford.edu/~jos/filters/">Introduction to Digital Filters</a> is
excellent.
</p>

<pre class="indented">
one-zero  y(n) = a0 x(n) + a1 x(n-1)
one-pole  y(n) = a0 x(n) - b1 y(n-1)
two-pole  y(n) = a0 x(n) - b1 y(n-1) - b2 y(n-2)
two-zero  y(n) = a0 x(n) + a1 x(n-1) + a2 x(n-2)
</pre>

<p>
The "a0, b1" nomenclature is taken from Julius Smith's "An Introduction to Digital
Filter Theory" in Strawn "Digital Audio Signal Processing", and is different
from that used in the more general filters such as <a href="#fir-filter">fir-filter</a>.
In make-two-pole and make-two-zero you can specify either the actual
desired coefficients ("a0" and friends), or the center frequency and radius of the
filter ("frequency" and "radius").  The word "radius" refers to the unit circle,
so it should be between 0.0 and (less than) 1.0.
"frequency" should be between 0 and srate/2.  
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((flt (make-two-pole 1000.0 0.999))
	(ran1 (make-rand 10000.0 .002)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (two-pole flt (rand ran1)))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  flt = make_two_pole(1000.0, 0.999);
  ran1 = make_rand(10000.0, 0.002); 
  44100.times do |i|
    outa(i, 0.5 * two_pole(flt, rand(ran1)), $output);
    end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  1000.0 0.999 make-two-pole { flt }
  10000.0 0.002 make-rand { ran1 }
  44100 0 do
    i  flt  ran1 0 rand  two-pole  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>We can use a one-pole filter as an "exponentially weighted moving average":
</p>

<pre class="indented">
(make-one-pole (/ 1.0 order) (/ (- order) (+ 1.0 order)))
</pre>

<p>where "order" is more or less how long an input affects the output.
The <a href="#mus-xcoeff">mus-xcoeff</a> and <a href="#mus-ycoeff">mus-ycoeff</a> functions give access to the filter coefficients.
<a href="sndscm.html#prc95doc">prc95.scm</a> uses them to make "run time"
alterations to the filters:
</p>

<pre class="indented">
(set! (mus-ycoeff p 1) (- val))     ; "p" is a one-pole filter, this is setting "b1"
(set! (mus-xcoeff p 0) (- 1.0 val)) ; this is setting "a0"
</pre>

<p>We can also use <a href="#mus-frequency">mus-frequency</a> and <a href="#mus-scaler">mus-scaler</a> (the pole "radius") as a more intuitive handle on these coefficients:
</p>

<pre class="indented">
&gt; (define p (make-two-pole :radius .9 :frequency 1000.0))
#&lt;unspecified&gt;
&gt;p
#&lt;two-pole: a0: 1.000, b1: -1.727, b2: 0.810, y1: 0.000, y2: 0.000&gt;
&gt; (mus-frequency p)
1000.00025329731
&gt; (mus-scaler p)
0.899999968210856
&gt; (set! (mus-frequency p) 2000.0)
2000.0
&gt;p
#&lt;two-pole: a0: 1.000, b1: -1.516, b2: 0.810, y1: 0.000, y2: 0.000&gt;
</pre>

<p>A quick way to see the frequency response of a filter is to drive it with a sine wave sweeping from
0 Hz to half the sampling rate; if the sound length is 0.5 seconds, you can read off the time axis
as the response at that frequency (in terms of a sampling rate of 1.0):
</p>

<pre class="indented">
(define (test-filter flt)
  (let* ((osc (<a class=quiet href="#make-oscil">make-oscil</a>))
	 (samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> 0.5))
	 (ramp (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) 
                     :scaler (<a class=quiet href="#hztoradians">hz-&gt;radians</a> samps) 
                     :length samps)))
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
      (do ((i 0 (+ i 1)))
	  ((= i samps))
        (<a class=quiet href="#outa">outa</a> i (flt (<a class=quiet href="#oscil">oscil</a> osc (<a class=quiet href="#env">env</a> ramp))))))))
		
(test-filter (make-one-zero 0.5 0.5))
(test-filter (make-one-pole 0.1 -0.9))
(test-filter (make-two-pole 0.1 0.1 0.9))
(test-filter (make-two-zero 0.5 0.2 0.3))
</pre>

<img class="indented" src="pix/2pole.png" alt="simple filters">



<!--
(define (test-filter flt chan)
  (let* ((osc (make-oscil 0.0))
	 (samps (seconds->samples 0.5))
	 (ramp (make-env '(0 0 1 1) :scaler (hz->radians samps) :length samps)))

      (do ((i 0 (+ i 1)))
	  ((= i samps))
        (out-any i (flt (oscil osc (env ramp))) chan))))

(with-sound (:channels 4)
  (test-filter (make-one-zero 0.5 0.5) 0)
  (test-filter (make-one-pole 0.1 -0.9) 1)
  (test-filter (make-two-pole 0.1 0.1 0.9) 2)
  (test-filter (make-two-zero 0.5 0.2 0.3) 3))

(define (fixup-axes)
  (set! *selected-data-color* (make-color 0 0 0))
  (set! *selected-graph-color* (make-color 1 1 1))
  (set! (x-axis-label 0 0) "(make-one-zero 0.5 0.5)")
  (set! (x-axis-label 0 1) "(make-one-pole 0.1 -0.9)")
  (set! (x-axis-label 0 2) "(make-two-pole 0.1 0.1 0.9)")
  (set! (x-axis-label 0 3) "(make-two-zero 0.5 0.2 0.3)"))
-->





<!--  FORMANT  -->

<div class="innerheader" id="formantdoc">formant</div>

<pre class="indented">
<em class=def id="make-formant">make-formant</em> 
      frequency   ; resonance center frequency in Hz
      radius      ; resonance width, indirectly
<em class=def id="formant">formant</em> f input center-frequency-in-radians
<em class=def id="formant?">formant?</em> f

<em class=def id="formantbank">formant-bank</em> filters input
<em class=def id="formantbankp">formant-bank?</em> f
<em class=def id="makeformantbank">make-formant-bank</em> filters amps

<em class=def id="make-firmant">make-firmant</em> frequency radius
<em class=def id="firmant">firmant</em> f input center-frequency-in-radians
<em class=def id="firmant?">firmant?</em> f

;; the next two are optimizations that I may remove
<em class=def>mus-set-formant-frequency</em> f frequency
<em class=def>mus-set-formant-radius-and-frequency</em> f radius frequency
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">formant methods</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">formant radius</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">formant center frequency</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">2 (no set!)</td></tr>
</table>

<p>formant and firmant are resonators (two-pole, two-zero bandpass filters) centered at "frequency", with the bandwidth set by "radius".
</p>

<pre class="indented">
formant:
    y(n) = x(n) - 
           r * x(n-2) + 
           2 * r * cos(frq) * y(n-1) - 
           r * r * y(n-2)

firmant:
    x(n+1) = r * (x(n) - 2 * sin(frq/2) * y(n)) + input
    y(n+1) = r * (2 * sin(frq/2) * x(n+1) + y(n))
</pre>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((flt (make-firmant 1000.0 0.999))
	(ran1 (make-rand 10000.0 5.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (firmant flt (rand ran1)))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  flt = make_firmant(1000.0, 0.999);
  ran1 = make_rand(10000.0, 5.0); 
  44100.times do |i|
    outa(i, 0.5 * firmant(flt, rand(ran1)), $output);
    end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  1000.0 0.999 make-firmant { flt }
  10000.0 5.0 make-rand { ran1 }
  44100 0 do
    i  flt  ran1 0 rand  #f firmant  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>The formant generator is described in "A Constant-gain Digital Resonator Tuned By a Single Coefficient" by Julius
O. Smith and James B. Angell in Computer Music Journal Vol. 6 No. 4 (winter
1982) and "A note on
Constant-Gain Digital Resonators" by Ken Steiglitz, CMJ vol 18 No. 4 pp.8-10
(winter 1994).
The formant bandwidth is a function of the "radius", and its center frequency is set by "frequency".
As the radius approaches 1.0 (the unit circle), the
resonance gets narrower.
Use <a href="#mus-frequency">mus-frequency</a> to change the center frequency, and <a href="#mus-scaler">mus-scaler</a> to change the radius.
The radius can be set in terms of desired bandwidth in Hz via:
</p>
<pre class="indented">
(exp (* -0.5 (<a class=quiet href="#hztoradians">hz-&gt;radians</a> bandwidth)))
</pre>

<p>If you change the radius, the peak amplitude 
of the output changes.  
The firmant generator is the "modified coupled form" of the formant generator,
developed by Max Mathews and Julius Smith in "Methods for Synthesizing Very High Q Parametrically
Well Behaved Two Pole Filters".
Here are some graphs showing the formant and firmant filtering white noise
as we sweep either the frequency or the radius:
</p>

<img class="indented" src="pix/formant.png" alt="various formant cases">

<!--
(with-sound (:channels 4 :clipped #f :statistics #t)
  (let* ((dur 100)
	 (samps (seconds->samples dur))
	 (flta (make-formant 100 .999))
	 (fltb (make-formant 5000 .1))
	 (fltc (make-firmant 100 .999))
	 (fltd (make-firmant 5000 .1))
	 (ampf (make-env '(0 0 1 1 100 1 101 0) :duration dur))
	 (frqf (make-env '(0 100 1 10000) :scaler (hz->radians 1.0) :duration dur))
	 (rf (make-env '(0 .6 1 .999) :base .01 :duration dur)))
       (do ((i 0 (+ i 1)))
	   ((= i samps))
	 (let* ((frq (env frqf))
		(r (env rf))
		(amp (env ampf))
		(pulse (- (random 2.0) 1.0)))
	   (outa i (* amp (formant flta pulse frq)))
	   (set! (mus-scaler fltb) r)
	   (outc i (* amp (formant fltb pulse)))
	   (outb i (* amp (firmant fltc pulse frq)))
	   (outd i (* amp (firmant fltd pulse)))
	   (set! (mus-scaler fltd) r)
	   ))))

(define (fixup-axes)
  (set! *selected-data-color* (make-color 0 0 0))
  (set! *selected-graph-color* (make-color 1 1 1))
  (set! (x-axis-label 0 0 0) "formant: sweep frequency from 100 to 10000")
  (set! (x-axis-label 0 1 0) "firmant: sweep frequency from 100 to 10000")
  (set! (x-axis-label 0 0 1) "formant radius: .999")
  (set! (x-axis-label 0 1 1) "firmant radius: .999")
  (set! (x-axis-label 0 2 0) "formant: sweep radius from .6 to .999")
  (set! (x-axis-label 0 3 0) "firmant: sweep radius from .6 to .999")
  (set! (x-axis-label 0 2 1) "formant frequency: 5000")
  (set! (x-axis-label 0 3 1) "firmant frequency: 5000"))
-->

<p>formant and firmant are often used to sculpt away unwanted spectral components, or emphasize formant regions.
In animals.scm, the crow, for example, 
</p>

<pre class="indented">
(load "animals.scm")
(with-sound (:play #t) (american-crow 0 .5))
</pre>

<p>has three formant filters.  Without them, it would sound like this:
</p>

<pre class="indented">
(with-sound (:play #t) (american-crow-no-formants 0 .5))
</pre>


<p>formant generators are also commonly used in a bank of filters to provide a sort of sample-by-sample spectrum.
An example is <a href="sndscm.html#fadedoc">fade.scm</a> which has various functions for frequency domain mixing.
See also 
<a href="sndscm.html#grapheq">grapheq</a> (a non-graphic equalizer), and
<a href="sndscm.html#crosssynthesis">cross-synthesis</a>.
Here's an example that moves a set of harmonically related formants through a sound.
If "radius" is .99, you get a glass-harmonica effect; if it's less, you get more of an FM index envelope effect.
</p>


<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (move-formants start file amp radius move-env num-formants)
  (let* ((frms (make-vector num-formants))
	 (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (dur (<a class=quiet href="extsnd.html#mussoundframples">mus-sound-framples</a> file))
	 (end (+ beg dur))
	 (rd (<a class=quiet href="#make-readin">make-readin</a> file))
	 (menv (<a class=quiet href="#make-env">make-env</a> move-env :length dur)))
    (let ((start-frq (<a class=quiet href="#env">env</a> menv)))
      (do ((i 0 (+ i 1)))
	  ((= i num-formants))
	(set! (frms i) (<em class=red>make-formant</em> (* (+ i 1) start-frq) radius))))
    (do ((k beg (+ k 1)))
        ((= k end))
      (let ((frq (<a class=quiet href="#env">env</a> menv))
	    (sum 0.0)
	    (inp (<a class=quiet href="#readin">readin</a> rd)))
	(do ((i 0 (+ i 1)))
	    ((= i num-formants))
	  (set! sum (+ sum (<em class=red>formant</em> (frms i) inp))))
        (outa k (* amp sum))
	(do ((i 0 (+ i 1))
	     (curfrq frq (+ curfrq frq)))
	    ((= i num-formants))
	  (if (&lt; (* 2 curfrq) *clm-srate*)
	      (set! (<em class=red>mus-frequency</em> (frms i)) curfrq)))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (move-formants 0 "oboe.snd" 2.0 0.99 '(0 1200 1.6 2400 2 1400) 4))
</pre>

<p>make-formant-bank creates a formant-bank generator, an array of formant generators that is summed in parallel. The
explicit do loop:
</p>

<pre class="indented">
(do ((sum 0.0)  ; say we have n formant generators in the formants vector, and we're passing each a signal x
     (i 0 (+ i 1)))
    ((= i n) sum)
  (set! sum (+ sum (formant (formants i) x))))
</pre>

<p>can be replaced with:
</p>

<pre class="indented">
(let ((fb (make-formant-bank formants)))
  ...
  (formant-bank fb x))
</pre>

<p>make-formant-bank takes a vector of formant generators as its first argument.  Its optional second argument
is a float-vector of gains (amplitudes) to scale each formant's contribution to the sum.  Similarly, formant-bank's
second argument is either a real number or a float-vector.  If a float-vector, each element is treated as the input to the
corresponding formant in the bank.  (formant-bank ignores its constituent formant generator's radius and frequency
after make-formant-bank; see move-formant above for a slightly less compact workaround if you want a bank of moving formants).
</p>


<br>
<p>The clm-3 formant gain calculation was incorrect.  To translate from the old
formant to the new one, multiply the old gain by (* 2 (sin (<a class=quiet href="#hztoradians">hz-&gt;radians</a> frequency))).
</p>

<p>If you change the radius or frequency rapidly, the formant generator will either produce
clicks or overflow, but firmant gives good output.   Here's an
example that puts formant on the edge of disaster (the glitch is about to explode), but firmant plugs away happily:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let* ((samps (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> 3))
	 (flta (<em class=red>make-formant</em> 100 .999))
	 (fltc (<em class=red>make-firmant</em> 100 .999))
	 (vibosc (<a class=quiet href="#make-oscil">make-oscil</a> 10))
	 (index (<a class=quiet href="#hztoradians">hz-&gt;radians</a> 100))
	 (click (<a class=quiet href="#make-ncos">make-ncos</a> 40 500)))
    (do ((i 0 (+ i 1)))
        ((= i samps))
      (let ((vib (* index (+ 1 (<a class=quiet href="#oscil">oscil</a> vibosc))))
            (pulse (<a class=quiet href="#ncos">ncos</a> click)))
        (<a class=quiet href="#outa">outa</a> i (* 10 (<em class=red>formant</em> flta pulse vib)))
        (<a class=quiet href="#outa">outb</a> i (* 10 (<em class=red>firmant</em> fltc pulse vib)))))))
</pre>

<img class="indented" src="pix/firmant.png" alt="firmant is happy">





<!--  FILTERS  -->

<div class="innerheader" id="filterdoc">filter, iir-filter, fir-filter</div>

<pre class="indented">
 <em class=def id="make-filter">make-filter</em> order xcoeffs ycoeffs
 <em class=def id="filter">filter</em> fl inp 
 <em class=def id="filter?">filter?</em> fl

 <em class=def id="make-fir-filter">make-fir-filter</em> order xcoeffs
 <em class=def id="fir-filter">fir-filter</em> fl inp 
 <em class=def id="fir-filter?">fir-filter?</em> fl

 <em class=def id="make-iir-filter">make-iir-filter</em> order ycoeffs
 <em class=def id="iir-filter">iir-filter</em> fl inp 
 <em class=def id="iir-filter?">iir-filter?</em> fl

 <em class=def id="make-fir-coeffs">make-fir-coeffs</em> order v
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">general filter methods</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">filter order</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeff</em></td><td class="inner">x (input) coeff</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeffs</em></td><td class="inner">x (input) coeffs</td></tr>
<tr><td class="inner"><em class=gen>mus-ycoeff</em></td><td class="inner">y (output) coeff</td></tr>
<tr><td class="inner"><em class=gen>mus-ycoeffs</em></td><td class="inner">y (output) coeffs</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">current state (input values)</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">same as mus-order</td></tr>
</table>

<p>These are general FIR/IIR filters of arbitrary order.
The "order" argument is one greater than the nominal filter
order (it is the size of the coefficient array).
The filter generator might be defined:
</p>

<pre class="indented">
  (let ((xout 0.0))
    (set! (state 0) input)
    (do ((j (- order 1) (- j 1)))
        ((= j 0))
      (set! xout (+ xout (* (xcoeffs j) (state j))))
      (set! (state 0) (- (state 0) (* (ycoeffs j) (state j))))
      (set! (state j) (state (- j 1))))
    (+ xout (* (state 0) (xcoeffs 0))))
</pre>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((flt (make-iir-filter 3 (float-vector 0.0 -1.978 0.998)))
	(ran1 (make-rand 10000.0 0.002)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (iir-filter flt (rand ran1)))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  flt = make_iir_filter(3, vct(0.0, -1.978, 0.998));
  ran1 = make_rand(10000.0, 0.002); 
  44100.times do |i|
    outa(i, 0.5 * iir_filter(flt, rand(ran1)), $output);
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  3 vct( 0.0 -1.978 0.998 ) make-iir-filter { flt }
  10000.0 0.002 make-rand { ran1 }
  44100 0 do
    i  flt  ran1 0 rand  iir-filter  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p><a href="sndscm.html#dspdoc">dsp.scm</a> has a number of filter design functions,
and various specializations of the filter generators, including such
perennial favorites as biquad, butterworth, hilbert transform, and
notch filters. Similarly, <a href="sndscm.html#analogfilterdoc">analog-filter.scm</a> has
the usual IIR suspects: Butterworth, Chebyshev, Bessel, and Elliptic filters.
A biquad section can be implemented as:
</p>

<pre class="indented">
(define (make-biquad a0 a1 a2 b1 b2) 
  (make-filter 3 (float-vector 0.0 b1 b2)))
</pre>

<p>
The Hilbert transform can be implemented with an fir-filter:
</p>

<pre class="indented">
(define* (make-hilbert-transform (len 30))
  (let* ((arrlen (+ 1 (* 2 len)))
         (arr (make-float-vector arrlen)))
    (do ((lim (if (even? len) len (+ 1 len)))
         (i (- len) (+ i 1)))
        ((= i lim))
      (let ((k (+ i len))
            (denom (* pi i))
            (num (- 1.0 (cos (* pi i)))))
        (set! (arr k) (if (or (= num 0.0) (= i 0)) 
                          0.0
                          (* (/ num denom) 
                             (+ .54 (* .46 (cos (/ (* i pi) len)))))))))
    (<em class=red>make-fir-filter</em> arrlen arr)))

(define hilbert-transform <em class=red>fir-filter</em>)
</pre>

<p>make-fir-coeffs translates a frequency response envelope (actually, evenly spaced points in a float-vector) into the corresponding FIR filter coefficients.
The order of the filter determines how close you
get to the envelope. 
</p>

<table class="method">
<tr><td class="methodtitle">Filters</td></tr>
<tr><td>
<blockquote><small>
lowpass filter: <a href="sndscm.html#makelowpass">make-lowpass</a> in dsp.scm<br>
highpass filter: <a href="sndscm.html#makehighpass">make-highpass</a> in dsp.scm<br>
bandpass filter: <a href="sndscm.html#makebandpass">make-bandpass</a> in dsp.scm<br>
bandstop filter: <a href="sndscm.html#makebandstop">make-bandstop</a> in dsp.scm<br>
Butterworth, Chebyshev, Bessel, Elliptic filters: <a href="sndscm.html#analogfilterdoc">analog-filter.scm</a><br>
Hilbert transform: <a href="sndscm.html#makehilberttransform">make-hilbert-transform</a> in dsp.scm<br>
differentiator: <a href="sndscm.html#makedifferentiator">make-differentiator</a> in dsp.scm<br>
block DC: dc-block in prc95.scm or (make-filter 2 (float-vector 1 -1) (float-vector 0 -0.99))<br>
hum elimination: <a href="sndscm.html#IIRfilters">make-eliminate-hum</a> and <a href="sndscm.html#notchchannel">notch-channel</a> in dsp.scm<br>
hiss elimination: <a href="sndscm.html#notchoutrumbleandhiss">notch-out-rumble-and-hiss</a><br>
smoothing filters: <a href="#moving-average">moving-average</a>, <a href="#weighted-moving-average">weighted-moving-average</a>, exponentially-weighted-moving-average<br>
notch-filters: <a href="sndscm.html#notchchannel">notch-channel</a> and <a href="sndscm.html#notchselection">notch-selection</a><br>
arbitrary spectrum via FIR filter: <a href="sndscm.html#spectrumtocoeffs">spectrum-&gt;coeffs</a> in dsp.scm<br>
invert an FIR filter: <a href="sndscm.html#invertfilter">invert-filter</a> in dsp.scm<br>
filtered echo sound effect: <a href="sndscm.html#zecho">flecho</a> in examp.scm<br>
time varying filter: fltit in examp.scm<br>
draw frequency response: use the <a href="snd.html#editenvelope">envelope editor</a> or <a href="snd.html#filtercontrol">filter control</a> in control panel<br>
Moog filter: <a href="sndscm.html#moogdoc">moog.scm</a><br>
Savitzky-Golay filter: <a href="sndscm.html#sgfilter">savitzky-golay-filter</a><br>
click reduction: <a href="sndscm.html#removeclicks">remove-clicks</a>, <a href="sndscm.html#cleanchannel">clean-channel</a><br>
graphical equalizer filter bank: <a href="sndscm.html#clminsdoc">graphEq</a><br>
nonlinear (Volterra) filter: <a href="sndscm.html#volterrafilter">volterra-filter</a><br>
Kalman filter: <a href="sndscm.html#kalmanfilterchannel">kalman-filter-channel</a><br>
filter a sound: <a href="extsnd.html#filtersound">filter-sound</a>, <a href="extsnd.html#filterchannel">filter-channel</a><br>
see also convolution, physical modeling, reverb, and <a href="sndscm.html#ssffts">fft-based filtering</a><br>
</small></blockquote>
</td></tr></table>




<!--  DELAY  -->

<div class="innerheader" id="delaydoc">delay, tap</div>

<pre class="indented">
<em class=def id="make-delay">make-delay</em> 
      size                  ; delay length
      initial-contents      ; delay line's initial values (a float-vector or a list)
      (initial-element 0.0) ; delay line's initial element
      max-size              ; maximum delay size in case the delay changes 
      type                  ; interpolation type
<em class=def id="delay">delay</em> d input (pm 0.0)
<em class=def id="delay?">delay?</em> d

<em class=def id="tap">tap</em> d (offset 0)
<em class=def id="tap?">tap?</em> d
<em class=def id="delaytick">delay-tick</em> d input
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">delay methods</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">length of delay</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">same as mus-length</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">delay line itself (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner">interpolation choice (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">available for delay specializations</td></tr>
<tr><td class="inner"><em class=gen>mus-location</em></td><td class="inner">current delay line write position</td></tr>
</table>

<p>The delay generator is a delay line.  
The make-delay "size" argument sets the delay line length (in samples).
Input fed into a delay line reappears at the output size samples later. 
If "max-size" is specified in make-delay,
and it is larger than "size", the delay line can provide varying-length delays (including fractional amounts).
The delay generator's "pm" argument determines how far from the original "size" we are; that is,
it is difference between the length set by make-delay
and the current actual delay length, size + pm.  So, a positive "pm" corresponds to a longer
delay line.  See <a href="sndscm.html#zecho">zecho</a> in examp.scm for an example.
The make-delay "type" argument sets the interpolation type in the case of fractional delays:
mus-interp-none, mus-interp-linear, mus-interp-all-pass, 
mus-interp-lagrange, mus-interp-bezier, or mus-interp-hermite.
Delay could be defined:
</p>

<pre class="indented">
(let ((result (<a class=quiet href="#array-interp">array-interp</a> line (- loc pm))))
  (set! (line loc) input)
  (set! loc (+ 1 loc))
  (if (&lt;= size loc) (set! loc 0))
  result)
</pre>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((dly (make-delay (seconds-&gt;samples 0.5)))
        (osc1 (make-oscil 440.0))
        (osc2 (make-oscil 660.0)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 
                 (+ (oscil osc1)
                    (delay dly (oscil osc2))))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  dly = make_delay(seconds2samples(0.5));
  osc1 = make_oscil(440.0);
  osc2 = make_oscil(660.0);
  44100.times do |i|
    outa(i, 
         0.5 * (oscil(osc1) + 
                delay(dly, oscil(osc2))), 
         $output);
    end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  0.5 seconds-&gt;samples make-delay { dly }
  440.0 make-oscil { osc1 }
  660.0 make-oscil { osc2 }
  44100 0 do
    i
    osc1 0 0 oscil
    dly  osc2 0 0 oscil  0 delay f+
    f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>
The tap function taps a delay line at a given offset from the output point.
delay-tick is a function that just puts a sample in the delay line, 'ticks' the delay forward, and
returns its "input" argument.  
See prc95.scm for examples of both of these functions.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (echo beg dur scaler secs file)
  (let ((del (<em class=red>make-delay</em> (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> secs)))
        (rd (make-sampler 0 file)))
    (do ((i beg (+ i 1)))
        ((= i (+ beg dur)))
      (let ((inval (rd)))
        (<a class=quiet href="#outa">outa</a> i (+ inval (<em class=red>delay</em> del (* scaler (+ (<em class=red>tap</em> del) inval)))))))))

