File: sndlib.html

package info (click to toggle)
snd 25.9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,016 kB
  • sloc: ansic: 291,818; lisp: 260,387; ruby: 71,134; sh: 3,293; fortran: 2,342; csh: 1,062; cpp: 294; makefile: 294; python: 87; xml: 27; javascript: 1
file content (1063 lines) | stat: -rw-r--r-- 37,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
<!DOCTYPE html>

<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>The Sound Library</title>
<style>
	EM.red {color:red; font-style:normal}
	EM.def {font-style:italic; font-weight: bold}
	H1 {text-align: center}
	UL {list-style-type: none}
	DIV.center {text-align: center}

	A {text-decoration:none}
	A:hover {text-decoration:underline}
	A.quiet {color:black; text-decoration:none}
	A.quiet:hover {text-decoration:underline}
	A.def {font-weight: bold; font-style: normal; text-decoration:none}

        DIV.topheader {margin-top: 10px;
	            margin-bottom: 40px;
	            border: 4px solid #00ff00; /* green */
		    background-color: #f5f5dc; /* beige */
		    font-family: 'Helvetica';
		    font-size: 30px;
		    text-align: center;
		    padding-top: 10px;
		    padding-bottom: 10px;
	           }
        DIV.innerheader {margin-top: 60px;
	            margin-bottom: 30px;
	            border: 4px solid #00ff00; /* green */
		    background-color: #eefdee; /* lightgreen */
		    padding-left: 30px;
		    width: 50%;
		    padding-top: 20px;
		    padding-bottom: 20px;
	           }
        DIV.header {margin-top: 50px;
	            margin-bottom: 10px;
		    font-size: 20px;
		    font-weight: bold;
	            border: 4px solid #00ff00; /* green */
		    background-color: #f5f5dc; /* beige */
		    text-align: center;
		    padding-top: 20px;
		    padding-bottom: 20px;
	           }
	DIV.related {text-align:center;
	             border: 1px solid lightgray;
		     margin-bottom: 1.0cm;
		     margin-top: 1.0cm;
		     padding-top: 10px;
		     padding-bottom: 10px;
		     background-color: #f0f0f0;
	            }
        TD.green {background-color: lightgreen;
	          padding-left: 1.0cm;}
	TD.beige {background-color: beige}
        BODY.body {background-color: #ffffff;    /* white */
	           margin-left: 0.5cm; 
                   }

</style>
</head>
<body class="body">

<div class="topheader">SndLib</div>
<div class="center">Bill Schottstaedt (bil@ccrma.stanford.edu)</div>


<div class="related">
related documentation: &nbsp;
<a href="snd.html">snd.html &nbsp;</a>
<a href="grfsnd.html">grfsnd.html &nbsp;</a>
<a href="extsnd.html">extsnd.html &nbsp;</a>
<a href="sndscm.html">sndscm.html &nbsp;</a>
<a href="sndclm.html">sndclm.html &nbsp;</a>
<a href="s7.html">s7.html &nbsp;</a>
<a href="s7-ffi.html">s7-ffi.html &nbsp;</a>
<a href="s7-scm.html">s7-scm.html &nbsp;</a>
<a href="index.html">index.html</a>
</div>

<div class="header">Contents</div>

<ul>
<li><a href="#introduction">Introduction</a>
<li><a href="#headers">Headers</a>
<li><a href="#data">Data</a>
<li><a href="#hardware">Hardware</a>
<li><a href="#music5">Music V</a>
<li><a href="#examples">Examples</a>
<ul>
<li><a href="#sndinfo">SndInfo</a>
<li><a href="#sndplay">SndPlay</a>
<li><a href="#sndsine">SndSine</a>
<li><a href="#clmosc">clmosc</a>
<li><a href="#otherexamples">Other Examples</a>
</ul>
<li><a href="#sndlibxen">Extension Languages</a>
</ul>



<div class="header" id="introduction">Introduction</div>

<p>sndlib is a collection of sound file and sound synthesis
functions written in C and running currently in various Unices
via OSS or ALSA, Mac OSX, and on old Windows systems.  
To build sndlib (sndlib.so if possible, and sndlib.a):
</p>
<pre>
  ./configure
  make
</pre>
<p>To install it, 'make install' &mdash; I've tested this process in Linux.
</p>