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (echo 0 60000 .5 1.0 "pistol.snd"))
</pre>

<p>The <a href="#mus-scaler">mus-scaler</a> field is available for simple extensions of the delay.  For example,
the <a href="#moving-max">moving-max</a> generator uses mus-scaler to track the current maximum sample value
in the delay line; the result is an envelope that tracks the peak amplitude in the
last "size" samples.
The <a href="#mus-location">mus-location</a> field returns the current delay line write position.
To access the delay line contents as a sliding window on the input data, use:
</p>

<pre class="indented">
(define (delay-ref dly loc)
  (float-vector-ref (mus-data dly) (modulo (+ loc (<em class=red>mus-location</em> dly)) (mus-length dly))))
</pre>

<p>
The delay generator is used in some reverbs (<a href="sndscm.html#nrev">nrev</a>), many physical
models (<a href="sndscm.html#stereoflute">stereo-flute</a>), <a href="sndscm.html#dlocsigdoc">dlocsig</a>,
chorus effects (<a href="sndscm.html#chorus">chorus</a> in dsp.scm), and flanging (<a href="sndscm.html#neweffectsdoc">new-effects</a>),
and is the basis for about a dozen extensions (comb and friends below).
</p>




<!--  COMB, NOTCH  -->

<div class="innerheader" id="combdoc">comb, notch</div>

<pre class="indented">
<em class=def id="make-comb">make-comb</em> (scaler 1.0) size initial-contents (initial-element 0.0) max-size
<em class=def id="comb">comb</em> cflt input (pm 0.0)
<em class=def id="comb?">comb?</em> cflt

<em class=def id="combbank">comb-bank</em> combs input
<em class=def id="combbankp">comb-bank?</em> object
<em class=def id="makecombbank">make-comb-bank</em> combs

<em class=def id="make-filtered-comb">make-filtered-comb</em> (scaler 1.0) size initial-contents (initial-element 0.0) max-size filter
<em class=def id="filtered-comb">filtered-comb</em> cflt input (pm 0.0)
<em class=def id="filtered-comb?">filtered-comb?</em> cflt

<em class=def id="filteredcombbank">filtered-comb-bank</em> fcombs input
<em class=def id="filteredcombbankp">filtered-comb-bank?</em> object
<em class=def id="makefilteredcombbank">make-filtered-comb-bank</em> fcombs

<em class=def id="make-notch">make-notch</em> (scaler 1.0) size initial-contents (initial-element 0.0) max-size
<em class=def id="notch">notch</em> cflt input (pm 0.0)
<em class=def id="notch?">notch?</em> cflt
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">comb, filtered-comb, and notch methods</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">length of delay</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">same as mus-length</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">delay line itself (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-feedback</em></td><td class="inner">scaler (comb only)</td></tr>
<tr><td class="inner"><em class=gen>mus-feedforward</em></td><td class="inner">scaler (notch only)</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner">interpolation choice (no set!)</td></tr>
</table>

<p>The comb generator is a delay line with a scaler on the feedback.  notch
is a delay line with a scaler on the current input.
filtered-comb is a comb filter with a filter on the feedback.  
Although normally this is a <a href="#one-zero">one-zero</a> filter, it can be any CLM generator.
The make-&lt;gen&gt; "size" argument sets the length
in samples of the delay line,
and the other arguments are also handled as in <a href="#delay">delay</a>.
</p>

<pre class="indented">
comb:           y(n) = x(n - size) + scaler * y(n - size)
notch:          y(n) = x(n) * scaler  + x(n - size)
filtered-comb:  y(n) = x(n - size) + scaler * filter(y(n - size))
</pre>

<img class="indented" src="pix/comb.png" alt="sonogram of comb">

<!-- 1024 blackman2 dB jet light=1 data-cutoff around .009 invert off using the local zc (not clm-ins!): (with-sound (:srate 44100) (zc 0 2 2000 .1 100 1000 .99))
-->


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((cmb (make-comb 0.4 (seconds-&gt;samples 0.4)))
        (osc (make-oscil 440.0))
        (ampf (make-env '(0 0 1 1 2 1 3 0) :length 4410)))
    (do ((i 0 (+ i 1)))
	((= i 88200))
      (outa i (* 0.5 (comb cmb (* (env ampf) (oscil osc))))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  cmb = make_comb(0.4, seconds2samples(0.4));
  osc = make_oscil(440.0);
  ampf = make_env([0.0, 0.0, 1.0, 1.0, 2.0, 1.0, 3.0, 0.0], :length, 4410);
  88200.times do |i|
    outa(i, 0.5 * (comb(cmb, env(ampf) * oscil(osc))), $output);
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  0.4 0.4 seconds-&gt;samples make-comb { cmb }
  440.0 make-oscil { osc }
  '( 0 0 1 1 2 1 3 0 ) :length 4410 make-env { ampf }
  88200 0 do
    i
    cmb ( gen )
    ampf env  osc 0 0 oscil  f* ( val )
    0 ( pm )
    comb f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>As a rule of thumb, the decay time of the feedback is
7.0 * size / (1.0 - scaler) samples, so to get a decay of feedback-dur seconds,
</p>
<pre class="indented">
    (make-comb :size size :scaler (- 1.0 (/ (* 7.0 size) feedback-dur *clm-srate*)))
</pre>

<p>The peak gain is 1.0 / (1.0 - (abs scaler)).  The peaks (or valleys in notch's case) are evenly spaced
at *clm-srate* / size. The height (or depth) thereof is determined by scaler &mdash;
the closer to 1.0 it is, the more pronounced the dips or peaks.
See Julius Smith's "An Introduction to Digital Filter Theory" in
Strawn "Digital Audio Signal Processing", or Smith's "Music Applications of
Digital Waveguides".
The following instrument sweeps the comb filter using the pm argument:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (zc time dur freq amp length1 length2 feedback)
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> time))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (s (<a class=quiet href="#make-pulse-train">make-pulse-train</a> :frequency freq))  ; some raspy input so we can hear the effect easily
         (d0 (<em class=red>make-comb</em> :size length1 :max-size (max length1 length2) :scaler feedback))
         (aenv (<a class=quiet href="#make-env">make-env</a> '(0 0 .1 1 .9 1 1 0) :scaler amp :duration dur))
         (zenv (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :scaler (- length2 length1) :base 12.0 :duration dur)))
     (do ((i beg (+ i 1))) ((= i end))
       (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> aenv) (<em class=red>comb</em> d0 (<a class=quiet href="#pulse-train">pulse-train</a> s) (<a class=quiet href="#env">env</a> zenv)))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (zc 0 3 100 .1 20 100 .5) 
  (zc 3.5 3 100 .1 90 100 .95))
</pre>

<p>Nearly every actual use of comb filters involves a bank of them, a vector of combs
summed in parallel.  The comb-bank generator is intended for this kind of application.
make-comb-bank takes a vector of combs and returns the comb-bank generator which can
be called via comb-bank.
</p>

<pre class="indented">
(do ((sum 0.0)
     (i 0 (+ i 1)))
    ((= i n) sum)
  (set! sum (+ sum (comb (combs i) x))))
</pre>

<p>can be replaced with:
</p>

<pre class="indented">
(let ((cb (make-comb-bank combs)))
  ...
  (comb-bank cb x))
</pre>


<p>The comb filter can produce some nice effects; here's one that treats the comb filter's
delay line as the coefficients for an FIR filter:
</p>

<pre class="indented">
(define (fir+comb beg dur freq amp size)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (dly (<em class=red>make-comb</em> :scaler .9 :size size)) 
         (flt (<a class=quiet href="#make-fir-filter">make-fir-filter</a> :order size :xcoeffs (<em class=red>mus-data</em> dly))) ; comb delay line as FIR coeffs
         (r (<a class=quiet href="#make-rand">make-rand</a> freq)))                                       ; feed comb with white noise
    (do ((i start (+ i 1))) 
        ((= i end)) 
      (<a class=quiet href="#outa">outa</a> i (* amp (<a class=quiet href="#fir-filter">fir-filter</a> flt (<em class=red>comb</em> dly (<a class=quiet href="#rand">rand</a> r))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (fir+comb 0 2 10000 .001 200)
  (fir+comb 2 2 1000 .0005 400)
  (fir+comb 4 2 3000 .001 300)
  (fir+comb 6 2 3000 .0005 1000))
</pre>

<p>Here's another that fluctuates between two sets of combs; it usually works best with voice sounds.  We use comb-bank generators:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (flux start-time file frequency combs0 combs1 (scaler 0.99) (comb-len 32))
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start-time))
         (end (+ beg (<a class=quiet href="extsnd.html#mussoundframples">mus-sound-framples</a> file)))
         (num-combs0 (length combs0))
         (num-combs1 (length combs1))
         (cmbs0 (make-vector num-combs0))
         (cmbs1 (make-vector num-combs1))
         (osc (<a class=quiet href="#make-oscil">make-oscil</a> frequency))
         (rd (<a class=quiet href="#make-readin">make-readin</a> file)))
    (do ((k 0 (+ k 1)))
        ((= k num-combs0))
      (set! (cmbs0 k)
            (<em class=red>make-comb</em> scaler 
              (floor (* comb-len (combs0 k))))))
    (do ((k 0 (+ k 1)))
        ((= k num-combs1))
      (set! (cmbs1 k)
            (<em class=red>make-comb</em> scaler 
              (floor (* comb-len (combs1 k))))))
    (let ((nc0 (<em class=red>make-comb-bank</em> cmbs0))
          (nc1 (<em class=red>make-comb-bank</em> cmbs1)))
      (do ((i beg (+ i 1)))
          ((= i end))
        (let ((interp (<a class=quiet href="#oscil">oscil</a> osc))
              (x (<a class=quiet href="#readin">readin</a> rd)))
          (<a class=quiet href="#outa">outa</a> i (+ (* interp (<em class=red>comb-bank</em> nc0 x)) 
                     (* (- 1.0 interp) (<em class=red>comb-bank</em> nc1 x)))))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:scaled-to .5) 
  (flux 0 "oboe.snd" 10.0 '(1.0 1.25 1.5) '(1.0 1.333 1.6)) ; bowed oboe?
  (flux 2 "now.snd" 4.0 '(1.0 1.25 1.5) '(1.0 1.333 1.6 2.0 3.0))
  (flux 4 "now.snd" 1.0 '(1.0 1.25 1.5) '(1.0 1.333 1.6 2.0 3.0) 0.995 20)
  (flux 6 "now.snd" 10.0 '(1.0 1.25 1.5) '(1.0 1.333 1.6 2.0 3.0) 0.99 10)
  (flux 8 "now.snd" 10.0 '(2.0) '(1.0 1.333 1.6 2.0 3.0) 0.99 120)
  (flux 10 "fyow.snd" .50 '(1.0 2.0 1.5) '(1.0 1.333 1.6 2.0 3.0) 0.99 120))
</pre>

<p>For more comb filter examples,
see examp.scm, <a href="sndscm.html#chordalize">chordalize</a> in dsp.scm, or
any of the standard reverbs such as <a href="sndscm.html#nrev">nrev</a>.
</p>

<br> 
<p>filtered-comb is used in <a href="sndscm.html#freeverb">freeverb</a>
where a <a href="#one-zero">one-zero</a> filter is placed
in the feedback loop:
</p>

<pre class="indented">
(make-filtered-comb :size len :scaler room-decay-val :filter (make-one-zero :a0 (- 1.0 dmp) :a1 dmp))
</pre>

<p>As with the normal comb filter, the filtered-comb-bank generator sums a vector of filtered-comb
generators in parallel.
</p>




<!--  ALL-PASS  -->

<div class="innerheader" id="all-passdoc">all-pass</div>

<pre class="indented">
<em class=def id="make-all-pass">make-all-pass</em> 
        (feedback 0.0) 
        (feedforward 0.0)
        size 
        initial-contents 
        (initial-element 0.0) 
        max-size

<em class=def id="all-pass">all-pass</em> f input (pm 0.0)
<em class=def id="all-pass?">all-pass?</em> f

<em class=def id="allpassbank">all-pass-bank</em> all-passes input
<em class=def id="allpassbankp">all-pass-bank?</em> object
<em class=def id="makeallpassbank">make-all-pass-bank</em> all-passes

<em class=def id="make-one-pole-all-pass">make-one-pole-all-pass</em> size coeff
<em class=def id="one-pole-all-pass">one-pole-all-pass</em> f input 
<em class=def id="one-pole-all-pass?">one-pole-all-pass?</em> f
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">all-pass methods</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">length of delay</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">same as mus-length</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">delay line itself (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-feedback</em></td><td class="inner">feedback scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-feedforward</em></td><td class="inner">feedforward scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-interp-type</em></td><td class="inner">interpolation choice (no set!)</td></tr>
</table>

<p>The all-pass or moving average comb generator is just like <a href="#comb">comb</a> but with
an added scaler on the input ("feedforward" is Julius Smith's suggested name for it).  If feedforward is 0.0, we get a
comb filter.  If both scale terms are 0.0, we get a pure delay line. 
</p>

<pre class="indented">
y(n) = feedforward * x(n) + x(n - size) + feedback * y(n - size)
</pre>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((alp (make-all-pass -0.4 0.4 (seconds-&gt;samples 0.4)))
        (osc (make-oscil 440.0))
        (ampf (make-env '(0 0 1 1 2 1 3 0) :length 4410)))
    (do ((i 0 (+ i 1)))
        ((= i 88200))
      (outa i (* 0.5 (all-pass alp (* (env ampf) (oscil osc))))))))
</pre>
</div>
</td>
</tr>
<tr>
<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  alp = make_all_pass(-0.4, 0.4, seconds2samples(0.4));
  osc = make_oscil(440.0);
  ampf = make_env([0.0, 0.0, 1.0, 1.0, 2.0, 1.0, 3.0, 0.0], :length, 4410);
  88200.times do |i|
    outa(i, 0.5 * (all_pass(alp, env(ampf) * oscil(osc))), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>

<tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  -0.4 0.4 0.4 seconds-&gt;samples make-all-pass { alp }
  440.0 make-oscil { osc }
  '( 0 0 1 1 2 1 3 0 ) :length 4410 make-env { ampf }
  88200 0 do
    i
    alp ( gen )
    ampf env  osc 0 0 oscil  f* ( val )
    0 ( pm )
    all-pass f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>

</tr>
</table>


<p>all-pass filters are used extensively in reverberation; 
see <a href="sndscm.html#jcrevdoc">jcrev</a> or <a href="sndscm.html#nrev">nrev</a>.
To get the "all-pass" behavior, set feedback equal to -feedforward. Here's an example
(based on John Chowning's ancient reverb) that was inspired by the bleed-through you get on
old analog tapes &mdash; the reverb slightly precedes the direct signal:
</p>

<pre class="indented">
(define (later file dly rev)
  (let ((allpass1 (<em class=red>make-all-pass</em> -0.700 0.700 1051))
        (allpass2 (<em class=red>make-all-pass</em> -0.700 0.700  337))
        (allpass3 (<em class=red>make-all-pass</em> -0.700 0.700  113))
        (comb1 (make-comb 0.742 4799))
        (comb2 (make-comb 0.733 4999))
        (comb3 (make-comb 0.715 5399))
        (comb4 (make-comb 0.697 5801))
        (len (floor (+ *clm-srate* (mus-sound-framples file))))
        (rd (make-readin file))  ; the direct signal (via sound-let below)
        (d (make-delay dly)))    ; this delays the direct signal
    (do ((backup (min 4799 dly))
         (i 0 (+ i 1)))
        ((= i len))
      (let* ((inval (readin rd))
             (allpass-sum (<em class=red>all-pass</em> allpass3 
                            (<em class=red>all-pass</em> allpass2 
                              (<em class=red>all-pass</em> allpass1 
                                (* rev inval)))))
             (comb-sum 
              (+ (comb comb1 allpass-sum)
                 (comb comb2 allpass-sum)
                 (comb comb3 allpass-sum)
                 (comb comb4 allpass-sum)))
             (orig (delay d inval)))  
        (if (&gt;= i backup)
            (outa (- i backup) (+ comb-sum orig)))))))

(with-sound () 
  (sound-let ((tmp () (fm-violin 0 .1 440 .1))) 
    (later tmp 10000 .1)))
</pre>

<p>In all such applications, the all-pass filters are connected in series (each one's output is the
input to the next in the set).  To package this up in one generator, use an all-pass-bank.  An
all-pass-bank is slightly different from the other "bank" generators in that it connects the
vector of all-passes in series, rather than summing them in parallel.
Code of the form:
</p>

<pre class="indented">
(all-pass a1 (all-pass a2 input))
</pre>

<p>can be replaced with:
</p>

<pre class="indented">
(all-pass-bank (make-all-pass-bank (vector a1 a2)) input)
</pre>


<p>one-pole-all-pass is used by piano.scm:
</p>

<pre class="indented">
y(n) = x(n) + coeff * (y(n-1) - y(n))
x(n) = y(n-1)
</pre>

<p>This is repeated "size" times, with the generator input as the first y(n-1) value.
</p>




<!--  MOVING-AVERAGE. MOVING-MAX. MOVING-NORM.  -->

<div class="innerheader" id="moving-averagedoc">moving-average, moving-max, moving-norm</div>

<pre class="indented">
<em class=def id="make-moving-average">make-moving-average</em> size initial-contents (initial-element 0.0)
<em class=def id="moving-average">moving-average</em> f input
<em class=def id="moving-average?">moving-average?</em> f

<em class=def id="make-moving-max">make-moving-max</em> size initial-contents (initial-element 0.0)
<em class=def id="moving-max">moving-max</em> f input
<em class=def id="moving-max?">moving-max?</em> f

<em class=def id="make-moving-norm">make-moving-norm</em> size (scaler 1.0)
<em class=def id="moving-norm">moving-norm</em> f input
<em class=def id="moving-norm?">moving-norm?</em> f
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">moving-average methods</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">length of table</td></tr>
<tr><td class="inner"><em class=gen>mus-order</em></td><td class="inner">same as mus-length</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">table of last 'size' values</td></tr>
</table>

<p>The moving-average or moving window average generator returns the average of the last "size" values input to it.
</p>

<pre class="indented">
result = sum-of-last-n-inputs / n
</pre>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((avg (make-moving-average 4410))
	(osc (make-oscil 440.0))
	(stop (- 44100 4410)))
    (do ((i 0 (+ i 1)))
	((= i stop))
      (let ((val (oscil osc)))
	(outa i (* val (moving-average avg (abs val))))))
    (do ((i stop (+ i 1)))
	((= i 44100))
      (outa i (* (oscil osc) (moving-average avg 0.0))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  avg = make_moving_average(4410);
  osc = make_oscil(440.0);
  stop = 44100 - 4410;
  stop.times do |i|
    val = oscil(osc);
    outa(i, val * moving_average(avg, val.abs), $output);
    end
  4410.times do |i|
    outa(stop + i, oscil(osc) * moving_average(avg, 0.0), $output);
    end
  end.output</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  4410 make-moving-average { avg }
  440.0 make-oscil { osc }
  44100 4410 - { stop }
  0.0 { val }
  stop 0 do
    osc 0 0 oscil to val
    i  avg val fabs moving-average  val f* *output* outa drop
  loop
  44100 stop do
    i  avg 0.0 moving-average  osc 0 0 oscil f*  *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>
moving-average is used both to track rms values and to generate ramps between 0 and 1 in a "gate"
effect in new-effects.scm and in rms-envelope in env.scm.  It can also be viewed as a low-pass filter.
And 
in <a href="sndscm.html#soundstosegmentdata">sounds-&gt;segment-data</a> in examp.scm, it is used to segment a sound library.
Here is an example (from new-effects.scm) that implements a "squelch" effect,
throwing away any samples below a threshhold, and ramping between portions
that are squelched and those that are unchanged (to avoid clicks):
</p>

<pre class="indented">
(define (squelch-channel amount snd chn gate-size)  ; gate-size = ramp length and rms window length
  (let ((gate (<em class=red>make-moving-average</em> gate-size))
        (ramp (<em class=red>make-moving-average</em> gate-size :initial-element 1.0)))
    (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) 
                   (* y (<em class=red>moving-average</em> ramp                           ; ramp between 0 and 1
                          (if (&lt; (<em class=red>moving-average</em> gate (* y y)) amount) ; local (r)ms value
                              0.0                               ; below "amount" so squelch
                            1.0))))
                 0 #f snd chn)))
</pre>

<p>
moving-max is a specialization
of the <a href="#delay">delay</a> generator; it produces an envelope that tracks the peak amplitude of the last 'n' samples.
<code>(make-moving-max 256)</code> returns the generator (this one's window size is 256),
and <code>(moving-max gen y)</code> then returns the envelope traced out by the signal 'y'.
The <a href="sndscm.html#harmonicizer">harmonicizer</a> uses this generator to normalize an in-coming signal to 1.0
so that the Chebyshev polynomials it is driving will produce a full spectrum at all times.
Here is a similar, but simpler, example; we use the moving-max generator to track the
current peak amplitude over a small window, use that value to drive a <a href="#contrast-enhancement">contrast-enhancement</a>
generator (so that its output is always fully modulated), and rescale by the same value
upon output (to track the original sound's amplitude envelope):
</p>

<pre class="indented">
(define (intensify index)
  (let ((mx (<em class=red>make-moving-max</em>))
        (flt (<a class=quiet href="sndscm.html#makelowpass">make-lowpass</a> (* pi .1) 8))) ; smooth the maxamp signal
    (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y)
                   (let ((amp (max .1 (<a class=quiet href="#fir-filter">fir-filter</a> flt (<em class=red>moving-max</em> mx y)))))
                     (* amp (<a class=quiet href="#contrast-enhancement">contrast-enhancement</a> (/ y amp) index)))))))
</pre>

<p>moving-norm specializes moving-max to provide automatic gain control.  It is essentially a one-pole (low-pass)
filter on the output of moving-max, inverted and multiplied by a scaler.  <code>(* input-signal (moving-norm g input-signal))</code>
is the normal usage.
</p>

<p>
See generators.scm for several related functions:
<a href="#moving-rms">moving-rms</a>, <a href="#moving-sum">moving-sum</a>, 
<a href="#moving-length">moving-length</a>, <a href="#weighted-moving-average">weighted-moving-average</a>, and 
<a href="#exponentially-weighted-moving-average">exponentially-weighted-moving-average</a>
(the latter being just a one-pole filter).
</p>




<!--  SRC  -->

<div class="innerheader" id="srcdoc">src</div>

<pre class="indented">
<em class=def id="make-src">make-src</em> input (srate 1.0) (width 5)
<em class=def id="src">src</em> s (sr-change 0.0)
<em class=def id="src?">src?</em> s
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">src methods</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">srate arg to make-src</td></tr>
</table>

<p>The src generator performs sampling rate conversion
by convolving its input with a sinc
function.
make-src's "srate" argument is the
ratio between the old sampling rate and the new;  an srate of 2 causes the sound to be half as long, transposed up an octave.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t :srate 22050)
  (let* ((rd (make-readin "oboe.snd"))
         (len (* 2 (mus-sound-framples "oboe.snd")))
         (sr (make-src rd 0.5)))
    (do ((i 0 (+ i 1)))
        ((= i len))
      (outa i (src sr)))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :srate, 22050) do
  rd = make_readin("oboe.snd");
  len = 2 * mus_sound_framples("oboe.snd");
  sr = make_src(lambda do |dir| 
                 readin(rd) end, 0.5);
  len.times do |i|
    outa(i, src(sr), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-readin { rd }
  rd 0.5 make-src { sr }
  "oboe.snd" mus-sound-framples 2* ( len ) 0 do
    i  sr 0 #f src  *output* outa drop
  loop
; :play #t :srate 22050 with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>
The "width" argument sets how many neighboring samples to convolve with the sinc function.
If you hear high-frequency artifacts in the conversion, try increasing this number;
Perry Cook's default value is 40, and I've seen cases where it needs to be 100.
It can also be set as low as 2 in some cases.
The greater the width, the slower the src generator runs.
</p>

<p>
The src generator's "sr-change"
argument is the amount to add to the current srate on a sample by sample
basis (if it's 0.0 and the original make-src srate argument was also 0.0, you get a constant output because the generator is not moving at all).  
Here's
an instrument that provides time-varying sampling rate conversion:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (simple-src start-time duration amp srt srt-env filename)
  (let* ((senv (<a class=quiet href="#make-env">make-env</a> srt-env :duration duration))
         (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start-time))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> duration)))
         (src-gen (<em class=red>make-src</em> :input (<a class=quiet href="#make-readin">make-readin</a> filename) :srate srt)))
     (do ((i beg (+ i 1)))
         ((= i end))
       (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>src</em> src-gen (<a class=quiet href="#env">env</a> senv)))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (simple-src 0 4 1.0 0.5 '(0 1 1 2) "oboe.snd"))
</pre>

<p id="srcer">src can provide an all-purpose "Forbidden Planet" sound effect:</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (srcer start-time duration amp srt fmamp fmfreq filename)
  (let* ((os (<a class=quiet href="#make-oscil">make-oscil</a> fmfreq))
         (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start-time))
         (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> duration)))
         (src-gen (<em class=red>make-src</em> :input (<a class=quiet href="#make-readin">make-readin</a> filename) :srate srt)))
     (do ((i beg (+ i 1)))
         ((= i end))
       (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>src</em> src-gen (* fmamp (<a class=quiet href="#oscil">oscil</a> os))))))))

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 2 1.0   1 .3 20 "fyow.snd"))   
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 25 10.0   .01 1 10 "fyow.snd"))
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 2 1.0   .9 .05 60 "oboe.snd")) 
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 2 1.0   1.0 .5 124 "oboe.snd"))
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 2 10.0   .01 .2 8 "oboe.snd"))
(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (srcer 0 2 1.0   1 3 20 "oboe.snd"))    
</pre>

<p>The "input" argument to make-src and the "input-function" argument
to src provide the generator with input as it is needed. 
The input function
is a function of one argument (the desired read direction, if the reader can support it), that is called each time src needs another
sample of input. Here's an example instrument that reads a file with an envelope on the src:
</p>

<pre class="indented">
(definstrument (src-change filename start-time duration file-start srcenv)
  (let* ((beg (seconds-&gt;samples start-time))
         (end (+ beg (seconds-&gt;samples duration)))
	 (loc (seconds-&gt;samples file-start))
         (src-gen (make-src :srate 0.0))
	 (e (make-env srcenv :duration duration))
	 (inp (make-file-&gt;sample filename)))
    (do ((i beg (+ i 1)))
        ((= i end))
      (outa i (src src-gen (env e) 
	        (<em class=red>lambda (dir)</em>  ; our input function
		  (set! loc (+ loc dir))
		  (ina loc inp)))))))

;;; (with-sound () (src-change "pistol.snd" 0 2 0 '(0 0.5 1 -1.5)))
</pre>

<p>
If you jump around in the input (via mus-location for example), use
<a href="#mus-reset">mus-reset</a> to clear out any lingering state before starting to read at
the new position. (src, like many other generators, has an internal buffer
of recently read samples, so a sudden jump to a new location will otherwise cause
a click).
</p>

<p>There are several other ways to resample a sound.  Some of the more interesting ones are in
dsp.scm (<a href="sndscm.html#downoct">down-oct</a>, <a href="sndscm.html#soundinterp">sound-interp</a>, 
<a href="sndscm.html#linearsrcchannel">linear-src</a>, etc).  To calculate a sound's new duration after
a time-varying src is applied, use <a href="sndscm.html#srcduration">src-duration</a>.  To scale an src
envelope so that the result has a given duration, use <a href="sndscm.html#srcfitenvelope">scr-fit-envelope</a>.
</p>





<!--  CONVOLVE  -->

<div class="innerheader" id="convolvedoc">convolve</div>

<pre class="indented">
<em class=def id="make-convolve">make-convolve</em> input filter fft-size filter-size
<em class=def id="convolve">convolve</em> gen
<em class=def id="convolve?">convolve?</em> gen

<em class=def id="convolvefiles">convolve-files</em> file1 file2 (maxamp 1.0) (output-file "tmp.snd")
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">convolve methods</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">fft size used in the convolution</td></tr>
</table>

<p>The convolve generator convolves its input with the impulse response "filter" (a float-vector).
"input" is a function of one argument that is
called whenever convolve needs input.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t :statistics #t)
  (let ((cnv (make-convolve 
              (make-readin "pistol.snd")
              (samples 0 (framples "pistol.snd") "oboe.snd"))))
    (do ((i 0 (+ i 1)))
	((= i 88200))
      (outa i (* 0.25 (convolve cnv))))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :statistics, true) do
  rd = make_readin("oboe.snd");
  flt = file2vct("pistol.snd"); # examp.rb
  cnv = make_convolve(lambda { |dir| readin(rd)}, flt);
  88200.times do |i|
    outa(i, 0.25 * convolve(cnv), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "pistol.snd" make-readin ( rd )
  "oboe.snd" file-&gt;vct ( v ) make-convolve { cnv }
  88200 0 do
    i  cnv #f convolve  0.25 f* *output* outa drop
  loop
; :play #t :statistics #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let* ((tempfile (convolve-files "oboe.snd" 
  		   		   "pistol.snd" 0.5 
				   "convolved.snd"))
	 (len (mus-sound-framples tempfile))
	 (reader (make-readin tempfile)))
    (do ((i 0 (+ i 1)))
	((= i len))
      (outa i (readin reader)))
    (delete-file tempfile)))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  tempfile = convolve_files("oboe.snd", 
  	                    "pistol.snd", 0.5, 
			    "convolved.snd");
  len = mus_sound_framples(tempfile);
  reader = make_readin(tempfile);
  len.times do |i|
    outa(i, readin(reader), $output);
    end
  File.unlink(tempfile)
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" "pistol.snd" 0.5 "convolved.snd" convolve-files { tempfile }
  tempfile make-readin { reader }
  tempfile mus-sound-framples ( len ) 0 do
    i  reader readin  *output* outa drop
  loop
  tempfile file-delete
; :play #t with-sound drop
</pre>
</div>
</td>

</tr>
</table>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (convins beg dur filter file (size 128))
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (ff (<em class=red>make-convolve</em> :input (<a class=quiet href="#make-readin">make-readin</a> file) :fft-size size :filter filter)))
     (do ((i start (+ i 1)))
         ((= i end))
       (<a class=quiet href="#outa">outa</a> i (<em class=red>convolve</em> ff)))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (convins 0 2 (float-vector 1.0 0.5 0.25 0.125) "oboe.snd")) ; same as fir-filter with those coeffs
</pre>

<p>convolve-files handles a very common special case: convolve
two files, then normalize the result to some maxamp.  The convolve generator does not
know in advance what its maxamp will be, and when the two files are more or less
the same size, there's no real computational savings from using overlap-add (i.e.
the generator), so a one-time giant FFT saved as a temporary sound file is much
handier.  If you're particular about the format of the convolved data:
</p>

<pre class="indented">
(define* (convolve-files-&gt;aifc file1 file2 (maxamp 1.0) (output-file "test.snd"))
  (let ((outname (string-append "temp-" output-file)))
    (<em class=red>convolve-files</em> file1 file2 maxamp outname)
    (with-sound (:header-type mus-aifc :sample-type mus-bfloat)
      (let ((len (seconds-&gt;samples (mus-sound-duration outname)))
	    (reader (make-readin outname)))
        (do ((i 0 (+ i 1)))
            ((= i len))
          (outa i (readin reader)))))
    (delete-file outname)
    output-file))
</pre>

<p>The convolve generator is the modern way to add reverb.  There are impulse responses of various concert
halls floating around the web.  convolve and <a href="#fir-filter">fir-filter</a> actually perform the same mathematical operation,
but convolve uses an FFT internally, rather than a laborious dot-product.
</p>




<!--  GRANULATE  -->

<!-- INDEX grains:Granular synthesis --><em class=def id="grains"></em>

<div class="innerheader" id="granulatedoc">granulate</div>

<pre class="indented">
<em class=def id="make-granulate">make-granulate</em>   
        input
        (expansion 1.0)   ; how much to lengthen or compress the file
        (length .15)      ; length of file slices that are overlapped
        (scaler .6)       ; amplitude scaler on slices (to avoid overflows)
        (hop .05)         ; speed at which slices are repeated in output
        (ramp .4)         ; amount of slice-time spent ramping up/down
        (jitter 1.0)      ; affects spacing of successive grains
        max-size          ; internal buffer size
        edit              ; grain editing function

<em class=def id="granulate">granulate</em> e
<em class=def id="granulate?">granulate?</em> e
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">granulate methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">time (seconds) between output grains (hop)</td></tr>
<tr><td class="inner"><em class=gen>mus-ramp</em></td><td class="inner">length (samples) of grain envelope ramp segment</td></tr>
<tr><td class="inner"><em class=gen>mus-hop</em></td><td class="inner">time (samples)  between output grains (hop)</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">grain amp (scaler)</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">expansion</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">grain length (samples)</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">grain samples (a float-vector)</td></tr>
<tr><td class="inner"><em class=gen>mus-location</em></td><td class="inner">granulate's local random number seed</td></tr>
</table>

<p>The granulate generator "granulates" its input (normally a sound file).  It is the poor man's way
to change the speed at which things happen in a recorded sound without
changing the pitches.  It works by slicing the input file into short
pieces, then overlapping these slices to lengthen (or shorten) the
result; this process is sometimes known as granular synthesis, and is
similar to the freeze function.  
</p>

<pre class="indented">
result = overlap add many tiny slices from input
</pre>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((grn (make-granulate (make-readin "oboe.snd") 2.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (granulate grn)))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  rd = make_readin("oboe.snd");
  grn = make_granulate(lambda do |dir| readin(rd) end, 2.0);
  88200.times do |i|
    outa(i, granulate(grn), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-readin 2.0 make-granulate { grn }
  44100 0 do
    i  grn #f #f granulate  *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let* ((osc (make-oscil 440.0))
	 (sweep (make-env '(0 0 1 1) 
			  :scaler (hz-&gt;radians 440.0) 
			  :length 44100))
	 (grn (make-granulate (lambda (dir)
				(* 0.2 (oscil osc (env sweep))))
			      :expansion 2.0
			      :length .5)))
    (do ((i 0 (+ i 1)))
	((= i 88200))
      (outa i (granulate grn)))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  osc = make_oscil(440.0);
  sweep = make_env([0.0, 0.0, 1.0, 1.0],
                   :scaler, hz2radians(440.0),
		   :length, 44100);
  grn = make_granulate(lambda { |dir| 0.2 * oscil(osc, env(sweep))},
	               :expansion, 2.0,
	               :length, 0.5);
  88200.times do |i|
    outa(i, granulate(grn), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
: make-granulate-proc { osc sweep -- prc; dir self -- val }
  1 proc-create osc , sweep , ( prc )
 does> { dir self -- val }
  self @ ( osc )  self cell+ @ ( sweep ) env  0 oscil  0.2 f*
;

lambda: ( -- )
  440.0 make-oscil { osc }
  '( 0 0 1 1 ) :scaler 440.0 hz-&gt;radians :length 44100 make-env { sweep }
  osc sweep make-granulate-proc :expansion 2.0 :length 0.5 make-granulate { grn }
  88200 0 do
    i  grn #f #f granulate  *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>The duration of each slice is
"length" &mdash; the longer the slice, the more the effect resembles reverb.  The
portion of the length (on a scale from 0 to 1.0) spent on each
ramp (up or down) is set by the "ramp" argument.  It can control the smoothness of
the result of the overlaps. 
</p>

<p>The "jitter" argument sets
the accuracy with which granulate hops.  If you set it to 0 (no randomness), you can get very strong
comb filter effects, or tremolo.
The more-or-less average time between
successive segments is "hop".  
If jitter is 0.0, and hop is very small (say .01),
you're asking for trouble (a big comb filter).
If you're granulating more than one channel at a time, and want the channels to remain
in-sync, make each granulator use the same initial random number seed (via mus-location).
</p>

<p>The overall amplitude scaler on each segment is set by the
"scaler" argument; this is used to try to avoid overflows as we add
all these zillions of segments together.  "expansion"
determines the input hop in relation to the output hop; an
expansion-amount of 2.0 should more or less double the length of the
original, whereas an expansion-amount of 1.0 should return something
close to the original tempo.
"input" and "input-function" are the same as in src and convolve (functions of
one argument that return a new input sample whenever they are called by granulate).
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (granulate-sound file beg dur (orig-beg 0.0) (exp-amt 1.0))
  (let* ((f-srate (srate file))
         (f (<a class=quiet href="#make-readin">make-readin</a> file :start (round (* f-srate orig-beg))))
	 (st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
	 (new-dur (or dur (- (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> file) orig-beg)))
	 (exA (<em class=red>make-granulate</em> :input f :expansion exp-amt))
	 (nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> new-dur))))
    (do ((i st (+ i 1)))
        ((= i nd))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>granulate</em> exA)))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (granulate-sound "now.snd" 0 3.0 0 2.0))
</pre>

<p>See <a href="sndscm.html#expsrc">clm-expsrc</a> in clm-ins.scm.  Here's an instrument that uses the input-function
argument to granulate.  It cause the granulation to run backwards through the file:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (grev beg dur exp-amt file file-beg)
  (let ((exA (<em class=red>make-granulate</em> :expansion exp-amt))
	(fil (<a class=quiet href="#make-filetosample">make-file-&gt;sample</a> file))
	(ctr file-beg))
    (do ((i beg (+ i 1)))
        ((= i (+ beg dur)))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>granulate</em> exA
                (lambda (dir)
	          (let ((inval (<a class=quiet href="#filetosample">file-&gt;sample</a> fil ctr 0)))
	            (if (&gt; ctr 0) (set! ctr (- ctr 1)))
	            inval)))))))

(<a class=quiet href="sndscm.html#withsound">with-sound</a> () (grev 0 100000 2.0 "pistol.snd" 40000))
</pre>

<p>But it's unnecessary to write clever input functions.  It is just as fast, and much more perspicuous,
to use sound-let in cases like this.  Here's an example that takes any set of notes and calls granulate
on the result:
</p>

<pre class="indented">
(define-macro (gran-any beg dur expansion . body)
  `(<em class=red>sound-let</em> ((tmp () ,@body))
     (let* ((start (floor (* *clm-srate* ,beg)))
	    (end (+ start (* *clm-srate* ,dur)))
	    (rd (make-readin tmp))
	    (gran (<em class=red>make-granulate</em> :input rd :expansion ,expansion)))
       (do ((i start (+ i 1)))
	   ((= i end))
	 (outa i (granulate gran))))))

(with-sound () 
  (gran-any 0 2.5 4 
    (fm-violin 0 .1 440 .1) 
    (fm-violin .2 .1 660 .1) 
    (fm-violin .4 .1 880 .1)))
</pre>

<p>Any of the input-oriented generators (src, etc) can use this trick.
</p>

<p>
The "edit" argument can
be a function of one argument, the current granulate generator.  It is called just before
a grain is added into the output buffer. The current grain is accessible via mus-data.
The edit function, if any, should return the length in samples of the grain, or 0.
In the following example, we use the edit function to reverse every other grain:
</p>

<pre class="indented">
(let ((forward #t))
  (let ((grn (<em class=red>make-granulate</em> :expansion 2.0
                             :edit (lambda (g)
                                     (let ((grain (<a class=quiet href="#mus-data">mus-data</a> g))  ; current grain
                                           (len (<a class=quiet href="#mus-length">mus-length</a> g))) ; current grain length
                                       (if forward ; no change to data
                                           (set! forward #f)
                                           (begin
                                             (set! forward #t)
                                             (reverse! grain)))
                                       len))))
        (rd (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0)))
    (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (<em class=red>granulate</em> grn (lambda (dir) (rd)))))))
</pre>




<!--  PHASE-VOCODER  -->

<div class="innerheader" id="phase-vocoderdoc">phase-vocoder</div>

<pre class="indented">
<em class=def id="make-phase-vocoder">make-phase-vocoder</em> input (fft-size 512) (overlap 4) (interp 128) (pitch 1.0) analyze edit synthesize
<em class=def id="phase-vocoder">phase-vocoder</em> pv
<em class=def id="phase-vocoder?">phase-vocoder?</em> pv
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">phase-vocoder methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">pitch shift</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">fft-size</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">interp</td></tr>
<tr><td class="inner"><em class=gen>mus-hop</em></td><td class="inner">fft-size / overlap</td></tr>
<tr><td class="inner"><em class=gen>mus-location</em></td><td class="inner">outctr (counter to next fft)</td></tr>
</table>

<p>The phase-vocoder generator performs phase-vocoder analysis and resynthesis.  The process is
split into three pieces, the analysis stage, editing of the amplitudes and phases, then the resynthesis.
Each stage has a default that is invoked if the "analyze", "edit", or "synthesize"
arguments are omitted from make-phase-vocoder or the phase-vocoder generator.  The edit and synthesize arguments are functions of one argument, the
phase-vocoder generator.  The analyze argument is a function of two arguments, the generator and
the input function. The default is to read the current input,
take an fft, get the new amplitudes and phases (as the edit
function default), then resynthesize using sines; so, the
default case returns a resynthesis of the original input.  The "interp" argument sets the time between
ffts (for time stretching, etc). 
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t) ; new pitch = 2 * old
  (let ((pv (make-phase-vocoder 
             (make-readin "oboe.snd") :pitch 2.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (phase-vocoder pv)))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  rd = make_readin("oboe.snd");
  pv = make_phase_vocoder(
         lambda do |dir| 
           readin(rd) end, :pitch, 2.0);
  88200.times do |i|
    outa(i, phase_vocoder(pv), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-readin :pitch 2.0 make-phase-vocoder { pv }
  44100 0 do
    i  pv #f #f #f #f phase-vocoder  *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t :srate 22050) ; new dur = 2 * old
  (let ((pv (make-phase-vocoder 
	     (make-readin "oboe.snd")
	     :interp 256)) ; 2 * 512 / 4
        ;; 512: fft size, 4: overlap, new dur: 2 * old dur
	(samps (* 2 (mus-sound-framples "oboe.snd"))))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (outa i (phase-vocoder pv)))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :srate, 22050) do
  rd = make_readin("oboe.snd");
  pv = make_phase_vocoder(
	lambda do |dir| readin(rd) end,
        :interp, 2 * 512 / 4);
  samps = 2 * mus_sound_framples("oboe.snd");
  samps.times do |i|
    outa(i, phase_vocoder(pv), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-readin :interp 256 make-phase-vocoder { pv }
  "oboe.snd" mus-sound-framples 2* ( samps ) 0 do
    i  pv #f #f #f #f phase-vocoder  *output* outa drop
  loop
; :play #t :srate 22050 with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>There are several functions giving access to the phase-vocoder data:
</p>

<pre class="indented">
<em class=emdef>phase-vocoder-amps</em> gen
<em class=emdef>phase-vocoder-freqs</em> gen
<em class=emdef>phase-vocoder-phases</em> gen
<em class=emdef>phase-vocoder-amp-increments</em> gen
<em class=emdef>phase-vocoder-phase-increments</em> gen
</pre>

<p>These are arrays (float-vectors) containing the spectral data the phase-vocoder uses to
reconstruct the sound.
In the next example we use all these special functions to resynthesize down an octave:
</p>

<pre class="indented">
(with-sound (:srate 22050 :statistics #t)
  (let ((pv (<em class=red>make-phase-vocoder</em>
	     (make-readin "oboe.snd")
	     512 4 128 1.0
	     #f ; no change to analysis method
	     #f ; no change to spectrum
	     (lambda (gen) ; resynthesis function
	       (float-vector-add! (phase-vocoder-amps gen) (phase-vocoder-amp-increments gen))
	       (float-vector-add! (phase-vocoder-phase-increments gen) (phase-vocoder-freqs gen))
	       (float-vector-add! (phase-vocoder-phases gen) (phase-vocoder-phase-increments gen))
	       (let ((sum 0.0)
		     (n (length (phase-vocoder-amps gen))))
		 (do ((k 0 (+ k 1)))
		     ((= k n))
		   (set! sum (+ sum (* (float-vector-ref (phase-vocoder-amps gen) k)
				       (sin (* 0.5 (float-vector-ref (phase-vocoder-phases gen) k)))))))
		 sum)))))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (<em class=red>phase-vocoder</em> pv)))))
</pre>

<p>but, sadly, this code crawls.  It won't actually be useful until I optimize
handling of the caller's resynthesis function, but I am dragging my feet because I've never felt
that this phase-vocoder (as a generator) was the "right thing".  The first step toward something less stupid is
moving-spectrum in generators.scm.
</p>




<!--  ASYMMETRIC-FM  -->

<div class="innerheader" id="asymmetric-fmdoc">asymmetric-fm</div>

<pre class="indented">
<em class=def id="make-asymmetric-fm">make-asymmetric-fm</em> 
      (frequency 0.0) 
      (initial-phase 0.0) 
      (r 1.0)             ; amplitude ratio between successive sidebands
      (ratio 1.0)         ; ratio between carrier and sideband spacing
<em class=def id="asymmetric-fm">asymmetric-fm</em> af index (fm 0.0)
<em class=def id="asymmetric-fm?">asymmetric-fm?</em> af
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">asymmetric-fm methods</td></tr>
<tr><td class="inner"><em class=gen>mus-frequency</em></td><td class="inner">frequency in Hz</td></tr>
<tr><td class="inner"><em class=gen>mus-phase</em></td><td class="inner">phase in radians</td></tr>
<tr><td class="inner"><em class=gen>mus-scaler</em></td><td class="inner">"r" parameter; sideband scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-offset</em></td><td class="inner">"ratio" parameter</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">frequency in radians per sample</td></tr>
</table>

<p>The asymmetric-fm generator provides a way around the symmetric spectra normally produced by FM.
See  Palamin and Palamin, "A Method of Generating and Controlling Asymmetrical
Spectra" JAES vol 36, no 9, Sept 88, p671-685.  P&amp;P use sin(sin), but I'm using cos(sin) so
that we get a sum of cosines, and can therefore easily normalize the peak amplitude to -1.0..1.0.
asymmetric-fm is based on:
</p>

<!-- LATEX: 
original:
e^{(\frac{B}{2}(r-\frac{1}{r})\cos \omega_{m}t)}\sin(\omega_{c}t+\frac{B}{2}(r+\frac{1}{r})\sin \omega_{m}t)=\sum_{n=-\infty}^{\infty} r^{n}J_{n}(B)\sin(\omega_{c}t+n\omega_{m}t)
my version (for predicatable peak amp):
e^{(\frac{B}{2}(r-\frac{1}{r})\cos \omega_{m}t)}\cos(\omega_{c}t+\frac{B}{2}(r+\frac{1}{r})\sin \omega_{m}t)=\sum_{n=-\infty}^{\infty} r^{n}J_{n}(B)\cos(\omega_{c}t+n\omega_{m}t)

original:
e^{(\frac{B}{2}(r+\frac{1}{r})\cos \omega_{m}t)}\sin(\omega_{c}t+\frac{B}{2}(r-\frac{1}{r})\sin \omega_{m}t)=\sum_{n=-\infty}^{\infty} r^{n}I_{n}(B)\sin(\omega_{c}t+n\omega_{m}t)
my version:
e^{(\frac{B}{2}(r+\frac{1}{r})\cos \omega_{m}t)}\cos(\omega_{c}t+\frac{B}{2}(r-\frac{1}{r})\sin \omega_{m}t)=\sum_{n=-\infty}^{\infty} r^{n}I_{n}(B)\cos(\omega_{c}t+n\omega_{m}t)

here's the complicated case:
e^{\big( \big(\frac{B}{2}\big(r+\frac{1}{r}\big)\cos \omega_{m}t\big) - \frac{1}{2} \ln \big(I_{0}\big(B\big(r+\frac{1}{r}\big)\big)\big) \big)} \sin\big(\omega_{c}t+\frac{B}{2}\big(r-\frac{1}{r}\big)\sin \omega_{m}t\big)=\frac{1}{\sqrt{I_{0}(B(r+\frac{1}{r}))}} \sum r^{n}I_{n}(B)\sin(\omega_{c}t+n\omega_{m}t)
 -->

<img class="indented" src="pix/sceq10.png" alt="e sin"><br>
<img class="indented" src="pix/sceq22.png" alt="I form">


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((fm (make-asymmetric-fm 440.0 0.0 0.9 0.5)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (asymmetric-fm fm 1.0))))))
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  fm = make_asymmetric_fm(440.0, 0.0, 0.9, 0.5);
  44100.times do |i|
    outa(i, 0.5 * asymmetric_fm(fm, 1.0), $output);
    end
  end.output
</pre>
</div>
</td>
</tr>
<tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 0.0 0.9 0.5 make-asymmetric-fm { fm }
  44100 0 do
    i  fm 1.0 0 asymmetric-fm  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>"r" is the ratio between successive 
sideband amplitudes, r &lt; 0.0 or r &gt; 1.0 pushes energy above the carrier, whereas r between 0.0 and 1.0 pushes it below. (r = 1.0
gives normal FM).  The mirror image of r (around a given
carrier) is produced by -1/r.
"ratio" is the ratio between the carrier and modulator (i.e. sideband spacing). It's somewhat inconsistent
that asymmetric-fm takes "index" (the fm-index) as its second argument, but otherwise it
would be tricky to get time-varying indices.  In this instrument we sweep "r" with an envelope:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (asy beg dur freq amp index (ratio 1.0))
  (let* ((st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (r-env (<a class=quiet href="#make-env">make-env</a> '(0 -1 1 -20) :duration dur))
         (asyf (<em class=red>make-asymmetric-fm</em> :ratio ratio :frequency freq)))
    (do ((i st (+ i 1))) 
        ((= i nd))
      (set! (<a class=quiet href="#mus-scaler">mus-scaler</a> asyf) (<a class=quiet href="#env">env</a> r-env)) ; this sets "r"
      (<a class=quiet href="#outa">outa</a> i (* amp (<em class=red>asymmetric-fm</em> asyf index))))))
</pre>

<p>For the other kind of asymmetric-fm see generators.scm, and for asymmetric spectra via "single sideband FM" see generators.scm.
</p>



<table class="method">		    
<tr><td class="inner"><em class=def id="frampletoframple">frample-&gt;frample</em><code> mf inf outf</code></td><td>pass frample through a matrix multiply, return outf</td></tr>
</table>





<!--  FILE->SAMPLE  -->

<div class="innerheader" id="filetosampledoc">sound IO</div>

<p>Sound file IO is based on a set of file readers and writers that deal either in samples or float-vectors.
The six functions are file-&gt;sample, sample-&gt;file, file-&gt;frample, frample-&gt;file, array-&gt;file, and file-&gt;array.
The name "array" is used here, rather than "float-vector" for historical reasons (the CL version of CLM predates
Snd by many years).
These functions are then packaged up in more convenient forms as in-any, out-any, locsig, readin, etc.
Within with-sound, the variable *output* is bound to the with-sound output file via a sample-&gt;file
object.
</p>


<pre class="indented">
<em class=def id="make-filetosample">make-file-&gt;sample</em> name (buffer-size 8192)
<em class=def id="make-sampletofile">make-sample-&gt;file</em> name (chans 1) (format mus-lfloat) (type mus-next) comment
<em class=def id="filetosample?">file-&gt;sample?</em> obj
<em class=def id="sampletofile?">sample-&gt;file?</em> obj
<em class=def id="filetosample">file-&gt;sample</em> obj samp chan
<em class=def id="sampletofile">sample-&gt;file</em> obj samp chan val
<em class=def id="continue-sampletofile">continue-sample-&gt;file</em> file

<em class=def id="make-filetoframple">make-file-&gt;frample</em> name (buffer-size 8192)
<em class=def id="make-frampletofile">make-frample-&gt;file</em> name (chans 1) (format mus-lfloat) (type mus-next) comment
<em class=def id="frampletofile?">frample-&gt;file?</em> obj
<em class=def id="filetoframple?">file-&gt;frample?</em> obj
<em class=def id="filetoframple">file-&gt;frample</em> obj samp outf
<em class=def id="frampletofile">frample-&gt;file</em> obj samp val
<em class=def id="continue-frampletofile">continue-frample-&gt;file</em> file

<em class=def id="filetoarray">file-&gt;array</em> file channel beg dur array
<em class=def id="arraytofile">array-&gt;file</em> file data len srate channels

<em class=def id="mus-input?">mus-input?</em> obj
<em class=def id="mus-output?">mus-output?</em> obj
<em class=def id="mus-close">mus-close</em> obj
<em class=def id="*output*">*output*</em>
<em class=def id="*reverb*">*reverb*</em>
<em class=def id="musfilebuffersize">mus-file-buffer-size</em> (also known as *clm-file-buffer-size*)
</pre>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:channels 2)
  ;; swap channels of stereo file
  (let ((input (make-file-&gt;frample "stereo.snd"))
	(len (mus-sound-framples "stereo.snd"))
	(frample (make-float-vector 2)))
    (do ((i 0 (+ i 1)))
	((= i len))
      (file-&gt;frample input i frample)
      (let ((val (frample 0)))
	(set! (frample 0) (frample 1))
	(set! (frample 1) val))
      (frample-&gt;file *output* i frample))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:channels, 2) do
  input = make_file2frample("stereo.snd");
  len = mus_sound_framples("stereo.snd");
  frample = make_frample(2);
  len.times do |i|
    file2frample(input, i, frample);
    val = frample_ref(frample, 0);
    frample_set!(frample, 0, frample_ref(frample, 1));
    frample_set!(frample, 1, val);
    frample2file($output, i, frample);
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "stereo.snd" make-file-&gt;frample { input }
  2 make-frample { frm }
  "stereo.snd" mus-sound-framples ( len ) 0 do
    input i frm file-&gt;frample ( frm ) 1 frample-ref ( val1 )
    frm 0 frample-ref ( val0 ) frm 1 rot frample-set! drop
    ( val1 ) frm 0 rot frample-set! drop
    *output* i frm frample-&gt;file drop
  loop
; :channels 2 :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>file-&gt;sample writes a sample to a file, frample-&gt;file writes a frample, file-&gt;sample reads a sample
from a file, and file-&gt;frample reads a frample.
continue-frample-&gt;file and continue-sample-&gt;file reopen an existing file to continue adding sound data to it.
mus-output? returns #t is its argument is some sort of file writing generator, and mus-input? returns #t if its 
argument is a file reader.  
In make-file-&gt;sample and make-file-&gt;frample, the buffer-size defaults to *clm-file-buffer-size*.
There are many examples of these functions in snd-test.scm, and clm-ins.scm.
Here is one that uses file-&gt;sample to mix in a sound file (there are a zillion other ways to do this):
</p>

<pre class="indented">
(define (simple-f2s beg dur amp file)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (fil (<em class=red>make-file-&gt;sample</em> file)))
    (do ((ctr 0) 
         (i start (+ i 1))) ((= i end))
      (<a class=quiet href="#out-any">out-any</a> i (* amp (<em class=red>file-&gt;sample</em> fil ctr 0)) 0)
      (set! ctr (+ 1 ctr)))))
</pre>

<p>mus-close flushes any pending output and closes the output stream 'obj'.
This is normally done for you by with-sound, but if you have your own
output streams,
and you forget to call mus-close, the GC will eventually do it for you.
</p>





<!--  READIN  -->

<div class="innerheader" id="readindoc">readin</div>

<pre class="indented">
 <em class=def id="make-readin">make-readin</em> file (channel 0) (start 0) (direction 1) size
 <em class=def id="readin">readin</em> rd
 <em class=def id="readin?">readin?</em> rd
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">readin methods</td></tr>
<tr><td class="inner"><em class=gen>mus-channel</em></td><td class="inner">channel arg to make-readin (no set!)</td></tr>
<tr><td class="inner"><em class=gen>mus-location</em></td><td class="inner">current location in file</td></tr>
<tr><td class="inner"><em class=gen>mus-increment</em></td><td class="inner">sample increment (direction arg to make-readin)</td></tr>
<tr><td class="inner"><em class=gen>mus-file-name</em></td><td class="inner">name of file associated with gen</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">number of framples in file associated with gen</td></tr>
</table>

<p>readin returns successive samples from a file; it is an elaboration of file-&gt;sample that keeps track of the
current read location and channel number for you.
Its "file" argument is the input file's name.
"start" is the frample at which to start reading the input file. 
"channel" is which channel to read (0-based).
"size" is the read buffer size in samples.  It defaults to *clm-file-buffer-size*.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((reader (make-readin "oboe.snd")))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 2.0 (readin reader))))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  reader = make_readin("oboe.snd");
  44100.times do |i|
   outa(i, 2.0 * readin(reader), 
        $output);
   end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-readin { reader }
  44100 0 do
    i  reader readin  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<p>Here is an instrument that applies an envelope to a sound file using
readin and <a href="#env">env</a>:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (env-sound file beg (amp 1.0) (amp-env '(0 1 100 1)))
  (let* ((st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (dur (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> file))
         (rev-amount .01)
         (rdA (<em class=red>make-readin</em> file))
         (ampf (<a class=quiet href="#make-env">make-env</a> amp-env amp dur))
         (nd (+ st (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
     (do ((i st (+ i 1)))
         ((= i nd))
       (let ((outval (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>readin</em> rdA))))
           (<a class=quiet href="#outa">outa</a> i outval)
         (if <a class=quiet>*reverb*</a> 
           (<a class=quiet href="#outa">outa</a> i (* outval rev-amount) <a class=quiet>*reverb*</a>))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (env-sound "oboe.snd" 0 1.0 '(0 0 1 1 2 1 3 0)))
</pre>




<!--  IN-ANY, OUT-ANY  -->

<div class="innerheader" id="in-anydoc">in-any, out-any</div>

<pre class="indented">
<em class=def id="out-any">out-any</em> loc data channel (output *output*)
<em class=def id="outa">outa</em> loc data (output *output*)
<em class=emdef>outb</em> loc data (output *output*)
<em class=emdef>outc</em> loc data (output *output*)
<em class=emdef>outd</em> loc data (output *output*)
<em class=def id="outbank">out-bank</em> gens loc input

<em class=def id="in-any">in-any</em> loc channel input
<em class=def id="ina">ina</em> loc input
<em class=def id="inb">inb</em> loc input
</pre>

<p>These are the "generic" input and output functions.
out-any adds its "data" argument (a sound sample) into the "output" object at sample
position "loc".  
The "output" argument can be a vector as well as the more usual frample-&gt;file object.
or any output-capable CLM generator.
In with-sound, the current output is *output* and the reverb output is *reverb*.
outa is the same as out-any with a channel of 0.  It is not an error to try to write to a channel that doesn't exist;
the function just returns.
</p>

<p>in-any returns the sample at position "loc" in
"input".  ina is the same as in-any with a channel of 0.
As in out-any and friends, the "input" argument can be a file-&gt;frample object, or a vector.
</p>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((infile (make-file-&gt;sample "oboe.snd")))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (out-any i (in-any i 0 infile) 0))))
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  infile = make_file2sample("oboe.snd");
  44100.times do |i|
    out_any(i, in_any(i, 0, infile), 0, $output);
    end
  end.output
</pre>
</div>
</td>
</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  "oboe.snd" make-file-&gt;sample { infile }
  44100 0 do
    i  i 0 infile in-any  0 *output* out-any drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>
</tr>
</table>


<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (simple-ina beg dur amp file)
  (let* ((start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (fil (<em class=red>make-file-&gt;sample</em> file)))
     (do ((i start (+ i 1)))
         ((= i end))
       (<a class=quiet href="#outa">outa</a> i 
         (* amp (<em class=red>in-any</em> i 0 fil)))))) ; same as (<em class=red>ina</em> i fil)

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () (simple-ina 0 1 .5 "oboe.snd"))
</pre>

<p>To write from <a href="sndscm.html#wsdoc">with-sound</a> to a vector, rather than a file,
use its :output argument:
</p>

<pre class="indented">
(with-sound (<em class=red>:output</em> (make-float-vector 44100)) ; this sets *output*, the default output location
   (<a class=quiet href="sndscm.html#vdoc">fm-violin</a> 0 1 440 .1))
</pre>


<p>If *output* is a function, it should take 3 arguments, the sample number, current output value, and channel.
</p>

<pre class="indented">
(let ((avg 0.0)
      (samps 0))
  (with-sound (<em class=red>:output</em> (lambda (frample val chan) ; get the average of all the samples
                         (set! avg (+ avg val))
                         (set! samps (+ 1 samps))
                	 val))
    (do ((i 0 (+ i 1)))
	((&gt; i 10))
      (<em class=red>outa</em> i (* i .1))))
  (/ avg samps))

;; returns 0.5
</pre>

<p>Similarly, if in-any's "input" argument is a function, it takes the input location (sample number), and channel (0-based).
</p>

<pre class="indented">
(let ((input (<a class=quiet href="#make-readin">make-readin</a> "oboe.snd" :start 1000)))
  (with-sound ((make-float-vector 10))
    (do ((i 0 (+ i 1)))
	((= i 10))
      (<em class=red>outa</em> i (<em class=red>ina</em> i (lambda (loc chn)
		       (<a class=quiet href="#readin">readin</a> input)))))))
</pre>

<pre class="indented">
(let ((outv (make-float-vector 10)))
  (with-sound ()
     (do ((i 0 (+ i 1)))
         ((= i 10))
      (outa i (* i .1) (lambda (loc val chan)
	 	         (set! (outv loc) val)))))
  outv) ; this is equivalent to using :output (make-float-vector 10) as a with-sound argument
</pre>





<!--  LOCSIG  -->

<!-- INDEX make-locsig:Sound placement -->
<div class="innerheader" id="locsigdoc">locsig</div>

<pre class="indented">
 <em class=def id="make-locsig">make-locsig</em> 
        (degree 0.0)
        (distance 1.0) 
	(reverb 0.0)       ; reverb amount
        (output *output*)  ; output generator or location
	(revout *reverb*)  ; reverb output generator or location
        (channels (channels output))
	(type mus-interp-linear)
 <em class=def id="locsig">locsig</em> loc i in-sig
 <em class=def id="locsig?">locsig?</em> loc

 <em class=def id="locsig-ref">locsig-ref</em> loc chan
 <em class=def id="locsig-set!">locsig-set!</em> loc chan val
 <em class=def id="locsig-reverb-ref">locsig-reverb-ref</em> loc chan
 <em class=def id="locsig-reverb-set!">locsig-reverb-set!</em> loc chan val

 <em class=def id="move-locsig">move-locsig</em> loc degree distance
 <em class=def id="locsig-type">locsig-type</em> ()
</pre>

<table class="method">
<tr><td colspan=2 class="methodtitle">locsig methods</td></tr>
<tr><td class="inner"><em class=gen>mus-data</em></td><td class="inner">output scalers (a float-vector)</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeff</em></td><td class="inner">reverb scaler</td></tr>
<tr><td class="inner"><em class=gen>mus-xcoeffs</em></td><td class="inner">reverb scalers (a float-vector)</td></tr>
<tr><td class="inner"><em class=gen>mus-channels</em></td><td class="inner">output channels</td></tr>
<tr><td class="inner"><em class=gen>mus-length</em></td><td class="inner">output channels</td></tr>
</table>

<p>locsig places a sound in 
an N-channel circle of speakers
by scaling the respective channel amplitudes
("that old trick <em>never</em> works"). It normally replaces <a href="#outa">out-any</a>.
"reverb" determines how much of
the direct signal gets sent to the reverberator.  "distance" tries to
imitate a distance cue by fooling with the relative amounts of direct and
reverberated signal (independent of the "reverb" argument).  The distance should
be greater than or equal to 1.0.  
"type" (returned by the function locsig-type) can be <code>mus-interp-linear</code> (the default) or <code>mus-interp-sinusoidal</code>.
The mus-interp-sinusoidal
case uses sin and cos to set the respective channel amplitudes (this is reported to
help with the "hole-in-the-middle" problem).
The "output" argument can be a vector as well as a frample-&gt;file generator.
</p>


<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t :channels 2)
  (let ((loc (make-locsig 60.0))
	(osc (make-oscil 440.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (locsig loc i 
              (* 0.5 (oscil osc))))))
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true, :channels, 2) do
  loc = make_locsig(60.0, :output, $output);
  osc = make_oscil(440.0);
  44100.times do |i|
    locsig(loc, i, 0.5 * oscil(osc));
    end
  end.output
</pre>
</div>
</td>
</tr><tr>
<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  60.0 make-locsig { loc }
  440.0 make-oscil { osc }
  44100 0 do
    loc i  osc 0 0 oscil f2/  locsig drop
  loop
; :play #t :channels 2 with-sound drop
</pre>
</div>
</td>
</tr>
</table>

<p>Locsig can send output to any number of channels.
If channels &gt; 2, the speakers are assumed to be evenly spaced in
a circle.
You can use locsig-set! to override the placement decisions.
To have full output to both channels,</p>

<pre class="indented">
(locsig-set! loc 0 1.0) 
(locsig-set! loc 1 1.0)
</pre>

<p>Here is an instrument that has envelopes on the distance and degrees, and optionally reverberates a file:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (space file onset duration (distance-env '(0 1 100 10)) (amplitude-env '(0 1 100 1))
		     (degree-env '(0 45 50 0 100 90)) (reverb-amount .05))
  (let* ((beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> onset))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> duration)))
         (loc (<em class=red>make-locsig</em> :degree 0 :distance 1 :reverb reverb-amount))
         (rdA (<a class=quiet href="#make-readin">make-readin</a> :file file))
         (dist-env (<a class=quiet href="#make-env">make-env</a> distance-env :duration duration))
         (amp-env (<a class=quiet href="#make-env">make-env</a> amplitude-env :duration duration))
         (deg-env (<a class=quiet href="#make-env">make-env</a> degree-env :scaler (/ 1.0 90.0) :duration duration))
         (dist-scaler 0.0))
    (do ((i beg (+ i 1)))
        ((= i end))
      (let ((rdval (* (<a class=quiet href="#readin">readin</a> rdA) (<a class=quiet href="#env">env</a> amp-env)))
            (degval (<a class=quiet href="#env">env</a> deg-env)))
        (set! dist-scaler (/ (<a class=quiet href="#env">env</a> dist-env)))
        (locsig-set! loc 0 (* (- 1.0 degval) dist-scaler))
        (if (&gt; (channels <a class=quiet>*output*</a>) 1)
            (locsig-set! loc 1 (* degval dist-scaler)))
        (if <a class=quiet>*reverb*</a> 
            (locsig-reverb-set! loc 0 (* reverb-amount (sqrt dist-scaler))))
        (<em class=red>locsig</em> loc i rdval)))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:reverb jc-reverb :channels 2) 
  (space "pistol.snd" 0 3 :distance-env '(0 1 1 2) :degree-env '(0 0 1 90)))
</pre>

<p>For a moving sound
source, see either move-locsig, Fernando Lopez Lezcano's <a class=def href="http://ccrma.stanford.edu/~nando/clm/dlocsig/index.html">dlocsig</a>,
or <a href="#flocsig">flocsig</a> (flanged locsig) in generators.scm.
Here is an example of move-locsig:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 4)
  (let ((loc (<em class=red>make-locsig</em>))
	(osc (<a class=quiet href="#make-oscil">make-oscil</a> 440.0))
	(j 0))
    (do ((i 0 (+ i 1)))
        ((= i 360))
      (do ((k 0 (+ k 1)))
          ((= k 1000))
        (let ((sig (* .5 (<a class=quiet href="#oscil">oscil</a> osc))))
          (<em class=red>locsig</em> loc j sig)
          (set! j (+ j 1))))
      (<em class=red>move-locsig</em> loc (* 1.0 i) 1.0))))
</pre>

<table>
<tr>
<td><img class="indented" src="pix/circle.png" alt="move-locsig example"></td>
<td><img class="indented" src="pix/locsine.png" alt="move-locsig example"></td>
</tr><tr>
<td class="center">linear interp</td>
<td class="center">sinusoidal interp</td>
</tr></table>

<p>The interaction of outa, locsig, and *reverb* seems to be causing confusion, so here are some
simple examples:
</p>

<pre class="indented">
(load "nrev.scm")

(define (simp start end freq amp)
  (let ((os (make-oscil freq)))
    (do ((i start (+ i 1))) 
        ((= i end))
      (let ((output (* amp (oscil os))))
	(outa i output)
	(if *reverb* (outa i (* output .1) *reverb*))))))

; (with-sound () (simp 0 44100 440 .1))            ; no reverb
; (with-sound (:reverb nrev) (simp 0 44100 440 .1)); reverb


(define (locsimp start end freq amp)
  (let ((os (make-oscil freq))
	(loc (make-locsig :reverb .1)))
    (do ((i start (+ i 1))) 
        ((= i end))
      (locsig loc i (* amp (oscil os))))))

; (with-sound () (locsimp 0 44100 440 .1))            ; no reverb
; (with-sound (:reverb nrev) (locsimp 0 44100 440 .1)); reverb
</pre>




<!--  MOVE-SOUND  -->

<div class="innerheader" id="move-sounddoc">move-sound</div>

<pre class="indented">
<em class=def id="make-move-sound">make-move-sound</em> dlocs-list (output *output*) (revout *reverb*)
<em class=def id="move-sound">move-sound</em> dloc i in-sig
<em class=def id="move-sound?">move-sound?</em> dloc
</pre>

<p>move-sound is intended as the run-time portion of <a href="sndscm.html#dlocsigdoc">dlocsig</a>.  make-dlocsig
creates a move-sound structure, passing it to the move-sound generator inside the
dlocsig macro.  All the necessary data is packaged up in a list:
</p>

<pre class="indented">
(list
  (start 0)               ; absolute sample number at which samples first reach the listener
  (end 0)                 ; absolute sample number of end of input samples
  (out-channels 0)        ; number of output channels in soundfile
  (rev-channels 0)        ; number of reverb channels in soundfile
  path                    ; interpolated delay line for doppler
  delay                   ; tap doppler env
  rev                     ; reverberation amount
  out-delays              ; delay lines for output channels that have additional delays
  gains                   ; gain envelopes, one for each output channel
  rev-gains               ; reverb gain envelopes, one for each reverb channel
  out-map)                ; mapping of speakers to output channels
</pre>
<p>Here's an instrument that uses this generator to pan a sound through four channels:
</p>

<pre class="indented">
(define (simple-dloc beg dur freq amp)
  (let* ((os (<a class=quiet href="#make-oscil">make-oscil</a> freq))
         (start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> beg))
         (end (+ start (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur)))
         (loc (<em class=red>make-move-sound</em> (list start end 4 0
                                              (<a class=quiet href="#make-delay">make-delay</a> 12) 
                                     (<a class=quiet href="#make-env">make-env</a> '(0 0 10 1) :length dur)
                                     #f
                                     (make-vector 4 #f)
                                     (vector (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 0 3 0 4 0) :duration dur)
                                             (<a class=quiet href="#make-env">make-env</a> '(0 0 1 0 2 1 3 0 4 0) :duration dur)
                                             (<a class=quiet href="#make-env">make-env</a> '(0 0 1 0 2 0 3 1 4 0) :duration dur)
                                             (<a class=quiet href="#make-env">make-env</a> '(0 0 1 0 2 0 3 0 4 1) :duration dur))
                                     #f
                                     (vector 0 1 2 3)))))
    (do ((i start (+ i 1)))
        ((= i end))
      (<em class=red>move-sound</em> loc i (* amp (<a class=quiet href="#oscil">oscil</a> os))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 4) (simple-dloc 0 2 440 .5))
</pre>



<div class="header" id="genericfunctions">Generic functions</div>

<!--  GENERIC FUNCTIONS  -->


<p>Besides the 30 or so built-in generators, there are around 100 others defined in generators.scm. If we
required separate functions for each generator for access to the generator internal state (current phase, for example),
we'd end up with hundreds, or even thousands of accessors.  Instead, 
all the generators respond to a set of "generic" functions.  mus-frequency, for example, tries to return (or set) a generator's
frequency, for any generator that has some sort of frequency field.
The generic functions are:
</p>

<table class="method">
<tr><td><em class=def id="mus-channel">mus-channel</em></td><td>channel being read/written</td></tr>
<tr><td><em class=def id="mus-channels">mus-channels</em></td><td>channels open</td></tr>
<tr><td><em class=def id="mus-copy">mus-copy</em></td><td>copy a generator</td></tr>
<tr><td><em class=def id="mus-data">mus-data</em></td><td>float-vector of data</td></tr>
<tr><td><em class=def id="mus-describe">mus-describe</em></td><td>description of current state</td></tr>
<tr><td><em class=def id="mus-feedback">mus-feedback</em></td><td>feedback coefficient</td></tr>
<tr><td><em class=def id="mus-feedforward">mus-feedforward</em></td><td>feedforward coefficient</td></tr>
<tr><td><em class=def id="mus-file-name">mus-file-name</em></td><td>file being read/written</td></tr>
<tr><td><em class=def id="mus-frequency">mus-frequency</em></td><td>frequency (Hz)</td></tr>
<tr><td><em class=def id="mus-hop">mus-hop</em></td><td>hop size for block processing</td></tr>
<tr><td><em class=def id="mus-increment">mus-increment</em></td><td>various increments</td></tr>
<tr><td><em class=def id="mus-interp-type">mus-interp-type</em></td><td>interpolation type (mus-interp-linear, etc)</td></tr>
<tr><td><em class=def id="mus-length">mus-length</em></td><td>data length</td></tr>
<tr><td><em class=def id="mus-location">mus-location</em></td><td>sample location for reads/writes</td></tr>
<tr><td><em class=def id="mus-name">mus-name</em></td><td>generator name ("oscil")</td></tr>
<tr><td><em class=def id="mus-offset">mus-offset</em></td><td>envelope offset</td></tr>
<tr><td><em class=def id="mus-order">mus-order</em></td><td>filter order</td></tr>
<tr><td><em class=def id="mus-phase">mus-phase</em></td><td>phase (radians)</td></tr>
<tr><td><em class=def id="mus-ramp">mus-ramp</em></td><td>granulate grain envelope ramp setting</td></tr>
<tr><td><em class=def id="mus-reset">mus-reset</em></td><td>set gen to default starting state</td></tr>
<tr><td><em class=def id="mus-run">mus-run</em></td><td>run any generator</td></tr>
<tr><td><em class=def id="mus-scaler">mus-scaler</em></td><td>scaler, normally on an amplitude</td></tr>
<tr><td><em class=def id="mus-width">mus-width</em></td><td>width of interpolation tables, etc</td></tr>
<tr><td><em class=def id="mus-xcoeff">mus-xcoeff</em></td><td>x (input) coefficient</td></tr>
<tr><td><em class=def id="mus-xcoeffs">mus-xcoeffs</em></td><td>float-vector of x (input) coefficients</td></tr>
<tr><td><em class=def id="mus-ycoeff">mus-ycoeff</em></td><td>y (output, feedback) coefficient</td></tr>
<tr><td><em class=def id="mus-ycoeffs">mus-ycoeffs</em></td><td>float-vector of y (feedback) coefficients</td></tr>
</table>

<p>Many of these are settable:
<code>(set! (mus-frequency osc1) 440.0)</code>
sets osc1's phase increment to (<a class=quiet href="#hztoradians">hz-&gt;radians</a> 440.0). 
When I have a cold, I sometimes use the following function to see how high I can hear; count
the audible tones and multiply by 1000:
</p>

<pre class="indented">
(define (quick-check)
  (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
    (let ((gen (<a class=quiet href="#make-oscil">make-oscil</a> 1000))) 
      (do ((i 0 (+ i 1))) 
          ((= i 400000))
        (if (= (modulo i 20000) 0) 
            (set! (<em class=red>mus-frequency</em> gen) (+ 1000 (/ i 20))))
        (<a class=quiet href="#outa">outa</a> i (* .5 (<a class=quiet href="#oscil">oscil</a> gen)))))))
</pre>

<p>Another example is run-with-fm-and-pm in generators.scm which applies phase modulation (as well as
the default frequency modulation) to any generator:
</p>

<pre class="indented">
(define (run-with-fm-and-pm gen fm pm)
  (set! (<em class=red>mus-phase</em> gen) (+ (<em class=red>mus-phase</em> gen) pm))
  (let ((result (<em class=red>mus-run</em> gen fm 0.0)))
    (set! (<em class=red>mus-phase</em> gen) (- (<em class=red>mus-phase</em> gen) pm))
    result))
</pre>

<p>
<em class=def id="musgeneratorp">mus-generator?</em> returns #t if its argument is
a generator.
A generator defined via <a href="#defgenerator">defgenerator</a> can also take part in these methods.
</p>




<div class="header" id="othergenerators">Other generators</div>

<!--  OTHER GENERATORS  -->

<p>(this section is work in progress...)
</p>

<p>There are dozens of generators scattered around the *.scm files that come with Snd.  Some that come to mind:
</p>

<pre class="indented">
analog-filter.scm:
    filter: <a class=quiet href="sndscm.html#analogfilterdoc">butterworth-lowpass|highpass|bandpass|bandstop</a>, 
            <a class=quiet href="sndscm.html#analogfilterdoc">chebyshev-lowpass|highpass|bandpass|bandstop</a>, 
            <a class=quiet href="sndscm.html#analogfilterdoc">inverse-chebyshev-lowpass|highpass|bandpass|bandstop</a>, 
            <a class=quiet href="sndscm.html#analogfilterdoc">elliptic-lowpass|highpass|bandpass|bandstop</a>,
            <a class=quiet href="sndscm.html#analogfilterdoc">bessel-lowpass|highpass|bandpass|bandstop</a>

clm-ins.scm:
    <a class=quiet href="sndscm.html#rmsgain">rms gain balance</a>

dsp.scm:
    fir-filter: <a class=quiet href="sndscm.html#hilberttransform">hilbert-transform</a>, 
                <a class=quiet href="sndscm.html#makehighpass">highpass, lowpass, bandpass, bandstop</a>, 
                <a class=quiet href="sndscm.html#makedifferentiator">differentiator</a>,
                <a class=quiet href="sndscm.html#makespencerfilter">make-spencer-filter</a>, 
                <a class=quiet href="sndscm.html#sgfilter">savitzky-golay-filter</a>
   
    filter: <a class=quiet href="sndscm.html#makebutter">butter-high-pass, butter-low-pass, butter-band-pass, butter-band-reject</a>, 
            <a class=quiet href="sndscm.html#makebiquad">biquad</a>,
            <a class=quiet href="sndscm.html#IIRfilters">iir-low-pass, iir-high-pass, iir-band-pass, iir-band-stop, peaking</a>,
            <a class=quiet href="sndscm.html#makebutter">butter-lp, butter-hp, butter-bp, butter-bs</a>
   
    <a class=quiet href="sndscm.html#volterrafilter">volterra-filter</a>

env.scm:
    <a class=quiet href="sndscm.html#powerenv">power-env</a> (and many env makers/modifiers)

extensions.scm:
    <a class=quiet href="sndscm.html#envexptchannel">env-expt-channel</a> (and many related env modifiers)

examp.scm:
    <a class=quiet href="sndscm.html#makeramp">ramp</a>, 
    <a class=quiet href="sndscm.html#soundinterp">sound-interp</a>

moog.scm:
    <a class=quiet href="sndscm.html#moogfilter">moog-filter</a>

prc95.scm:
    <a class=quiet href="sndscm.html#prc95doc">reed, bowtable, jettable, onep, lip, dc-block, delaya, delayl</a>

zip.scm:
    <a class=quiet href="sndscm.html#zipper">zipper</a>
</pre>

<p>In this section, we concentrate on the generators defined in generators.scm.  Nearly all of them respond to the
generic functions mus-name, mus-reset, mus-describe, mus-frequency, mus-scaler, mus-offset, mus-phase, and mus-order.
The parameters are generally "frequency", "n" (the number of sidebands), "r" (the ratio between successive sideband
amplitudes), and "ratio" (the ratio between the
frequency and the spacing between successive sidebands).
</p>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-polyoid">make-polyoid</em> 
         (frequency 0.0) 
         (partial-amps-and-phases '(1 1 0.0))   ; a list of harmonic numbers, their associated amplitudes, and their initial-phases

<em class=def id="polyoid">polyoid</em> w (fm 0.0)
<em class=def id="polyoid?">polyoid?</em> w

<em class=def id="polyoidenv">polyoid-env</em> w fm amps phases

<em class=def id="make-noid">make-noid</em> (frequency 0.0) (n 1) phases
<em class=def id="noid">noid</em> w (fm 0.0)
</pre>

<p>polyoid combines the first and second Chebyshev polynomials to provide
a sum of sinusoids each with arbitrary amplitude and initial-phase.
noid is a wrapper for polyoid that sets up n equal amplitude components, a generalization
of <a href="#ncosdoc">ncos and nsin</a>.
noid's phase argument can be a float-vector, <code>'min-peak</code>, <code>'max-peak</code>, or omitted (#f).
If omitted, the phases are set to random numbers between 0 and 2 pi; if
a float-vector, the float-vector's values are used as the phases; if 'max-peak, all phases are set
to pi/2 (ncos essentially &mdash; use <code>(make-float-vector n)</code> to get nsin);
and if 'min-peak, the minimum peak amplitude phases in <a href="sndscm.html#peakphasesdoc">peak-phases.scm</a> are used.
In the 'min-peak and 'max-peak cases, noid's output is normalized to fall between -1.0 and 1.0.
polyoid-env is an extension of polyoid that takes envelopes to control the amplitude and phase of each
harmonic.
</p>

<img src="pix/noidchoices.png" alt="noid choices">

<!--
  run -horizontal
  (do ((i 0 (+ i 1)))
      ((= i 4))
    (with-sound (:clipped #f :output (string-append "test-noid-" (number->string i) ".snd"))
      (let ((samps 44100)
            (gen (make-noid 100.0 32 (if (= i 0) 'max-peak
                                         (if (= i 1) (make-float-vector 32)
                                	     (if (= i 2) #f
						 'min-peak))))))
	(do ((i 0 (+ i 1)))
	    ((= i samps))
	  (outa i (noid gen 0.0))))))
-->

<p>We can use the <a href="sndscm.html#peakphasesdoc">peak-phases.scm</a> phases to reduce the "spikiness" of the waveform with any
set of components and component amplitudes.  We could, for example, change noid to use
</p>

<pre class="indented">
(set! (amps (+ j 1)) (/ (expt r (- i 1)) norm))
</pre>

<p>where "r" is the ratio between successive component amplitude: "nroid"?
This is not as pointless as it might at first appear.  Many of these waveforms actually
sound different, despite having the same (magnitude) spectrum; the minimum peak
version usually sounds raspier, and in the limit it can sound like white noise!
</p>

<!--
(with-sound (:clipped #f)
  (let* ((dur 2.0)
	 (samps (seconds->samples dur))
	 (gen1 (make-noid 40.0 128 'max-peak))
	 (gen2 (make-noid 40.0 128 'min-peak))
	 (ampf (make-env '(0 0 .1 1 1 1 2 .25 3 .25) :scaler 0.5 :duration dur))
	 (indf (make-env '(0 0 1 0 2 1 3 1) :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((ind (env indf)))
	(outa i (* (env ampf)
		   (+ (* ind 
			 (noid gen2 0.0))
		      (* (- 1.0 ind) 
			 (noid gen1 0.0)))))))))
-->

<!--
<img class="indented" src="noid2.png">
-->

<p>Check out the n=1024 case:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (let ((samps 44100)
	(gen (<em class=red>make-noid</em> 10.0 1024 'min-peak)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (<a class=quiet href="#outa">outa</a> i (* 0.5 (<em class=red>noid</em> gen 0.0))))))
</pre>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-asyfm">make-asyfm</em> (frequency 0.0) (ratio 1.0) (r 1.0) (index 1.0)
<em class=def id="asyfmJ">asyfm-J</em> gen (fm 0.0)
<em class=def id="asyfmI">asyfm-I</em> gen (fm 0.0)
<em class=def id="asyfm?">asyfm?</em> gen
</pre>

<p>These two generators produce the two flavors of asymmetric-fm.  asyfm-J is the same as the built-in asymmetric generator;
asyfm-I is the modified Bessel function version (the second formula in the <a href="#asymmetric-fm">asymmetric-fm</a> section).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-fmssb">make-fmssb</em> (frequency 0.0) (ratio 1.0) (index 1.0)
<em class=def id="fmssb">fmssb</em> gen (fm 0.0)
<em class=def id="fmssb?">fmssb?</em> gen
</pre>

<p>This generator produces the "gapped" spectra mentioned in <a href="fm.html">fm.html</a>. It is used extensively in the
various "imaginary machines".  Also included in this section of generators.scm is fpmc, an instrument
that performs FM with a complex index (complex in the sense of complex numbers). 
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-blackman">make-blackman</em> frequency n ; 1 &lt;= n &lt;= 10
<em class=def id="blackman">blackman</em> gen (fm 0.0)
<em class=def id="blackman?">blackman?</em> gen
</pre>

<p>
This produces a Blackman-Harris sum of cosines of order 'n'.  It could be viewed as a special case of pulsed-env, or
as yet another "kernel" along the lines of <a href="#ncos">ncos</a>.
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-sinc-train">make-sinc-train</em> frequency (n 1)
<em class=def id="sinc-train">sinc-train</em> gen (fm 0.0)
<em class=def id="sinc-train?">sinc-train?</em> gen
</pre>

<p>
This produces a sinc-train ((sin x)/x) with n components.  It is very similar to <a href="#ncos">ncos</a>.
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-pink-noise">make-pink-noise</em> (n 1)
<em class=def id="pink-noise">pink-noise</em> gen
<em class=def id="pink-noise?">pink-noise?</em> gen
</pre>

<p>
This produces a reasonable approximation to 1/f noise, also known as pink-noise. 'n' sets the number of octaves used (starting at the high end);
12 is the recommended choice.  (If n=1, you get white noise).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-brown-noise">make-brown-noise</em> frequency (amplitude 1.0)
<em class=def id="brown-noise">brown-noise</em> gen
<em class=def id="brown-noise?">brown-noise?</em> gen
</pre>

<p>
This produces (unbounded) brownian noise.  'amplitude' sets the maximum size of individual jumps.
</p>
<div class="separator"></div>

<pre class="indented">
<em class=def id="make-green-noise">make-green-noise</em> (frequency 0.0) (amplitude 1.0) (low -1.0) (high 1.0)
<em class=def id="green-noise">green-noise</em> gen (fm 0.0)
<em class=def id="green-noise?">green-noise?</em> gen

<em class=def id="make-green-noise-interp">make-green-noise-interp</em> (frequency 0.0) (amplitude 1.0) (low -1.0) (high 1.0)
<em class=def id="green-noise-interp">green-noise-interp</em> gen (fm 0.0)
<em class=def id="green-noise-interp?">green-noise-interp?</em> gen
</pre>

<p>These two generators produce bounded brownian noise; "green-noise" was Michael McNabb's name for it.
Unlike CLM's <a href="#rand">rand</a> or <a href="#rand-interp">rand-interp</a> which
produce white noise centered around 0.0, green-noise wanders around, bouncing off its bounds
every now and then.  This produces a noise that can be similar to pink noise (see some graphs under <a href="#rand">rand</a>).
My informal explanation is that each time we bounce off an edge, we're transferring energy
from a low frequency into some higher frequency.  It is still brownian noise however.
The 'amplitude' argument controls how large individual steps can be; 'low' and 'high' set
the overall output bounds; 'frequency' controls how often a new random number is chosen.
Here's an instrument that fuzzes up its amplitude envelope a bit using green noise:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (green3 start dur freq amp amp-env noise-freq noise-width noise-max-step)
  (let* ((grn (<em class=red>make-green-noise-interp</em> :frequency noise-freq 
                                       :amplitude noise-max-step 
                                       :high (* 0.5 noise-width) :low (* -0.5 noise-width)))
	 (osc (<a class=quiet href="#make-oscil">make-oscil</a> freq))
	 (e (<a class=quiet href="#make-env">make-env</a> amp-env :scaler amp :duration dur))
	 (beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> start))
	 (end (+ beg (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))))
    (do ((i beg (+ i 1)))
        ((= i end))
      (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> e) 
	         (+ 1.0 (<em class=red>green-noise-interp</em> grn))
		 (<a class=quiet href="#oscil">oscil</a> osc))))))

(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> () 
  (green3 0 2.0 440 .5 '(0 0 1 1 2 1 3 0) 100 .2 .02))
</pre>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-adjustable-square-wave">make-adjustable-square-wave</em> frequency (duty-factor 0.5) (amplitude 1.0)
<em class=def id="adjustable-square-wave">adjustable-square-wave</em> gen (fm 0.0)
<em class=def id="adjustable-square-wave?">adjustable-square-wave?</em> gen

<em class=def id="make-adjustable-triangle-wave">make-adjustable-triangle-wave</em> frequency (duty-factor 0.5) (amplitude 1.0)
<em class=def id="adjustable-triangle-wave">adjustable-triangle-wave</em> gen (fm 0.0)
<em class=def id="adjustable-triangle-wave?">adjustable-triangle-wave?</em> gen

<em class=def id="make-adjustable-sawtooth-wave">make-adjustable-sawtooth-wave</em> frequency (duty-factor 0.5) (amplitude 1.0)
<em class=def id="adjustable-sawtooth-wave">adjustable-sawtooth-wave</em> gen (fm 0.0)
<em class=def id="adjustable-sawtooth-wave?">adjustable-sawtooth-wave?</em> gen
</pre>

<p>
adjustable-square-wave produces a square-wave with optional "duty-factor" (ratio of pulse duration to pulse period).
The other two are similar, producing triangle and sawtooth waves.  There is also an adjustable-oscil.
Use mus-scaler to set the duty-factor at run-time.
</p>

<img class="indented" src="pix/adjustable.png" alt="mus-scaler adjusts">

<!-- adjustable.png:

(with-sound (:channels 4)
  (let* ((fsamps 500)
	 (freq (radians->hz (/ 1.0 fsamps)))
	 (sq (make-adjustable-square-wave freq 0.01))
	 (sw (make-adjustable-sawtooth-wave freq 0.01))
	 (tr (make-adjustable-triangle-wave freq 0.01))
	 (os (make-adjustable-oscil freq 0.01))
	 (pl (make-pulse-train freq))
	 (dur 1.0)
	 (samps (seconds->samples dur))
	 (ampf (make-env '(0 0 1 1 100 1 101 0) :duration dur))
	 (adjf (make-env '(0 .01 1 .99) :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i samps))
      (let ((amp (env ampf))
	    (adj (env adjf))
	    (trigger (pulse-train pl)))

	(if (> trigger 0.1)
	    (begin
	      (set! (mus-scaler sq) adj)
	      (set! (mus-scaler sw) adj)
	      (set! (mus-scaler tr) adj)
	      (set! (mus-scaler os) adj)))

	(outa i (* amp (adjustable-square-wave sq)))
	(outb i (* amp (adjustable-sawtooth-wave sw)))
	(outc i (* amp (adjustable-triangle-wave tr)))
	(outd i (* amp (adjustable-oscil os)))
	))
    ))

(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (x-axis-label 0 0) "adjustable-square-wave, duty-factor from .01 to .99")
(set! (x-axis-label 0 1) "adjustable-sawtooth-wave")
(set! (x-axis-label 0 2) "adjustable-triangle-wave")
(set! (x-axis-label 0 3) "adjustable-oscil")
(set! *axis-numbers-font* *tiny-font*)
(set! *axis-label-font* "10x20")
-->

<p>A similar trick can make, for example, a squared-off triangle-wave:
</p>
<pre class="indented">
(gen (<a class=quiet href="#make-triangle-wave">make-triangle-wave</a> 200.0 :amplitude 4)) ; amp sets slope
...
(outa i (max -1.0 (min 1.0 (<a class=quiet href="#triangle-wave">triangle-wave</a> gen))))
</pre>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-round-interp">make-round-interp</em> frequency n amplitude
<em class=def id="round-interp">round-interp</em> gen (fm 0.0)
<em class=def id="round-interp?">round-interp?</em> gen
</pre>

<p>
This is a <a href="#rand-interp">rand-interp</a> generator feeding a <a href="#moving-average">moving-average</a> generator.  "n" is the length of the moving-average;
the higher "n", the more low-passed the output.
</p>
<img class="indented" src="pix/roundinterp.png" alt="round-interp">

<!--
(with-sound (:channels 5)
  (let ((gen0 (make-round-interp 100 1))
	(gen1 (make-round-interp 100 10))
	(gen2 (make-round-interp 100 100))
	(gen3 (make-round-interp 100 1000))
	(gen4 (make-round-interp 100 10000)))
       (do ((i 0 (+ i 1)))
	   ((= i 100000))
	 (out-any i (round-interp gen0) 0)
	 (out-any i (round-interp gen1) 1)
	 (out-any i (round-interp gen2) 2)
	 (out-any i (round-interp gen3) 3)
	 (out-any i (round-interp gen4) 4))))

(set! (x-axis-label 0 0) "round-interp, n=1")
(set! (x-axis-label 0 1) "round-interp, n=10")
(set! (x-axis-label 0 2) "round-interp, n=100")
(set! (x-axis-label 0 3) "round-interp, n=1000")
(set! (x-axis-label 0 4) "round-interp, n=10000")
(set! *axis-label-font* "-*-times-medium-r-normal-*-20-*-*-*-*-*-*-*")
-->

<div class="separator"></div>


<pre class="indented">
<A class=def>make-moving-sum</A> (n 128)
<em class=def id="moving-sum">moving-sum</em> gen y
<A class=def>moving-sum?</A> gen

<A class=def>make-moving-rms</A> (n 128)
<em class=def id="moving-rms">moving-rms</em> gen y
<A class=def>moving-rms?</A> gen

<A class=def>make-moving-length</A> (n 128)
<em class=def id="moving-length">moving-length</em> gen y
<A class=def>moving-length?</A> gen

<A class=def>make-weighted-moving-average</A> n
<em class=def id="weighted-moving-average">weighted-moving-average</em> gen y
<A class=def>weighted-moving-average?</A> gen

<A class=def>make-exponentially-weighted-moving-average</A> n
<em class=def id="exponentially-weighted-moving-average">exponentially-weighted-moving-average</em> gen y
<A class=def>exponentially-weighted-moving-average?</A> gen
</pre>

<p>
The "moving" generators are specializations of the <a href="#moving-average">moving-average</a>
generator.  moving-sum keeps the ongoing sum of absolute values, moving-length the square root of the sum
of squares, and moving-rms the square root of the sum of squares divided by the size.
moving-rms is used in <a href="sndscm.html#overlayrmsenv">overlay-rms-env</a> in draw.scm.
weighted-moving-average weights the
table entries by 1/n.  Similarly exponentially-weighted-moving-average applies exponential weights (it is
actually just a one-pole filter &mdash; this generator wins the "longest-name-for-simplest-effect" award).
Also defined, but not tested, is moving-variance; in the same mold, but not defined, are things like moving-inner-product and moving-distance.
</p>



<!-- bessel functions -->
<div class="innerheader">Bessel functions</div>

<pre class="indented">
<em class=def id="make-bess">make-bess</em> (frequency 0.0) (n 0)
<em class=def id="bess">bess</em> gen (fm 0.0)
<em class=def id="bess?">bess?</em> gen
</pre>

<!-- LATEX: & J_{n}(x) = \frac{a}{\sqrt{x}}\sin(x+\delta) + \frac{r_{n}(x)}{x^{\frac{3}{2}}} \\ -->

<p>bess produces the nth Bessel function.  The generator output is scaled to have a maximum of 1.0,
so bess's output is not the same as the raw bessel function value returned by <a href="extsnd.html#besj0">bes-jn</a>.
The "frequency" argument actually makes sense here because the Bessel functions
are close to damped sinusoids after their initial hesitation:
</p>
<img class="indented" src="pix/sceq24.png" alt="Jn">
<p>
where the variables other than x remain bounded as x increases.  This explains, in a sketchy way, why Jn(cos) and Jn(Jn)
behave like FM.  To see how close these are to FM, compare the expansion of J0(sin) with FM's cos(sin):
</p>

<!-- LATEX:
sceq35:
& J_{0}(B \sin x) = J_{0}^{2}\Big(\frac{B}{2}\Big)+2\sum_{k=1}^{\infty} J_{k}^{2}\Big(\frac{B}{2}\Big)\cos2kx \\
& \cos(B \sin x) = J_{0}(B) + 2 \sum_{k=1}^{\infty} J_{2k}(B) \cos 2kx \\
-->

<img class="indented" src="pix/sceq35.png" alt="J(sin) and cos(sin)">

<p>Except for jpcos, the rest of the generators in this section suffer a similar fate.  From a waveshaping perspective,
we're using a sinusoid, or a modulated sinusoid, to index into the near-zero portion of a Bessel
function, and the result is sadly reminiscent of standard FM.  But they're such pretty formulas;
I must be missing something.
</p>


<div class="separator"></div>

<pre class="indented">
<em class=def id="make-j0evencos">make-j0evencos</em> (frequency 0.0) (index 1.0)
<em class=def id="j0evencos">j0evencos</em> gen (fm 0.0)
<em class=def id="j0evencos?">j0evencos?</em> gen
</pre>

<p>j0evencos produces the J0(index * sin(x)) case mentioned above (with the DC component subtracted out).
If you sweep the index, the bandwidth is the same as in normal FM (J2k(B) is about 3log(k)*Jk(B/2)^2),
but the B/2 factor causes
the individual component amplitudes to follow the Bessel functions half as fast. 
So j0evencos produces a spectral sweep that is like FM's but smoother.
</p>

<img class="indented" src="pix/j0fm.png" alt="compare FM and j0evencos">

<img class="indented" src="pix/j0jfm.png" alt="compare FM and j0evencos">


<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let* ((dur 1.0)
         (end (<a class=quiet href="#secondstosamples">seconds-&gt;samples</a> dur))
         (jmd (<em class=red>make-j0evencos</em> 200.0))
	 (fmd (<a class=quiet href="#make-oscil">make-oscil</a> 200.0))
         (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0  1 1  20 1  21 0) :scaler 0.5 :duration dur))
         (indf (<a class=quiet href="#make-env">make-env</a> '(0 0  1 20) :duration dur)))
    (do ((i 0 (+ i 1)))
	((= i end))
      (let ((ind (<a class=quiet href="#env">env</a> indf))
	    (vol (<a class=quiet href="#env">env</a> ampf)))
	(set! (<em class=red>jmd 'index</em>) ind)
	(<a class=quiet href="#outa">outa</a> i (* vol (- (cos (* ind (<a class=quiet href="#oscil">oscil</a> fmd))) 
                          (<a class=quiet href="extsnd.html#besj0">bes-j0</a> ind)))) ; subtract out DC (see cos(B sin x) above)
	(<a class=quiet href="#out-any">outb</a> i (* vol (<em class=red>j0evencos</em> jmd)))))))
</pre>

<!--
snd -horizontal

(define* (fm beg dur freq amp mc-ratio index (index-env '(0 1 100 1)))
  (let* ((start (seconds->samples beg))
         (end (+ start (seconds->samples dur)))
         (md (make-oscil (* freq mc-ratio)))
         (ampf (make-env '(0 0 1 1 20 1 21 0) :scaler amp :duration dur)) 
         (indf (make-env index-env :scaler index :duration dur)))
       (do ((i start (+ i 1)))
	   ((= i end))
	 (let ((ind (env indf)))
	   (outa i (* (env ampf)  
		      (- (cos (* ind (oscil md)))
			 (bes-j0 ind))))))))

(with-sound ("test.snd") (fm 0 1.0 2000.0 0.5 .1 20.0 '(0 0 1 1)))

(define* (jfm beg dur freq amp mc-ratio index (index-env '(0 1 100 1)))
  (let* ((start (seconds->samples beg))
         (end (+ start (seconds->samples dur)))
         (md (make-j0evencos (* freq mc-ratio)))
         (ampf (make-env '(0 0 1 1 20 1 21 0) :scaler amp :duration dur)) 
         (indf (make-env index-env :scaler index :duration dur)))
       (do ((i start (+ i 1)))
	   ((= i end))
	 (set! (md 'index) (env indf))
	 (outa i (* (env ampf)
                    (j0evencos md))))))

(with-sound ("test1.snd") (jfm 0 1.0 2000.0 0.5 .1 20.0 '(0 0 1 1)))

x 314 1.36
y 327 .4
z 0 1.9
4 0.24
blackman6 2048

(set! *selected-graph-color* (make-color 1 1 1))
-->
<div class="separator"></div>

<pre class="indented">
<em class=def id="make-j0j1cos">make-j0j1cos</em> (frequency 0.0) (index 0.0)
<em class=def id="j0j1cos">j0j1cos</em> gen fm
<em class=def id="j0j1cos?">j0j1cos?</em> gen
</pre>

<img class="indented" src="pix/sceq36.png" alt="j0j1 formulsa">

<p>
This uses J0(index * cos(x)) + J1(index * cos(x)) to produce a full set of cosines.  It is not yet normalized correctly,
and is very similar to normal FM.
</p>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-izcos">make-izcos</em> (frequency 0.0) (r 1.0)
<em class=def id="izcos">izcos</em> gen (fm 0.0)
<em class=def id="izcos?">izcos?</em> gen
</pre>

<img class="indented" src="pix/sceq39.png" alt="I(k) sum">

<p>This produces a sum of cosines scaled by In(r), again very similar to normal FM.
</p>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-jjcos">make-jjcos</em> (frequency 0.0) (r 0.5) (a 1.0) (k 1.0)
<em class=def id="jjcos">jjcos</em> gen (fm 0.0)
<em class=def id="jjcos?">jjcos?</em> gen

<em class=def id="make-j2cos">make-j2cos</em> (frequency 0.0) (r 0.5) (n 1)
<em class=def id="j2cos">j2cos</em> gen (fm 0.0)
<em class=def id="j2cos?">j2cos?</em> gen

<em class=def id="make-jpcos">make-jpcos</em> (frequency 0.0) (r 0.5) (a 0.0) (k 1.0)
<em class=def id="jpcos">jpcos</em> gen (fm 0.0)
<em class=def id="jpcos?">jpcos?</em> gen

<em class=def id="make-jncos">make-jncos</em> (frequency 0.0) (r 0.5) (a 1.0) (n 0)
<em class=def id="jncos">jncos</em> gen (fm 0.0)
<em class=def id="jncos?">jncos?</em> gen
</pre>

<p>These produce a sum of cosines scaled by a product of Bessel functions; in a sense, there are two, or maybe three "indices".
Normalization is handled correctly at least for jpcos.  Of the four, jpcos seems the most interesting.  "a" should not equal "r";
in general as a and r approach 1.0, the spectrum approaches "k" components, sometimes in a highly convoluted manner.
</p>

<table>
<tr><td>jjcos:</td><td><img class="indented" src="pix/sceq31.png" alt="more sums"></td></tr>
<tr><td>j2cos:</td><td><img class="indented" src="pix/sceq34.png" alt="more sums"></td></tr>
<tr><td>jpcos:</td><td><img class="indented" src="pix/sceq33.png" alt="more sums"></td></tr>
<tr><td>jncos:</td><td><img class="indented" src="pix/sceq32.png" alt="more sums"></td></tr>
</table>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-jycos">make-jycos</em> (frequency 0.0) (r 1.0) (a 1.0)
<em class=def id="jycos">jycos</em> gen (fm 0.0)
<em class=def id="jycos?">jycos?</em> gen
</pre>

<p>This uses bes-y0 to produce components scaled by Yn(r)*Jn(a).  bes-y0(0) is -inf, so a^2 + r^2 should be greater than 2ar,
and r should be greater than 0.0.  Tricky to use.  (If you get an inf or a NaN from division by zero or whatever in Scheme,
both the time and frequency graphs will be unhappy).
</p>





<!-- finite sums -->
<div class="innerheader">finite sums</div>

<p>These generators produce a set of n sinusoids.
With a bit of bother, 
they could be done with polywave.  I don't
think there would be any difference, even taking FM into account. 
</p>

<pre class="indented">
<em class=def id="make-nssb">make-nssb</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nssb">nssb</em> gen (fm 0.0)
<em class=def id="nssb?">nssb?</em> gen
</pre>

<p>nssb is the single side-band version of ncos and nsin.  It is very similar to <a href="#nxysin">nxysin</a> and <a href="#nxycos">nxycos</a>.
</p>

<div class="separator"></div>

<pre class="indented">
<em class=emdef>make-ncos2</em> (frequency 0.0) (n 1)
<em class=emdef id="ncos2">ncos2</em> gen (fm 0.0)
<em class=def id="ncos2?">ncos2?</em> gen
</pre>

<p>This is the Fejer kernel.  The i-th harmonic amplitude is (n-i)/(n+1).
</p>

<!-- LATEX: &\frac{\sin^{2} \frac{1}{2}nx}{\sin^{2} \frac{1}{2}x} = \frac{n}{2} + \sum_{k=1}^{n-1} (n-k)\cos kx -->

<img class="indented" src="pix/sceq23.png" alt="sum of cosines">
<div class="separator"></div>

<pre class="indented">
<em class=emdef>make-ncos4</em> (frequency 0.0) (n 1)
<em class=emdef>ncos4</em> gen (fm 0.0)
<em class=def id="ncos4?">ncos4?</em> gen
</pre>

<p>This is the Jackson kernel, the square of ncos2.
</p>

<!-- LATEX: &\Bigg(\frac{\sin(n+\frac{1}{2})x}{\sin \frac{x}{2}}\Bigg)^{4} -->
<!-- pointless...
<img class="indented" src="pix/sceq24.png" alt="sum of cosines">
-->



<pre class="indented">
<em class=emdef>make-npcos</em> (frequency 0.0) (n 1)
<em class=emdef>npcos</em> gen (fm 0.0)
<em class=def id="npcos?">npcos?</em> gen
</pre>

<p>This is the Poussin kernel, a combination of two ncos2 generators, one at "n" subtracted from twice another at 2n+1.
</p>


<pre class="indented">
<em class=def id="make-n1cos">make-n1cos</em> (frequency 0.0) (n 1)
<em class=def id="n1cos">n1cos</em> gen (fm 0.0)
<em class=def id="n1cos?">n1cos?</em> gen
</pre>

<p>Another spikey waveform, very similar to ncos2 above.
</p>

<img class="indented" src="pix/sceq45.png" alt="linear cosines">
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-nxycos">make-nxycos</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nxycos">nxycos</em> gen (fm 0.0)
<em class=def id="nxycos?">nxycos?</em> gen

<em class=def id="make-nxysin">make-nxysin</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nxysin">nxysin</em> gen (fm 0.0)
<em class=def id="nxysin?">nxysin?</em> gen

<em class=def id="make-nxy1cos">make-nxy1cos</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nxy1cos">nxy1cos</em> gen (fm 0.0)
<em class=def id="nxy1cos?">nxy1cos?</em> gen

<em class=def id="make-nxy1sin">make-nxy1sin</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nxy1sin">nxy1sin</em> gen (fm 0.0)
<em class=def id="nxy1sin?">nxy1sin?</em> gen
</pre>

<p>These produce a sum of "n" sinsoids starting at "frequency", spaced by "ratio".  Since "frequency" can be treated
as the carrier, there's no point in an ssb version.  nxy1cos is the same as nxycos, but every other
component is multiplied by -1, and "n" produces 2n components.
Normalization in the "sin" cases is tricky.  If ratio is 1, we can use nsin's normalization, and if ratio = 2, noddsin's,
but otherwise nxysin currently uses 1/n.  This ensures that the generator output is always between -1 and 1,
but in some cases (mainly involving low "n" and simple "ratio"), the output might not be full amplitude.  nxy1sin is
even trickier, so it divides by "n".
</p>

<div class="separator"></div>

<pre class="indented">
<em class=def id="make-noddcos">make-noddcos</em> (frequency 0.0) (n 1)
<em class=def id="noddcos">noddcos</em> gen (fm 0.0)
<em class=def id="noddcos?">noddcos?</em> gen

<em class=def id="make-noddsin">make-noddsin</em> (frequency 0.0) (n 1)
<em class=def id="noddsin">noddsin</em> gen (fm 0.0)
<em class=def id="noddsin?">noddsin?</em> gen

<em class=def id="make-noddssb">make-noddssb</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="noddssb">noddssb</em> gen (fm 0.0)
<em class=def id="noddssb?">noddssb?</em> gen
</pre>


<!-- LATEX: &\sum_{k=1}^{n}\cos(2k-1)x=\frac{1}{2}\frac{\sin 2nx}{\sin x} \\ -->

<p>These produce the sum of "n" equal amplitude odd-numbered sinusoids:
</p>

<img class="indented" src="pix/sceq29.png" alt="sum of cosines">

<!-- LATEX: &\sum_{k=1}^{n}\sin(2k-1)x=\frac{\sin^{2}nx}{\sin x} \\ -->

<img class="indented" src="pix/sceq28.png" alt="sum of sines">

<p>The corresponding "even" case is the same as ncos with twice the frequency.  noddsin produces a somewhat clarinet-like tone:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
  (let ((gen (<em class=red>make-noddsin</em> 300 :n 3))
	(ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 1 3 0) :length 40000 :scaler .5)))
     (do ((i 0 (+ i 1)))
         ((= i 40000))
       (<a class=quiet href="#outa">outa</a> i (* (<a class=quiet href="#env">env</a> ampf) (<em class=red>noddsin</em> gen))))))
</pre>

<p>noddsin normalization is the same as nsin.  The peak happens half as far from the 0 crossing as in nsin (3pi/(4n) for nsin, 
and 3pi/(8n) for noddsin (assuming large n)), and its amplitude is 8n*sin^2(3pi/8)/(3pi), just as in nsin.  The noddsin generator scales its output
by the inverse of this, so it is always between -1 and 1.
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-nrcos">make-nrcos</em> (frequency 0.0) (n 1) (r 0.5)             ; -1.0 &lt; r &lt; 1.0
<em class=def id="nrcos">nrcos</em> gen (fm 0.0)
<em class=def id="nrcos?">nrcos?</em> gen

<em class=def id="make-nrsin">make-nrsin</em> (frequency 0.0) (n 1) (r 0.5)             ; -1.0 &lt; r &lt; 1.0
<em class=def id="nrsin">nrsin</em> gen (fm 0.0)
<em class=def id="nrsin?">nrsin?</em> gen

<em class=def id="make-nrssb">make-nrssb</em> (frequency 0.0) (ratio 1.0) (n 1) (r 0.5) ; 0.0 &lt;= r &lt; 1.0
<em class=def id="nrssb">nrssb</em> gen (fm 0.0)
<em class=def id="nrssbinterp">nrssb-interp</em> gen fm interp
<em class=def id="nrssb?">nrssb?</em> gen
</pre>

<p>These produce the sum of "n" sinusoids, with successive sinusoids scaled by "r"; the nth component has amplitude r^n.
nrsin is just a wrapper for <a href="#nrxysin">nrxysin</a>, and the other two are obviously variants of <a href="#nrxycos">nrxycos</a>.
In the nrssb-interp generator, the "interp" argument interpolates between the upper (interp=1.0) and lower (interp=-1.0) side bands.
</p>

<p>The instrument lutish uses nrcos: <code>lutish beg dur freq amp</code>:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (do ((i 0 (+ i 1)))
          ((= i 10))
        (lutish (* i .1) 2 (* 100 (+ i 1)) .05)))
</pre>

<p>The instrument oboish uses nrssb: <code>oboish beg dur freq amp amp-env</code>:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (do ((i 0 (+ i 1)))
          ((= i 10))
        (oboish (* i .3) .4 (+ 100 (* 50 i)) .05 '(0 0 1 1 2 1 3 0))))
</pre>

<p>organish also uses nrssb: <code>organish beg dur freq amp fm-index amp-env</code>:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (do ((i 0 (+ i 1)))
          ((= i 10))
        (organish (* i .3) .4 (+ 100 (* 50 i)) .5 1.0 #f)))
</pre>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-nkssb">make-nkssb</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nkssb">nkssb</em> gen (fm 0.0)
<em class=def id="nkssbinterp">nkssb-interp</em> gen fm interp
<em class=def id="nkssb?">nkssb?</em> gen
</pre>

<p>This generator produces the single side-band version of the sum of "n" sinusoids, where the nth component has amplitude n.
In the nkssb-interp generator, the "interp" argument interpolates between the upper and lower side bands.
The instrument nkssber uses nkssb-interp:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
  (nkssber 0 1 1000 100 5 5 0.5)
  (nkssber 1 2 600 100 4 1 0.5)
  (nkssber 3 2 1000 540 3 3 0.5)
  (nkssber 5 4 300 120 2 0.25 0.5)
  (nkssber 9 1 30 4 40 0.5 0.5)
  (nkssber 10 1 20 6 80 0.5 0.5))
</pre>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-nsincos">make-nsincos</em> (frequency 0.0) (n 1)
<em class=def id="nsincos">nsincos</em> gen (fm 0.0)
<em class=def id="nsincos?">nsincos?</em> gen
</pre>

<p>This generator produces a sum of n cosines scaled by sin(k*pi/(n+1))/sin(pi/(n+1)).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-nchoosekcos">make-nchoosekcos</em> (frequency 0.0) (ratio 1.0) (n 1)
<em class=def id="nchoosekcos">nchoosekcos</em> gen (fm 0.0)
<em class=def id="nchoosekcos?">nchoosekcos?</em> gen
</pre>

<p>This generator produces a sum of n cosines scaled by the binomial coefficients.  If n is even, the last term is halved.
All these "finite sum" generators are a bit inflexible, and sound more or less the same.  One (desperate) countermeasure
is amplitude modulation:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> ()
  (let ((modulator (<em class=red>make-nchoosekcos</em> 100.0 1.0 4))
	(carrier (<a class=quiet href="#make-nrcos">make-nrcos</a> 2000.0 :n 3 :r .5)))
    (do ((i 0 (+ i 1))) ((= i 20000))
      (<a class=quiet href="#outa">outa</a> i (* .5 (<a class=quiet href="#nrcos">nrcos</a> carrier) 
                    (<em class=red>nchoosekcos</em> modulator))))))
</pre>

<img src="pix/nkcos.png" alt="am nchoosekcos">




<!-- infinite sums -->
<div class="innerheader">infinite sums</div>

<pre class="indented">
<em class=def id="make-rcos">make-rcos</em> (frequency 0.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rcos">rcos</em> gen (fm 0.0)
<em class=def id="rcos?">rcos?</em> gen

<em class=def id="make-rssb">make-rssb</em> (frequency 0.0) (ratio 1.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rssb">rssb</em> gen (fm 0.0)
<em class=def id="rssbinterp">rssb-interp</em> gen fm interp
<em class=def id="rssb?">rssb?</em> gen

<em class=def id="make-rxycos">make-rxycos</em> (frequency 0.0) (ratio 1.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rxycos">rxycos</em> gen (fm 0.0)
<em class=def id="rxycos?">rxycos?</em> gen

<em class=def id="make-rxysin">make-rxysin</em> (frequency 0.0) (ratio 1.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rxysin">rxysin</em> gen (fm 0.0)
<em class=def id="rxysin?">rxysin?</em> gen
</pre>

<p>These generators produce an infinite sum of sinusoids, each successive component scaled by "r" (so the nth component has amplitude r^n).
The bump instrument uses rssb-interp: <code>bump beg dur freq amp f0 f1 f2</code>:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (bump (* 0.4 k) 1 (* 16.3 (expt 2.0 (+ 3 (/ k 12)))) .5 520 1190 2390))
  (do ((k 0 (+ k 1))) 
      ((= k 10))
    (let* ((freq (* 16.3 (expt 2.0 (+ 3 (/ k 12)))))
	   (scl (sqrt (/ freq 120))))
      (bump (+ 4 (* 0.4 k)) 1 freq  .5 (* scl 520) (* scl 1190) (* scl 2390)))))
</pre>

<p>As with all the "infinite sums" generators, aliasing is a major concern.  We can use the following
relatively conservative function to find the highest safe "r" given the current fundamental and sampling rate:
</p>

<pre class="indented">
(define (safe-r-max freq srate) ; the safe-rxycos generator in generators.scm has this built-in
  (expt .001 (/ 1.0 (floor (/ srate 3 freq)))))
</pre>


<p>
If you go over that value, be prepared for some very unintuitive behavior!  For example,
at an srate of 44100:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let ((gen1 (<em class=red>make-rcos</em> 1050 0.99))
        ;; r=.6 or so is the safe max
	(gen2 (<em class=red>make-rcos</em> 1048 0.99)))
    (do ((i 0 (+ i 1)))
	((= i 88200))
      (<a class=quiet href="#outa">outa</a> i (<em class=red>rcos</em> gen1))
      (<a class=quiet href="#outa">outb</a> i (<em class=red>rcos</em> gen2)))))
</pre>

<p>In the first case, all the aliased harmonics line up perfectly with the
unaliased ones because 21*1050 is 22050, but in the second case,
we get (for example) the strong 84 Hz component because the 42nd harmonic
which falls at 44100 - 42*1048 = 84 still has an amplitude of 0.99^42 = .66!
</p>

<img class="indented" src="pix/rcos.png" alt="rcos aliased">

<p>Another artifact of aliasing is that at some frequencies, 
for example at 100 Hz, and a sampling rate of 44100, if r is -0.99 and the initial phase is 0.5*pi, or if r is 0.99 and the initial phase is 1.5*pi, the peak amp
is only 0.6639.  Finally(?),
there's a sharp discontinuity (a click) as you sweep r through 0.0.  As in nrxycos, the waveforms produced by r and -r
are the same, but there's an overall phase difference of pi.  
</p>

<p>Other notes: the output of rssb is not normalized, nor is rxysin.
</p>

<!--
(set! (x-axis-label 0 0 0) "rcos freq=1050 r=.99")
(set! (x-axis-label 0 1 0) "rcos freq=1048 r=.99")
(set! *axis-label-font* "9x15")
-->

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-ercos">make-ercos</em> (frequency 0.0) (r 0.5) ; r &gt; 0.0
<em class=def id="ercos">ercos</em> gen (fm 0.0)
<em class=def id="ercos?">ercos?</em> gen

<em class=def id="make-erssb">make-erssb</em> (frequency 0.0) (ratio 1.0) (r 0.5)
<em class=def id="erssb">erssb</em> gen (fm 0.0)
<em class=def id="erssb?">erssb?</em> gen
</pre>

<p>These produce a sum of sinusoids, each scaled by e^(-kr), a special case of rcos.  Our safe (minimum) "r" here becomes <code>(/ (log 0.001) (floor (/ srate (* -3 freq))))</code>.
The ercoser instrument uses ercos:
<code>ercoser beg dur freq amp r</code>:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (ercoser 0 1 100 .5 0.1))
</pre>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-eoddcos">make-eoddcos</em> (frequency 0.0) (r 0.5)
<em class=def id="eoddcos">eoddcos</em> gen (fm 0.0)
<em class=def id="eoddcos?">eoddcos?</em> gen
</pre>

<p>This produces a sum of odd harmonics, each scaled by e^r(2k-1)/(2k-1).  As "r" approches 0.0, this approaches a square wave.
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (let ((gen1 (<em class=red>make-eoddcos</em> 400.0 :r 0.0))
	    (gen2 (<a class=quiet href="#make-oscil">make-oscil</a> 400.0))
	    (a-env (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :length 10000)))
        (do ((i 0 (+ i 1)))
	    ((= i 10000))
	  (set! (gen1 'r) (<a class=quiet href="#env">env</a> a-env))
 	  (<a class=quiet href="#outa">outa</a> i (* .5 (<em class=red>eoddcos</em> gen1 (* .1 (<a class=quiet href="#oscil">oscil</a> gen2))))))))
</pre>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-rkcos">make-rkcos</em> (frequency 0.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rkcos">rkcos</em> gen (fm 0.0)
<em class=def id="rkcos?">rkcos?</em> gen

<em class=def id="make-rksin">make-rksin</em> (frequency 0.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rksin">rksin</em> gen (fm 0.0)
<em class=def id="rksin?">rksin?</em> gen

<em class=def id="make-rkssb">make-rkssb</em> (frequency 0.0) (ratio 1.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rkssb">rkssb</em> gen (fm 0.0)
<em class=def id="rkssb?">rkssb?</em> gen
</pre>

<!--
(with-sound ("r7.snd")
  (let ((gen (make-rksin 100.0 :r .7)))
    (do ((i 0 (+ i 1)))
        ((= i 44100))
      (outa i (* 0.5 (rksin gen))))))
-->

<p>These produce a sum of sinusoids scaled by (r^k)/k.  As r approaches 1.0 or -1.0, rksin approaches a sawtooth.  
</p>

<img src="pix/rksin3.png" alt="sawtooths">

<p>As with rcos, we
can calculate the safe maximum r, given the current srate and frequency (this function is perhaps too cautious...):
</p>

<pre class="indented">
    (define (safe-rk-max freq srate)
      (let ((topk (floor (/ srate (* 3 freq)))))
        (min 0.999999 (expt (* .001 topk) (/ 1.0 topk)))))
</pre>

<p>Similar to rkcos is (expt (asin (sqrt (oscil x))) 2).
rksin and rkcos provide a nice demonstration of how insensitive the ear is to phase.  These two waveforms look different, but
have the same timbre. The sawtooth sounds louder to me, despite having the same peak amplitude.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let ((gen1 (<em class=red>make-rkcos</em> 200.0 :r 0.9))
        (gen2 (<em class=red>make-rksin</em> 200.0 :r 0.9)))
    (do ((i 0 (+ i 1)))
	((= i 100000))
      (<a class=quiet href="#outa">outa</a> i (* .95 (<em class=red>rkcos</em> gen1)))
      (<a class=quiet href="#outa">outb</a> i (* .95 (<em class=red>rksin</em> gen2))))))

&gt; (channel-rms 0 0) ; from dsp.scm
0.305301097090353
&gt; (channel-rms 0 1)
0.627769794744852
</pre>

<img class="indented" src="pix/rksin.png" alt="sin vs cos">

<p>We might conclude that the RMS value gives the perceived amplitude, but
in the next case, the RMS values are the same, and the peak amplitudes
differ by a factor of 3.  I think the one with the higher peak amplitude sounds louder.
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:channels 2)
  (let ((gen1 (<a class=quiet href="#make-adjustable-square-wave">make-adjustable-square-wave</a> 400 
	        :duty-factor .75 :amplitude .25))
	(gen2 (<a class=quiet href="#make-adjustable-square-wave">make-adjustable-square-wave</a> 400 
                :duty-factor .11 :amplitude .75))
	(flt1 (<a class=quiet href="#make-moving-average">make-moving-average</a> 10))
	(flt2 (<a class=quiet href="#make-moving-average">make-moving-average</a> 10)))
    (do ((i 0 (+ i 1)))
	((= i 50000))
      (<a class=quiet href="#outa">outa</a> i (<a class=quiet href="#moving-average">moving-average</a> flt1 
                (<a class=quiet href="#adjustable-square-wave">adjustable-square-wave</a> gen1)))
      (<a class=quiet href="#outa">outb</a> i (<a class=quiet href="#moving-average">moving-average</a> flt2 
                (<a class=quiet href="#adjustable-square-wave">adjustable-square-wave</a> gen2))))))
</pre>

<img class="indented" src="pix/rmspk.png" alt="rms vs peak">


<p>Since clipping is a disaster, we focus on peak amplitudes in the generators.
</p>


<!--
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))

(set! (x-axis-label 0 0) "rkcos, r=.9")
(set! (x-axis-label 0 1) "rksin, r=.9")
(set! *axis-label-font* "9x15")

(set! (x-axis-label 0 0) "rms: .21, peak amp: .25")
(set! (x-axis-label 0 1) "rms: .21, peak amp: .75")
-->

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-rk!cos">make-rk!cos</em> (frequency 0.0) (r 0.5)  ; rk!cos is a special case of rxyk!cos
<em class=def id="rk!cos">rk!cos</em> gen (fm 0.0)
<em class=def id="rk!cos?">rk!cos?</em> gen

<em class=def id="make-rk!ssb">make-rk!ssb</em> (frequency 0.0) (ratio 1.0) (r 0.5)
<em class=def id="rk!ssb">rk!ssb</em> gen (fm 0.0)
<em class=def id="rk!ssb?">rk!ssb?</em> gen

<em class=def id="make-rxyk!cos">make-rxyk!cos</em> (frequency 0.0) (ratio 1.0) (r 0.5)
<em class=def id="rxyk!cos">rxyk!cos</em> gen (fm 0.0)
<em class=def id="rxyk!cos?">rxyk!cos?</em> gen

<em class=def id="make-rxyk!sin">make-rxyk!sin</em> (frequency 0.0) (ratio 1.0) (r 0.5)
<em class=def id="rxyk!sin">rxyk!sin</em> gen (fm 0.0)
<em class=def id="rxyk!sin?">rxyk!sin?</em> gen
</pre>


<!-- LATEX: for rk!cos
&\sum_{k=1}^{\infty}\frac{p^{k}\sin kx}{k!} = e^{p\cos x}\sin(p\sin x) \\
&\sum_{k=0}^{\infty}\frac{p^{k}\cos kx}{k!} = e^{p\cos x}\cos(p\sin x) \\
-->

<p>These produce a sum of sinusoids scaled by (r^k)/k!.  
The k! denominator dominates eventually, so r * ratio * frequency is approximately the spectral center
(the ratio between successive harmonic amplitudes is (r^(k+1)/(k+1)!)/(r^k/k!) = r/(k+1), which
becomes less than 1.0 at k=r).
For example, in the graph on the right, the frequency is 100 and r is 30, so the center of the spectrum is around 3kHz.
Negative "r" gives the same spectrum as positive, but the waveform's initial-phase is shifted by pi.
The (very) safe maximum "r" is:
</p>

<pre class="indented">
  (define (safe-rk!-max freq srate)
    (let ((topk (floor (/ srate 3 freq))))
      (expt (* .001 (factorial topk)) (/ 1.0 topk))))
                  ;; factorial is in numerics.scm
</pre>

<img src="pix/rkbang.png" alt="rk!cos spectrum">


<p>As in other such cases, varying "r" gives changing spectra.  You can sweep r through 0 smoothly except in rk!cos where you'll get a click.
Coupled with the fm argument, these generators provide an extension of multi-carrier FM, similar in effect to the "leap-frog" FM voice.
Here is a use of rk!cos to make a bird twitter:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t :scaled-to .5)
  (do ((k 0 (+ k 1)))
      ((= k 6))
    (let ((gen (<em class=red>make-rk!cos</em> 3000.0 :r 0.6)) 
          (ampf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1 2 1 3 0) :length 3000))
	  (frqf (<a class=quiet href="#make-env">make-env</a> '(0 0 1 1) :base .1 :scaler (<a class=quiet href="#hztoradians">hz-&gt;radians</a> 2000) :length 3000)))
     (do ((i 0 (+ i 1)))
         ((= i 3000)) 
       (<a class=quiet href="#outa">outa</a> (+ i (* k 4000)) 
             (* (<a class=quiet href="#env">env</a> ampf) 
	        (<em class=red>rk!cos</em> gen (<a class=quiet href="#env">env</a> frqf))))))))
</pre>

<p>The instrument bouncy uses rk!ssb: <code>bouncy beg dur freq amp (bounce-freq 5) (bounce-amp 20)</code>
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (bouncy 0 2 200 .5 3 2))
</pre>

<p>brassy (also in generators.scm) uses rxyk!cos, but it is more of an experiment with envelopes than spectra.
It takes a gliss envelope and turns it into a series of quick jumps between harmonics, handling both the
pitch and the index ("r") of the rxyk!cos generator.  The effect is vaguely brass-like.
</p>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-r2k!cos">make-r2k!cos</em> (frequency 0.0) (r 0.5) (k 0.0)
<em class=def id="r2k!cos">r2k!cos</em> gen (fm 0.0)
<em class=def id="r2k!cos?">r2k!cos?</em> gen
</pre>

<p>
This generator produces a sum of cosines with a complicated-looking formula for
the component amplitudes.  It's actually pretty simple, as this graph shows.
The "F" notation stands for a hypergeometric series, a generalization
of sinusoids and Bessel functions.  
</p>

<!-- LATEX: sceq30:
  &(1 - 2r \cos \theta + r^{2})^{-k} = \frac{1}{2} {}_{2}F_{1}(k, k; 1; r^{2}) + \sum_{n=1}^{\infty} \frac{(k)_{n}}{n!} r^{n} {}_{2}F_{1}(k, k+n; n+1; r^{2}) \cos n\theta
-->


<img class="indented" src="pix/sceq30.png" alt="sum of sines">
<br>
<img class="indented" src="pix/r2kfactcos.png" alt="r2k!cos spectra">


<!-- r2kfactcos.png:

(with-sound (:clipped #f :statistics #t :play #t :scaled-to .5)
  (let* ((gen (make-r2k!cos 440.0 :r 0.65 :k 3.0)) 
	 (dur 2.0)
	 (samps (seconds->samples dur))
	 (indf (make-env '(0 0 1 1) :duration dur :scaler 10.0 :offset 1))
	 (ampf (make-env '(0 0 1 1 20 1 21 0) :duration dur))
	 )
       (do ((i 0 (+ i 1)))
	   ((= i samps))
	 (set! (r2k!cos-k gen) (env indf))
	 (outa i (* (env ampf)
		    (r2k!cos gen))))))

dark 3 rainbow .001 not inverted
2048 blackman2
x 311 1.67
y 281 0.94
z 350 1.30
hop 3
(spectrum-end 0 0) 0.544793281259146

-->

<p>Negative "r" gives the same output as the corresponding positive "r", and 
there is sometimes a lot of DC.  Despite appearances, as r increases beyond 1.0,
the spectrum collapses back towards the fundamental.  (I think that r and 1/r produce the same spectrum).
Aliasing can be a problem,
especially when r is close to 1.
The instruments pianoy and pianoy1 use r2k!cos: <code>pianoy beg dur freq amp</code>, and 
<code>pianoy1 beg dur freq amp (bounce-freq 5) (bounce-amp 20)</code>:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (pianoy 0 3 100 .5))

    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
      (pianoy1 0 4 200 .5 1 .1))
</pre>

<p>pianoy2 combines r2k!cos with fmssb to try to get closer to the hammer sound:
</p>

<pre class="indented">
    (<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t) 
      (pianoy2 0 1 100 .5))
</pre>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-rkoddssb">make-rkoddssb</em> (frequency 0.0) (ratio 1.0) (r 0.5) ; -1.0 &lt; r &lt; 1.0
<em class=def id="rkoddssb">rkoddssb</em> gen (fm 0.0)
<em class=def id="rkoddssb?">rkoddssb?</em> gen
</pre>

<p>This produces a sum of odd-numbered harmonics scaled by (r^(2k-1))/(2k-1).  This kind of spectrum is usually
called "clarinet-like".
Negative r gives the
same output as positive. The (not very)
safe maximum r is:
</p>

<pre class="indented">
  (define (safe-rkodd-max-r freq srate)
    (let ((k2-1 (- (* 2 (floor (/ srate 3 freq))) 1)))
      (expt (* .001 k2-1) (/ 1.0 k2-1))))
</pre>


<p>The instrument stringy uses rkoddssb and rcos: <code>stringy beg dur freq amp</code>:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (stringy (* i .3) .3 (+ 200 (* 100 i)) .5)))
</pre>

<p>glassy also uses rkoddssb: <code>glassy beg dur freq amp</code>:
</p>

<pre class="indented">
(<a class=quiet href="sndscm.html#wsdoc">with-sound</a> (:play #t)
  (do ((i 0 (+ i 1)))
      ((= i 10))
    (glassy (* i .3) .1 (+ 400 (* 100 i)) .5)))
</pre>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-k2sin">make-k2sin</em> (frequency 0.0)
<em class=def id="k2sin">k2sin</em> gen (fm 0.0)
<em class=def id="k2sin?">k2sin?</em> gen

<em class=def id="make-k2cos">make-k2cos</em> (frequency 0.0)
<em class=def id="k2cos">k2cos</em> gen (fm 0.0)
<em class=def id="k2cos?">k2cos?</em> gen

<em class=def id="make-k2ssb">make-k2ssb</em> (frequency 0.0) (ratio 1.0)
<em class=def id="k2ssb">k2ssb</em> gen (fm 0.0)
<em class=def id="k2ssb?">k2ssb?</em> gen
</pre>

<p>These produce a sum of sinusoids scaled by 1/(2^k).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-k3sin">make-k3sin</em> (frequency 0.0)
<em class=def id="k3sin">k3sin</em> gen fm
<em class=def id="k3sin?">k3sin?</em> gen
</pre>

<p>This produces a sum of sines scaled by 1.0/(k^3).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-krksin">make-krksin</em> (frequency 0.0) (r 0.5)
<em class=def id="krksin">krksin</em> gen (fm 0.0)
<em class=def id="krksin?">krksin?</em> gen
</pre>

<img class="indented" src="pix/sceq25.png" alt="sum of sines">
<div class="separator"></div>

<p>This produces a sum of sinusoids scaled by kr^k.  Its output is not normalized.  I think the formula
given assumes that r is less than 1.0, and in that case, the safe maximum r is given by:
</p>

<pre class="indented">
  (define (safe-krk-max-r freq srate)
    (let ((topk (floor (/ srate 3 freq))))
      (expt (/ .001 topk) (/ 1.0 topk))))
</pre>

<p>However, r can be greater than 1.0 without causing any trouble, and behaves in that case much like r2k!cos &mdash; as it increases, the spectrum collapses;
I think r in that case is equivalent to 1/r.
The only value to avoid is 1.0.
</p>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-abcos">make-abcos</em> (frequency 0.0) (a 0.5) (b 0.25)
<em class=def id="abcos">abcos</em> gen (fm 0.0)
<em class=def id="abcos?">abcos?</em> gen

<em class=def id="make-absin">make-absin</em> (frequency 0.0) (a 0.5) (b 0.25)
<em class=def id="absin">absin</em> gen (fm 0.0)
<em class=def id="absin?">absin?</em> gen
</pre>

<p>These produce a sum of sinusoids scaled as follows:
</p>

<img class="indented" src="pix/sceq27.png" alt="sum of sines">
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-r2k2cos">make-r2k2cos</em> (frequency 0.0) (r 0.5)
<em class=def id="r2k2cos">r2k2cos</em> gen (fm 0.0)
<em class=def id="r2k2cos?">r2k2cos?</em> gen
</pre>

<p>This produces a sum of cosines, each scaled by 1/(r^2+k^2).  r shouldn't be 0, but otherwise it almost doesn't matter what it is &mdash;
this is not a very flexible generator!
</p>

<p>There are a dozen or so other generators defined in generators.scm, but most are close
variants of those given above.
</p>

<div class="separator"></div>


<pre class="indented">
<em class=def id="make-tanhsin">make-tanhsin</em> (frequency 0.0) (r 1.0) (initial-phase 0.0)
<em class=def id="tanhsin">tanhsin</em> gen (fm 0.0)
<em class=def id="tanhsin?">tanhsin?</em> gen
</pre>

<p>This produces tanh(r * sin(x)) which approaches a square wave as "r" increases.
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-moving-fft">make-moving-fft</em> (input #f) (n 512) (hop 128)
<em class=def id="moving-fft">moving-fft</em> gen
<em class=def id="moving-fft?">moving-fft?</em> gen
</pre>

<p>moving-fft provides a sample-by-sample FFT (magnitudes and phases) of its
input (currently assumed to be a readin generator).  
mus-xcoeffs returns the magnitudes, mus-ycoeffs returns the phases, and mus-data returns the current input block.
We could mimic the fft display window in the "lisp graph" via:
</p>

<pre class="indented">
(let ((ft (<em class=red>make-moving-fft</em> (make-readin "oboe.snd")))
      (data (make-float-vector 256)))
  (set! (lisp-graph?) #t)
  (do ((i 0 (+ i 1)))
      ((= i 10000))
    (<em class=red>moving-fft</em> ft)
    (float-vector-subseq (mus-xcoeffs ft) 0 255 data)
    (graph data "fft" 0.0 11025.0 0.0 0.1 0 0 #t)))
</pre>
<div class="separator"></div>

<pre class="indented">
<em class=def id="make-moving-spectrum">make-moving-spectrum</em> (input #f) (n 512) (hop 128)
<em class=def id="moving-spectrum">moving-spectrum</em> gen
<em class=def id="moving-spectrum?">moving-spectrum?</em> gen
</pre>

<p>moving-spectrum provides a sample-by-sample spectrum (amplitudes, frequencies, and current phases) of its
input (currently assumed to be a readin generator).  It is identical to the first (analysis) portion of
the phase-vocoder generator (see test-sv in generators.scm for details).  To access the current amps and so on,
use (gen 'amps), (gen 'phases), and (gen 'freqs).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-moving-autocorrelation">make-moving-autocorrelation</em> (input #f) (n 512) (hop 128)
<em class=def id="moving-autocorrelation">moving-autocorrelation</em> gen
<em class=def id="moving-autocorrelation?">moving-autocorrelation?</em> gen
</pre>

<p>moving-autocorrelation provides the autocorrelation of the last 'n' samples every 'hop' samples.
The samples come from 'input' (currently assumed to be a readin generator). The output is accessible
via mus-data.
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-moving-pitch">make-moving-pitch</em> (input #f) (n 512) (hop 128)
<em class=def id="moving-pitch">moving-pitch</em> gen
<em class=def id="moving-pitch?">moving-pitch?</em> gen
</pre>

<p>moving-pitch provides the current pitch of its input, recalculated (via moving-autocorrelation) every 'hop' samples.
</p>

<pre class="indented">
(let ((rd (make-readin "oboe.snd"))
      (cur-srate (srate "oboe.snd")))
  (let-temporarily ((*clm-srate* cur-srate))
    (let ((scn (<em class=red>make-moving-pitch</em> rd))
	  (last-pitch 0.0)
	  (pitch 0.0))
      (do ((i 0 (+ i 1)))
	  ((= i 22050))
        (set! last-pitch pitch)
        (set! pitch (<em class=red>moving-pitch</em> scn))
        (if (not (= last-pitch pitch))
	    (format () "~A: ~A~%" (* 1.0 (/ i cur-srate)) pitch))))))
</pre>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-moving-scentroid">make-moving-scentroid</em> (dbfloor -40.0) (rfreq 100.0) (size 4096)
<em class=def id="moving-scentroid">moving-scentroid</em> gen
<em class=def id="moving-scentroid?">moving-scentroid?</em> gen
</pre>

<p>moving-scentroid provides a generator that mimics Bret Battey's scentroid instrument (in dsp.scm or scentroid.ins).
</p>
<div class="separator"></div>


<pre class="indented">
<em class=def id="make-flocsig">make-flocsig</em> (reverb-amount 0.0) (frequency 1.0) (amplitude 2.0) offset
<em class=def id="flocsig">flocsig</em> gen i val
<em class=def id="flocsig?">flocsig?</em> gen
</pre>

<p>flocsig is a version of locsig that adds changing delays between the channels (flanging).  
The delay amount is set by a rand-interp centered around 'offset', moving as many as 'amplitude'
samples (this also affects signal placement), and moving at a speed set by 'frequency'.
Currently flocsig assumes stereo output and stereo reverb output.
This generator is trying to open up the space in the same manner that flanging does, but
hopefully unobtrusively.  Here is an example, including a stereo reverb:
</p>

<pre class="indented">
(definstrument (jcrev2)
  (let* ((allpass11 (make-all-pass -0.700 0.700 1051))
	 (allpass21 (make-all-pass -0.700 0.700  337))
	 (allpass31 (make-all-pass -0.700 0.700  113))
	 (comb11 (make-comb 0.742 4799))
	 (comb21 (make-comb 0.733 4999))
	 (comb31 (make-comb 0.715 5399))
	 (comb41 (make-comb 0.697 5801))
	 (outdel11 (make-delay (seconds-&gt;samples .01)))
				
	 (allpass12 (make-all-pass -0.700 0.700 1051))
	 (allpass22 (make-all-pass -0.700 0.700  337))
	 (allpass32 (make-all-pass -0.700 0.700  113))
	 (comb12 (make-comb 0.742 4799))
	 (comb22 (make-comb 0.733 4999))
	 (comb32 (make-comb 0.715 5399))
	 (comb42 (make-comb 0.697 5801))
	 (outdel12 (make-delay (seconds-&gt;samples .01)))
						       
	 (len (floor (+ *clm-srate* (framples *reverb*)))))
    
    (do ((i 0 (+ i 1)))
	((= i len))
      (let* ((allpass-sum (all-pass allpass31 
				    (all-pass allpass21 
					      (all-pass allpass11 
							(ina i *reverb*)))))
	     (comb-sum (+ (comb comb11 allpass-sum)
			  (comb comb21 allpass-sum)
			  (comb comb31 allpass-sum)
			  (comb comb41 allpass-sum))))
	(outa i (delay outdel11 comb-sum)))
      
      (let* ((allpass-sum (all-pass allpass32 
				    (all-pass allpass22 
					      (all-pass allpass12 
							(inb i *reverb*)))))
	     (comb-sum (+ (comb comb12 allpass-sum)
			  (comb comb22 allpass-sum)
			  (comb comb32 allpass-sum)
			  (comb comb42 allpass-sum))))
	(outb i (delay outdel12 comb-sum))))))

(definstrument (simp beg dur (amp 0.5) (freq 440.0) (ramp 2.0) (rfreq 1.0) offset)
  (let* ((os (make-pulse-train freq))
	 (floc (<em class=red>make-flocsig</em> :reverb-amount 0.1
			     :frequency rfreq
			     :amplitude ramp
			     :offset offset))
	 (start (seconds-&gt;samples beg))
	 (end (+ start (seconds-&gt;samples dur))))
    (do ((i start (+ i 1))) 
        ((= i end))
      (<em class=red>flocsig</em> floc i (* amp (pulse-train os))))))

(with-sound (:channels 2 :reverb-channels 2 :reverb jcrev2) 
  (simp 0 1))
</pre>




<!-- defgenerator -->
<div class="innerheader">defgenerator</div>

<pre class="indented">
<em class=def id="defgenerator">defgenerator</em> name fields
</pre>

<p>defgenerator defines a generator.  Its syntax is modelled after Common Lisp's defstruct.
It sets up
a structure, an environment with slots that you can get and set.
It also defines a "make"
function to create an instance of the environment, and a predicate for it. 
Here is a way to define oscil using defgenerator:
</p>

<pre class="indented">
(<em class=red>defgenerator</em> osc freq phase)

;;; make-osc creates an osc, and osc? returns #t if passed an osc.
;;; Once we have an osc (an environment with "freq" and "phase" locals)
;;;   we can either use with-let, or refer to the local variables
;;;   directly via (gen 'freq) and (gen 'phase).

(define (osc gen fm)                ; our new generator
  (let ((result (sin (gen 'phase))))
    (set! (gen 'phase) (+ (gen 'phase) (gen 'freq) fm))
    result))

;;; now we can use the osc generator in an instrument:

(<a class=quiet href="sndscm.html#definstrument">definstrument</a> (osc-fm beg dur freq amp mc-ratio fm-index)
  (let* ((start (<a class=quiet href="sndclm.html#secondstosamples">seconds-&gt;samples</a> beg))
	 (end (+ start (<a class=quiet href="sndclm.html#secondstosamples">seconds-&gt;samples</a> dur)))
	 (carrier (<em class=red>make-osc</em> (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> freq)))
	 (modulator (<em class=red>make-osc</em> (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> (* mc-ratio freq))))
	 (index (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> (* freq mc-ratio fm-index))))
    (do ((i start (+ i 1)))
        ((= i end))
      (<a class=quiet href="sndclm.html#outa">outa</a> i (* amp (<em class=red>osc</em> carrier (* index (<em class=red>osc</em> modulator 0.0))))))))

(with-sound () (osc-fm 0 1 440 .1 1 1))
</pre>

<p>
The first argument to defgenerator is the new object's name, and the rest are the fields of that object.
Each field has a name and an optional initial value which defaults to 0.0.
The "make" function (make-osc in our example) uses define* with
the field names and initial values as the optional keys.  So make-osc above is declared (by the
defgenerator macro) as:
</p>

<pre class="indented">
(define* (make-osc (freq 0.0) (phase 0.0)) ...)
</pre>

<p>which we can invoke in various ways, e.g.:
</p>

<pre class="indented">
(make-osc 440)
(make-osc :phase (/ pi 2) :freq 440)
(make-osc 440 :phase 0.0)
</pre>

<p>The defgenerator "name" parameter can also be a list; in this case the first element is the actual generator name.  The
next elements are <code>:make-wrapper</code> followed by a function of one argument
(the default object normally returned by defgenerator), and <code>:methods</code>, followed
by a list of the methods the generator responds to.  The make wrapper function can 
make any changes it pleases, then return the fixed-up generator.  For example, in our
"osc" generator, we had to remember to change frequency in Hz to radians; we can use the
wrapper to handle that:
</p>

<pre class="indented">
(defgenerator 
  (osc <em class=red>:make-wrapper</em> (lambda (gen)
                       (set! (gen 'freq) (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> (gen 'freq)))
                       gen))
        (freq 0.0) (phase 0.0))
</pre>

<p>and now the make process in the instrument can be simplified to:
</p>

<pre class="indented">
...
(carrier (make-osc freq))
(modulator (make-osc (* mc-ratio freq)))
...
</pre>

<p>If you want the struct to take part in the <a href="sndclm.html#genericfunctions">generic function</a> facility
in CLM, add the desired methods as an association list with the keyword :methods:
</p>

<pre class="indented">
(defgenerator (osc :make-wrapper
		     (lambda (gen)
		       (set! (gen 'freq) (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> (gen 'freq)))
		       gen)
		   <em class=red>:methods</em>
		     (list
		      (cons 'mus-frequency 
                            (dilambda
			      (lambda (g) (<a class=quiet href="sndclm.html#hztoradians">radians-&gt;hz</a> (g 'freq)))
			      (lambda (g val) (set! (g 'freq) (<a class=quiet href="sndclm.html#hztoradians">hz-&gt;radians</a> val)))))
		      (cons 'mus-phase 
                            (dilambda		          
			      (lambda (g) (g 'phase))
			      (lambda (g val) (set! (g 'phase) val))))
		      
		      (cons 'mus-describe 
			    (lambda (g) (<a class=quiet>format</a> #f "osc freq: ~A, phase: ~A" 
					  (mus-frequency g) 
					  (mus-phase g))))))
  freq phase)
</pre>

<p>The make-wrapper might more accurately be called an after-method; it is
evaluated at the end of the automatically-created make function.  All the
fields have been set at that point either by arguments to the make function,
or from the default values given in the defgenerator declaration.  The make
function returns whatever
the make-wrapper function returns, so you almost always want to return the "gen" argument.
There are many examples in generators.scm.
</p>




<!--  FUNCTIONS  -->

<div class="header" id="otherfunctions">Other functions</div>

<p>There are several functions closely tied to the generators and instruments.
</p>

<table class="method">
<tr><td><em class=def id="hztoradians">hz-&gt;radians</em><code> freq</code></td><td>convert freq to radians per sample (using *clm-srate*): (freq * 2 * pi) / srate</td></tr>
<tr><td><em class=def id="radianstohz">radians-&gt;hz</em><code> rads</code></td><td>convert rads to Hz (using *clm-srate*): (rads * srate) / (2 * pi)</td></tr>
<tr><td><em class=def id="dbtolinear">db-&gt;linear</em><code> dB</code></td><td>convert dB to linear value: 10^(dB/20)</td></tr>
<tr><td><em class=def id="lineartodb">linear-&gt;db</em><code> val</code></td><td>convert val to dB: 20 * log(x) / log(10)</td></tr>
<tr><td><em class=def id="timestosamples">times-&gt;samples</em><code> start duration</code></td><td>convert start and duration from seconds to samples (beg+dur in latter case)</td></tr>
<tr><td><em class=def id="samplestoseconds">samples-&gt;seconds</em><code> samps</code></td><td>convert samples to seconds (using *clm-srate*): samps / srate</td></tr>
<tr><td><em class=def id="secondstosamples">seconds-&gt;samples</em><code> secs</code></td><td>convert seconds to samples (using *clm-srate*): secs * srate</td></tr>
<tr><td><em class=def id="degreestoradians">degrees-&gt;radians</em><code> degs</code></td><td>convert degrees to radians: (degs * 2 * pi) / 360</td></tr>
<tr><td><em class=def id="radianstodegrees">radians-&gt;degrees</em><code> rads</code></td><td>convert radians to degrees: (rads * 360) / (2 * pi)</td></tr>
<tr><td><em class=def id="mussrate">mus-srate</em></td><td>sampling rate in with-sound (better known as *clm-srate*)</td></tr>
<tr><td><em class=def id="oddweight">odd-weight</em><code> x</code></td><td>return a number between 0.0 (x is even) and 1.0 (x is odd)</td></tr>
<tr><td><em class=def id="evenweight">even-weight</em><code> x</code></td><td>return a number between 0.0 (x is odd) and 1.0 (x is even)</td></tr>
<tr><td><em class=def id="oddmultiple">odd-multiple</em><code> x y</code></td><td>return y times the nearest odd integer to x</td></tr>
<tr><td><em class=def id="evenmultiple">even-multiple</em><code> x y</code></td><td>return y times the nearest even integer to x</td></tr>
</table>

<p>
hz-&gt;radians
converts its argument to radians/sample (for any situation where a
frequency is used as an amplitude &mdash; glissando or FM).
</p>
<blockquote>
<p>
<code>freq-in-hz * 2 * pi</code> gives us the number of radians traversed per
second; we then divide by the number of samples per second to get the
radians per sample; in dimensional terms: (radians/sec) /
(sample/sec) = radians/sample.  We need this conversion whenever a
frequency-related value is being accessed on every sample, as
an increment of a phase variable.  
</p></blockquote>

<pre class="indented">
&gt; *clm-srate*
44100.0

&gt; (hz-&gt;radians 440.0)
0.0626893772144902
&gt; (/ (* 440.0 2 pi) 44100.0)
0.0626893772144902

&gt; (linear-&gt;db .1)
-20.0

&gt; (times-&gt;samples 1.0 2.0)
(44100 132300)
&gt; (seconds-&gt;samples 2.0)
88200
&gt; (samples-&gt;seconds 44100)
1.0

&gt; (degrees-&gt;radians 45)
0.785398163397448
&gt; (radians-&gt;degrees (/ pi 4))
45.0
</pre>


<div class="separator"></div>


<pre class="indented">
<em class=def id="musfloatequalfudgefactor">mus-float-equal-fudge-factor</em> (also known as *mus-float-equal-fudge-factor*)
</pre>

<p>This function sets how far apart generator float-vector elements can be and still be considered equal in equal?
</p>

<pre class="indented">
&gt; *mus-float-equal-fudge-factor*
1.0e-7
&gt; (define v1 (float-vector .1 .1 .101))
#&lt;unspecified&gt;
&gt; (define v2 (float-vector .1 .1 .1))
#&lt;unspecified&gt;
&gt; (equal? v1 v2)
#f
&gt; (set! *mus-float-equal-fudge-factor* .01)
1.0e-7 ; set! returns the previous value
&gt; (equal? v1 v2)
#t
</pre>


<div class="separator"></div>

<pre class="indented">
<em class=def id="musarrayprintlength">mus-array-print-length</em> (also known as *mus-array-print-length*)
</pre>

<p>
This function determines how many float-vector elements are printed by mus-describe.
</p>



<!--  POLYNOMIAL  -->

<div class="innerheader">polynomial</div>


<pre class="indented">
<em class=def id="polynomial">polynomial</em> coeffs x
</pre>

<p>The polynomial function evaluates a polynomial, defined by giving its coefficients,
at the point "x".
"coeffs" is a vector of coefficients where
coeffs[0] is the constant term, and so on. 
</p>

<pre class="indented">
&gt; (polynomial (float-vector 0.0 1.0) 2.0) ; x
2.0
&gt; (polynomial (float-vector 1.0 2.0 3.0) 2.0) ; 3x*x + 2x + 1
17.0
</pre>

<p>
<a href="sndscm.html#polydoc">poly.scm</a> has a variety of polynomial-related functions.
Abramowitz and Stegun, "A Handbook of Mathematical Functions" is a
treasure-trove of interesting polynomials.
</p>


<!--  ARRAY-INTERP  -->

<div class="innerheader">array-interp, dot-product</div>

<pre class="indented">
<em class=def id="array-interp">array-interp</em> fn x size
<em class=def id="dot-product">dot-product</em> in1 in2
<em class=def id="edot-product">edot-product</em> freq data
<em class=def id="mus-interpolate">mus-interpolate</em> type x v size y1
</pre>

<p>array-interp interpolates in the array "fn" at the point "x".  It underlies the <a href="#table-lookup">table-lookup</a>
generator, among others.  Here's array-interp as a "compander":
</p>

<pre class="indented">
(define compand-table (float-vector -1.0 -0.96 -0.90 -0.82 -0.72 -0.60 -0.45 -0.25 
                            0.0 0.25 0.45 0.60 0.72 0.82 0.90 0.96 1.0))

(<a class=quiet href="extsnd.html#mapchannel">map-channel</a>
  (lambda (inval)
    (let ((index (+ 8.0 (* 8.0 inval))))
      (<em class=red>array-interp</em> compand-table index 17))))
</pre>


<p><a href="sndscm.html#soundinterp">sound-interp</a> in examp.scm fills an array with an entire sound,
then uses array-interp to read it.
</p>

<p>
dot-product is the usual "inner product" or "scalar product" (a name that should be banned from polite society).
We could define our own FIR filter using dot-product:
</p>

<pre class="indented">
(define (make-fr-filter coeffs)
  (list coeffs (make-float-vector (length coeffs))))

(define (fr-filter flt x)
  (let* ((coeffs (car flt))
	 (xs (cadr flt))
	 (xlen (length xs)))
    (float-vector-move! xs (- xlen 1) (- xlen 2) #t)
    (set! (xs 0) x)
    (<em class=red>dot-product</em> coeffs xs xlen)))
</pre>


<p>
edot-product returns the complex dot-product of the "data" argument (a vector) with <code>(exp (* freq i))</code>.
Here, "i" goes from 0 to data's size - 1.
"freq" and the elements of "data" can be complex, as can the return value.  See <a href="sndscm.html#stretchsoundviadft">stretch-sound-via-dft</a>
for an example.
</p>


<p>
mus-interpolate is the function used whenever table lookup interpolation is requested, as in
<a href="#delay">delay</a> or <a href="#wave-train">wave-train</a>. 
The "type" argument is one of the interpolation types (<code>mus-interp-linear</code>, for example).
</p>



<!--  CONTRAST-ENHANCEMENT  -->

<div class="innerheader">contrast-enhancement</div>

<pre class="indented">
<em class=def id="contrast-enhancement">contrast-enhancement</em> in-samp (fm-index 1.0)
</pre>

<p>contrast-enhancement passes its input to sin as a kind of phase modulation.
</p>

<pre class="indented">
(sin (+ (* input pi 0.5)
        (* index (sin (* input pi 2)))))
</pre>

<p>
This brightens the
input, helping it cut through a huge mix.
A similar (slightly simpler) effect is:
</p>

<pre class="indented">
(let ((mx (maxamp))) 
  (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> 
    (lambda (y) 
      (* mx (sin (/ (* pi y) mx))))))
</pre>

<p>This modulates the sound but keeps the output maxamp the same as the input.
See <a href="#moving-max">moving-max</a> for a similar function that does this kind of scaling throughout the sound,
resulting in a steady modulation, rather than an intensification of just the peaks.
And a sort of converse is <a href="sndscm.html#soundinterp">sound-interp</a>.
</p>



<!--  AMPLITUDE-MODULATE  -->

<div class="innerheader">ring-modulate, amplitude-modulate</div>

<pre class="indented">
<em class=def id="ring-modulate">ring-modulate</em> in1 in2                  ; returns <code>(* in1 in2)</code>
<em class=def id="amplitude-modulate">amplitude-modulate</em> am-carrier in1 in2  ; returns <code>(* in1 (+ am-carrier in2))</code>
</pre>

<table>
<tr>
<td>
<div class="scheme">
<pre class="indented">
(with-sound (:play #t)
  (let ((osc1 (make-oscil 440.0))
	(osc2 (make-oscil 220.0)))
    (do ((i 0 (+ i 1)))
	((= i 44100))
      (outa i (* 0.5 (amplitude-modulate 0.3 (oscil osc1) (oscil osc2)))))))
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="ruby">
<pre class="indented">
with_sound(:play, true) do
  osc1 = make_oscil(440.0);
  osc2 = make_oscil(220.0);
  44100.times do |i|
    outa(i, 0.5 * amplitude_modulate(0.3, oscil(osc1), oscil(osc2)), $output);
    end
  end.output
</pre>
</div>
</td>

</tr><tr>

<td>
<div class="forth">
<pre class="indented">
lambda: ( -- )
  440.0 make-oscil { osc1 }
  220.0 make-oscil { osc2 }
  44100 0 do
    i
    0.3            ( car )
    osc1 0 0 oscil ( in1 )
    osc2 0 0 oscil ( in2 ) amplitude-modulate  f2/ *output* outa drop
  loop
; :play #t with-sound drop
</pre>
</div>
</td>

</tr>
</table>


<p>ring-modulation is sometimes called "double-sideband-suppressed-carrier" modulation &mdash;
that is, amplitude modulation with the carrier omitted (set to 0.0 above).
The nomenclature here is a bit confusing &mdash; I can't remember now why I used
these names; think of "carrier" as "carrier amplitude" and "in1" as "carrier". Normal amplitude modulation using this function is:
</p>

<pre class="indented">
(define carrier (<a class=quiet href="#make-oscil">make-oscil</a> carrier-freq (* .5 pi)))
...
(amplitude-modulate 1.0 (<a class=quiet href="#oscil">oscil</a> carrier) signal)
</pre>

<p>Both of these functions take advantage of the "Modulation Theorem"; since
multiplying a signal by e^(iwt) translates its spectrum by w /
two pi Hz, multiplying by a sinusoid splits its spectrum into two equal parts
translated up and down by w/(two pi) Hz:
</p>

<img class="indented" src="pix/fmeq8.png" alt="coscos and sinsin">

<p>Waveshaping (via the Chebyshev polynomials) is an elaboration of AM.  For example, cos^2x is amplitude modulation of cos x
with itself, splitting into cos2x and cos0x.  T2 (that is, 2cos^2x - 1) then subtracts the cos0x term to return cos2x.
</p>
<p>
The upper sidebands may foldover (alias); if it's a problem, low-pass filter the inputs (surely no CLM user needs that silly reminder!).
</p>




<!--  FFT  -->

<div class="innerheader">FFT (fourier transform)</div>

<pre class="indented">
<em class=def id="fft">mus-fft</em> rdat idat fftsize sign
<em class=def id="make-fft-window">make-fft-window</em> type size (beta 0.0) (alpha 0.0)
<em class=def id="rectangulartopolar">rectangular-&gt;polar</em> rdat idat
<em class=def id="rectangulartomagnitudes">rectangular-&gt;magnitudes</em> rdat idat
<em class=def id="polartorectangular">polar-&gt;rectangular</em> rdat idat
<em class=def id="spectrum">spectrum</em> rdat idat window norm-type
<em class=def id="convolution">convolution</em> rdat idat size
<em class=def id="autocorrelate">autocorrelate</em> data
<em class=def id="correlate">correlate</em> data1 data2
</pre>

<p>mus-fft, spectrum, and convolution are the standard functions used everywhere.
fft is the Fourier transform, convolution convolves its arguments, and spectrum
returns '(magnitude (rectangular-&gt;polar (fft))).  The results are in dB (if "norm-type" is 0),
or linear and normalized to 1.0 ("norm-type" = 1), or linear unnormalized.
The name "mus-fft" is used to distuinguish clm's fft routine from Snd's; the
only difference is that mus-fft includes the fft length as an argument, whereas
<a href="extsnd.html#fft">fft</a> does not.  Here we use mus-fft to low-pass filter a sound:
</p>

<pre class="indented">
(let* ((len (mus-sound-framples "oboe.snd"))
       (fsize (expt 2 (ceiling (log len 2))))
       (rdata (make-float-vector fsize))
       (idata (make-float-vector fsize)))
  (file-&gt;array "oboe.snd" 0 0 len rdata)
  (<em class=red>mus-fft</em> rdata idata fsize 1)
  (let ((fsize2 (/ fsize 2))
        (cutoff (round (/ fsize 10))))
    (do ((i cutoff (+ i 1))
         (j (- fsize 1) (- j 1)))
        ((= i fsize2))
      (set! (rdata i) 0.0)
      (set! (idata i) 0.0)
      (set! (rdata j) 0.0)
      (set! (idata j) 0.0)))
  (<em class=red>mus-fft</em> rdata idata fsize -1)
  (array-&gt;file "test.snd" 
	       (float-vector-scale! rdata (/ 1.0 fsize)) 
	       len 
	       (srate "oboe.snd") 
	       1)
  (let ((previous-case (find-sound "test.snd")))
    (if (sound? previous-case)
	(close-sound previous-case)))
  (open-sound "test.snd"))
</pre>


<p>make-fft-window can return many of the standard windows including:
</p>

<pre class="indented">
bartlett-hann-window     bartlett-window        blackman2-window       blackman3-window
blackman4-window         bohman-window          cauchy-window          connes-window       
dolph-chebyshev-window   exponential-window     flat-top-window        gaussian-window     
hamming-window           hann-poisson-window    hann-window            kaiser-window
parzen-window            poisson-window         rectangular-window     riemann-window      
samaraki-window          tukey-window           ultraspherical-window  welch-window        
blackman5-window         blackman6-window       blackman7-window       blackman8-window       
blackman9-window         blackman10-window      rv2-window             rv3-window
rv4-window               mlt-sine-window        papoulis-window        dpss-window
sinc-window
</pre>

<p>rectangular-&gt;polar and polar-&gt;rectangular change how we view the FFT data: in polar or rectangular coordinates.
rectangular-&gt;magnitudes is the same as rectangular-&gt;polar, but only calculates the magnitudes.
autocorrelate performs an (in place) autocorrelation of 'data' (a float-vector).  See <a href="#moving-pitch">moving-pitch</a> in generators.scm, 
or <a href="sndscm.html#rubberdoc">rubber.scm</a>.
correlate performs an in-place cross-correlation of data1 and data2 (see, for example, <a href="sndscm.html#snddiffdoc">snddiff</a>).
</p>


<table class="method">
<tr><td class="methodtitle">FFTs</td></tr><tr><td>
<blockquote><small>
Hartley transform in Scheme: <a href="sndscm.html#dht">dht</a><br>
Spectral edit dialog: <a href="snd.html#editenvelope">Envelope Editor</a><br>
fft-based filter: <a href="sndscm.html#fftedit">fft-edit</a>, <a href="sndscm.html#fftenvedit">fft-env-edit</a>, <a href="sndscm.html#fftenvinterp">fft-env-interp</a>, <a href="sndscm.html#fftsquelch">fft-squelch</a>, <a href="sndscm.html#fftcancel">fft-cancel</a><br>
phase-vocoder: <a href="#phase-vocoder">phase-vocoder</a>. <a href="sndscm.html#pvocdoc">pvoc</a><br>
transposition via fft: <a href="sndscm.html#downoct">down-oct</a><br>
phase rotation via fft: <a href="sndscm.html#zerophase">zero-phase, rotate-phase</a><br>
duration change via autocorrelation: <a href="sndscm.html#rubberdoc">rubber-sound</a><br>
smoothing via fft: <a href="sndscm.html#fftsmoother">fft-smoother</a><br>
cross-synthesis: <a href="sndscm.html#crosssynthesis">cross-synthesis</a><br>
voiced-&gt;unvoiced effect: <a href="sndscm.html#voicedtounvoiced">voiced-&gt;unvoiced</a><br>
noise reduction: <a href="sndscm.html#cleanchannel">clean-channel</a>, <a href="sndscm.html#clminsdoc">anoi</a><br>
spectral modeling: <a href="sndscm.html#clminsdoc">pins</a><br>
polynomial approach to spectral multiplies (convolution): <a href="sndscm.html#spectralpolynomial">spectral-polynomial</a><br>
More transforms: <a href="sndscm.html#fractionalfouriertransform">fractional-fourier-transform</a>, <a href="sndscm.html#ztransform">z-transform</a> in dsp.scm<br>
bark, mel, erb scale display: <a href="sndscm.html#displaybarkfft">display-bark-fft</a><br>
apply function to spectrum, inverse fft: <a href="sndscm.html#filterfft">filter-fft</a><br>
</small></blockquote>
</td></tr></table>



<div class="header" id="instruments">Instruments</div>

<p>It's hard to decide what's an "instrument" in this context, but I think I'll treat
it as something that can be called as a note in a notelist (in with-sound) and
generate its own sound.
There are hundreds of instruments scattered around the documentation, and most of the
<a href="extsnd.html#mapchannel">map-channel</a> functions can be recast as instruments.
There are also several that represent "classic" computer music instruments; they
are listed here, documented in sndscm.html, and tested (via sample runs) in
test 23 in snd-test.
</p>


<table class="borderspaced">
<tr>
<th class="beige">instrument</th>
<th class="beige">function</th>
<th class="beige">CL</th>
<th class="beige">Scheme</th>
<th class="beige">Ruby</th>
<th class="beige">Forth</th>
</tr>
<tr><td class="br">complete-add</td>      
    <td class="br">additive synthesis</td>
    <td class="br">add.ins</td>
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">addflts</td>
    <td class="br">filters</td>
    <td class="br">addflt.ins</td> 
        <td class="br"><a href="dsp.scm">dsp.scm</a></td>
	<td class="br"><a href="dsp.rb">dsp.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">add-sound</td>
    <td class="br">mix in a sound file</td>
    <td class="br">addsnd.ins</td>
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">bullfrog et al</td>
    <td class="br">many animals (frogs, insects, birds)</td>
    <td class="br"></td>
    <td class="br"><a href="animals.scm">animals.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">anoi</td>
    <td class="br">noise reduction</td>
    <td class="br">anoi.ins</td>
        <td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
        <td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
        <td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">autoc</td>
    <td class="br">pitch estimation (Bret Battey)</td>
    <td class="br">autoc.ins</td>
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">badd</td>
    <td class="br">fancier additive synthesis (Doug Fulton)</td>
    <td class="br">badd.ins</td>
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">bandedwg</td>               
    <td class="br">Juan Reyes banded waveguide instrument</td>      
    <td class="br">bandedwg.ins</td>      
	<td class="br"><a href="bandedwg.cms">bandedwg.cms</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">fm-bell</td>
    <td class="br">fm bell sounds (Michael McNabb)</td>
    <td class="br">bell.ins</td>
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">bigbird</td>
    <td class="br">waveshaping</td>
    <td class="br">bigbird.ins</td>
	<td class="br"><a href="bird.scm">bird.scm</a></td>
	<td class="br"><a href="bird.rb">bird.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs, bird.fs</a></td>
    </tr>

<tr><td class="br">singbowl</td>               
    <td class="br">Juan Reyes Tibetan bowl instrument</td>      
    <td class="br">bowl.ins</td>      
	<td class="br"><a href="bowl.cms">bowl.cms</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">canter</td>            
    <td class="br">fm bagpipes (Peter Commons)</td>      
    <td class="br">canter.ins</td>
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">cellon</td>            
    <td class="br">feedback fm (Stanislaw Krupowicz)</td>      
    <td class="br">cellon.ins</td>    
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">cnvrev</td>            
    <td class="br">convolution (aimed at reverb)</td>      
    <td class="br">cnv.ins</td>
    <td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">moving sounds</td>     
    <td class="br">sound movement (Fernando Lopez-Lezcano)</td>      
    <td class="br">dlocsig.lisp</td> 
	<td class="br"><a href="dlocsig.scm">dlocsig.scm</a></td>
        <td class="br"><a href="dlocsig.rb">dlocsig.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">drone</td>             
    <td class="br">additive synthesis (bag.clm) (Peter Commons)</td>      
    <td class="br">drone.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">expandn</td>             
    <td class="br">granular synthesis (Michael Klingbeil)</td>      
    <td class="br">expandn.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">granulate-sound</td>   
    <td class="br">examples granular synthesis</td>      
    <td class="br">expsrc.ins</td>    
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">cross-fade</td>        
    <td class="br">cross-fades in the frequency domain</td>      
    <td class="br">fade.ins</td>        
	<td class="br"><a href="fade.scm">fade.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">filter-sound</td>      
    <td class="br">filter a sound file</td>      
    <td class="br">fltsnd.ins</td>    
	<td class="br"><a href="dsp.scm">dsp.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">stereo-flute</td>      
    <td class="br">physical model of a flute (Nicky Hind)</td>      
    <td class="br">flute.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">fm examples</td>       
    <td class="br">fm bell, gong, drum (Paul Weineke, Jan Mattox)</td>      
    <td class="br">fmex.ins</td>        
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">Jezar's reverb</td>    
    <td class="br">fancy reverb (Jezar Wakefield)</td>      
    <td class="br">freeverb.ins</td> 
	<td class="br"><a href="freeverb.scm">freeverb.scm</a></td>
	<td class="br"><a href="freeverb.rb">freeverb.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">fofins</td>
    <td class="br">FOF synthesis</td>
    <td class="br"><a href="#wave-train">sndclm.html</a></td> 
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">fullmix</td>           
    <td class="br">a mixer</td>      
    <td class="br">fullmix.ins</td>  
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">grani</td>             
    <td class="br">granular synthesis (Fernando Lopez-Lezcano)</td>      
    <td class="br">grani.ins</td>      
	<td class="br"><a href="grani.scm">grani.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">grapheq</td>           
    <td class="br">graphic equalizer (Marco Trevisani)</td>      
    <td class="br">grapheq.ins</td>  
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">fm-insect</td>         
    <td class="br">fm</td>      
    <td class="br">insect.ins</td>    
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">jc-reverb</td>         
    <td class="br">a reverberator (see also jlrev)</td>      
    <td class="br">jcrev.ins</td>      
	<td class="br"><a href="jcrev.scm">jcrev.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">fm-voice</td>          
    <td class="br">fm voice (John Chowning)</td>      
    <td class="br">jcvoi.ins</td>     
    <td class="br"><a href="jcvoi.scm">jcvoi.scm </a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">kiprev</td>            
    <td class="br">a fancier reverberator (Kip Sheeline)</td>      
    <td class="br">kiprev.ins</td>    
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">lbj-piano</td>         
    <td class="br">additive synthesis piano (Doug Fulton)</td>      
    <td class="br">lbjPiano.ins</td> 
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">rotates</td>               
    <td class="br">Juan Reyes Leslie instrument</td>      
    <td class="br">leslie.ins</td>      
	<td class="br"><a href="leslie.cms">leslie.cms</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">maraca</td>            
    <td class="br">Perry Cook's maraca physical models</td>      
    <td class="br">maraca.ins</td>    
	<td class="br"><a href="maraca.scm">maraca.scm</a></td>
	<td class="br"><a href="maraca.rb">maraca.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">maxfilter</td>         
    <td class="br">Juan Reyes modular synthesis</td>      
    <td class="br">maxf.ins</td>        
	<td class="br"><a href="maxf.scm">maxf.scm</a></td>
	<td class="br"><a href="maxf.rb">maxf.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">mlb-voice</td>         
    <td class="br">fm voice (Marc LeBrun)</td>      
    <td class="br">mlbvoi.ins</td>
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">moog filters</td>      
    <td class="br">Moog filters (Fernando Lopez-Lezcano)</td>      
    <td class="br">moog.lisp</td>      
	<td class="br"><a href="moog.scm">moog.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">fm-noise</td>          
    <td class="br">noise maker</td>      
    <td class="br">noise.ins</td>      
	<td class="br"><a href="noise.scm">noise.scm</a></td>
	<td class="br"><a href="noise.rb">noise.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">nrev</td>              
    <td class="br">a popular reverberator (Michael McNabb)</td>      
    <td class="br">nrev.ins</td>        
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">one-cut</td>           
    <td class="br">"cut and paste" (Fernando Lopez-Lezcano)</td>      
    <td class="br">one-cut.ins</td>  
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">p</td>                 
    <td class="br">Scott van Duyne's piano physical model</td>      
    <td class="br">piano.ins</td>      
	<td class="br"><a href="piano.scm">piano.scm</a></td>
	<td class="br"><a href="piano.rb">piano.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">pluck</td>             
    <td class="br">Karplus-Strong synthesis (David Jaffe)</td>      
    <td class="br">pluck.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">pqw</td>               
    <td class="br">waveshaping</td>      
    <td class="br">pqw.ins</td>          
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>	
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">pqw-vox</td>           
    <td class="br">waveshaping voice</td>      
    <td class="br">pqwvox.ins</td>    
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">physical models</td>   
    <td class="br">physical modelling (Perry Cook)</td>      
    <td class="br">prc-toolkit95.lisp</td>
	<td class="br"><a href="prc95.scm">prc95.scm</a></td>
	<td class="br"><a href="prc95.rb">prc95.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">various ins</td>       
    <td class="br">from Perry Cook's Synthesis Toolkit</td>      
    <td class="br">prc96.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">pvoc</td>              
    <td class="br">phase vocoder (Michael Klingbeil)</td>      
    <td class="br">pvoc.ins</td>        
	<td class="br"><a href="pvoc.scm">pvoc.scm</a></td>
	<td class="br"><a href="pvoc.rb">pvoc.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">resflt</td>            
    <td class="br">filters (Xavier Serra, Richard Karpen)</td>      
    <td class="br">resflt.ins</td>    
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">reson</td>             
    <td class="br">fm formants (John Chowning)</td>      
    <td class="br">reson.ins</td>      
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">ring-modulate</td>     
    <td class="br">ring-modulation of sounds (Craig Sapp)</td>      
    <td class="br">ring-modulate.ins</td>
	<td class="br"><a href="examp.scm">examp.scm</a></td>
	<td class="br"><a href="examp.rb">examp.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">rmsenv</td>            
    <td class="br">rms envelope of sound (Bret Battey)</td>      
    <td class="br">rmsenv.ins</td>    
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">pins</td>              
    <td class="br">spectral modelling</td>      
    <td class="br">san.ins</td>          
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">scanned</td>           
    <td class="br">Juan Reyes scanned synthesis instrument</td>      
    <td class="br">scanned.ins</td>  
	<td class="br"><a href="dsp.scm">dsp.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">scentroid</td>         
    <td class="br">spectral scentroid envelope (Bret Battey)</td>      
    <td class="br">scentroid.ins</td> 
	<td class="br"><a href="dsp.scm">dsp.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">shepard</td>            
    <td class="br">Shepard tones (Juan Reyes)</td>      
    <td class="br">shepard.ins</td>    
	<td class="br"><a href="sndscm.html#wsdoc">sndscm.html</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">singer</td>            
    <td class="br">Perry Cook's vocal tract physical model</td>      
    <td class="br">singer.ins</td>    
	<td class="br"><a href="singer.scm">singer.scm</a></td>
	<td class="br"><a href="singer.rb">singer.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">sndwarp</td>           
    <td class="br">Csound-like sndwarp generator (Bret Battey)</td>      
    <td class="br">sndwarp.ins</td>   
	<td class="br"><a href="sndwarp.scm">sndwarp.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">stochastic</td>        
    <td class="br">Bill Sack's stochastic synthesis implementation</td>      
    <td class="br">stochastic.ins</td><td class="br"><a href="stochastic.scm">stochastic.scm</a></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">bow</td>               
    <td class="br">Juan Reyes bowed string physical model</td>      
    <td class="br">strad.ins</td>      
	<td class="br"><a href="strad.scm">strad.scm</a></td>
	<td class="br"><a href="strad.rb">strad.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">track-rms</td>         
    <td class="br">rms envelope of sound file (Michael Edwards)</td>      
    <td class="br">track-rms.ins</td>        
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">fm-trumpet</td>        
    <td class="br">fm trumpet (Dexter Morrill)</td>      
    <td class="br">trp.ins</td>          
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">various ins</td>       
    <td class="br">granular synthesis, formants, etc</td>      
    <td class="br">ugex.ins</td>        
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
    <td></td>
    </tr>

<tr><td class="br">fm-violin</td>         
    <td class="br">fm violin (fmviolin.clm, popi.clm)</td>      
    <td class="br">v.ins</td>              
	<td class="br"><a href="v.scm">v.scm</a></td>
	<td class="br"><a href="v.rb">v.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">vowel</td>             
    <td class="br">vowels (Michelle Daniels)</td>      
    <td class="br">vowel.ins</td>      
    <td></td>
    <td></td>
    <td></td>
    </tr>

<tr><td class="br">vox</td>               
    <td class="br">fm voice (cream.clm)</td>      
    <td class="br">vox.ins</td>          
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">zc, zn</td>            
    <td class="br">interpolating delays</td>      
    <td class="br">zd.ins</td>            
	<td class="br"><a href="clm-ins.scm">clm-ins.scm</a></td>
	<td class="br"><a href="clm-ins.rb">clm-ins.rb</a></td>
	<td class="br"><a href="clm-ins.fs">clm-ins.fs</a></td>
    </tr>

<tr><td class="br">zipper</td>            
    <td class="br">The 'digital zipper' effect.</td>      
    <td class="br">zipper.ins</td>    
	<td class="br"><a href="zip.scm">zip.scm</a></td>
	<td class="br"><a href="zip.rb">zip.rb</a></td>
    <td></td>
    </tr>

</table>

<p>
If you develop
an interesting instrument that you're willing to share, please send it to me
(bil@ccrma.stanford.edu). 
<a href="sndscm.html#definstrument">definstrument</a>, the individual instruments, and <a href="sndscm.html#wsdoc">with-sound</a> are documented in 
<a href="sndscm.html">sndscm.html</a>.
</p>


<div class="related">
related documentation: &nbsp;
<a href="snd.html">snd.html &nbsp;</a>
<a href="extsnd.html">extsnd.html &nbsp;</a>
<a href="grfsnd.html">grfsnd.html &nbsp;</a>
<a href="sndscm.html">sndscm.html &nbsp;</a>
<a href="fm.html">fm.html &nbsp;</a>
<a href="sndlib.html">sndlib.html &nbsp;</a>
<a href="s7.html">s7.html &nbsp;</a>
<a href="index.html">index.html</a>
</div>

</body></html>