<p>The following files make up sndlib:</p>
<ul>
<li>io.c (read and write sound file data)
<li>headers.c (read and write sound file headers)
<li>audio.c (read and write sound hardware ports)
<li>sound.c (provide slightly higher level access to the preceding files)
<li>sndlib.h (header for the preceding files)
<li>sndlib2xen.c and sndlib-strings.h (tie preceding into s7, Ruby, or Forth)
<li>clm.c and clm.h (Music V implementation)
<li>clm2xen.c, vct.c and vct.h (tie clm.c into s7, Ruby, or Forth)
<li>xen.h, xen.c (the embedded language support)
</ul>

<p>
The naming scheme is more as less as follows:
the sndlib prefix is "mus" so
function names start with "mus_" and constants start with "MUS_".
Functions involving sound files referenced through the file name
start with "mus_sound_", functions involving files at a lower level
with "mus_file_", functions involving header access with "mus_header_",
functions involving audio hardware access with "mus_audio_",
and various
others just with "mus_" (number translations, etc).  Conversions use
the word "to" as in "mus_samples_to_bytes".  
</p>



<div class="header" id="headers">Headers</div>

<p>Sound files have built-in descriptors known as headers.
The following functions return the information in the header.
In each case the argument to the function is the full file
name of the sound file.
</p>
<pre>
  mus_long_t mus_sound_samples (const char *arg)        /* samples of sound according to header */
  mus_long_t mus_sound_framples (const char *arg)         /* samples per channel */
  float mus_sound_duration (const char *arg)       /* sound duration in seconds */
  mus_long_t mus_sound_length (const char *arg)         /* true file length in bytes */

  int mus_sound_datum_size (const char *arg)       /* bytes per sample */
  mus_long_t mus_sound_data_location (const char *arg)  /* location of first sample (bytes) */
  int mus_sound_bits_per_sample(const char *arg)   /* bits per sample */
  int mus_bytes_per_sample(int format)             /* bytes per sample */

  int mus_sound_chans (const char *arg)            /* number of channels (samples are interleaved) */
  int mus_sound_srate (const char *arg)            /* sampling rate */

  mus_header_t mus_sound_header_type (const char *arg)      /* header type (aiff etc) */
  mus_sample_t mus_sound_sample_type (const char *arg)      /* sample type (alaw etc) */
  int mus_sound_original_format (const char *arg)  /* unmodified sample type specifier */
  int mus_sound_type_specifier (const char *arg)   /* original header type identifier */

  char *mus_sound_comment (const char *arg)        /* comment if any */
  mus_long_t mus_sound_comment_start (const char *arg)  /* comment start (bytes) if any */
  mus_long_t mus_sound_comment_end (const char *arg)    /* comment end (bytes) */
  int *mus_sound_loop_info(const char *arg)        /* 8 loop vals (mode,start,end) then base-detune and base-note  (empty list if no loop info found) */

  int mus_sound_write_date (const char *arg)       /* bare (uninterpreted) file write date */
  int mus_sound_initialize(void)                   /* initialize everything */
</pre>

<p>The following can be used to provide user-understandable descriptions
of the header type and the sample type:</p>
<pre>
  char *mus_header_type_name(mus_header_t type)             /* "AIFF" etc */
  char *mus_sample_type_name(mus_sample_t samp_type)        /* "16-bit big endian linear" etc */
  char *mus_header_type_to_string(mus_header_t type)
  char *mus_sample_type_to_string(mus_sample_t samp_type)
  const char *mus_sample_type_short_name(mus_sample_t samp_type)
</pre>

<p>In all cases if an error occurs, -1 (MUS_ERROR) is returned, and some sort of error message
is printed; to customize error handling, use mus_set_error_handler and mus_set_print_handler.
</p>
<pre>
  mus_error_handler_t *mus_error_set_handler(mus_error_handler_t *new_error_handler);
  mus_print_handler_t *mus_print_set_handler(mus_print_handler_t *new_print_handler);
</pre>
<p>To decode the error indication, use:</p>
<pre>
  char *mus_error_type_to_string(int err);
</pre>

<p>Header data is cached internally, so the actual header is read
only if it hasn't already been read, or the write date has changed.
Loop points are also available, if there's interest.  To go below the
"sound" level, see headers.c &mdash; once a header has been read, all the
components that have been found can be accessed via functions such as
<b>mus_header_srate</b>.
</p>



<div class="header" id="data">Data</div>

<p>The following functions provide access to
sound file data:</p>
<pre>
  int mus_sound_open_input (const char *arg) 
  int mus_sound_open_output (const char *arg, int srate, int chans, mus_sample_t sample_type, mus_header_t header_type, const char *comment)
  int mus_sound_reopen_output (const char *arg, mus_header_t type, mus_sample_t format, mus_long_t data_loc)
  int mus_sound_close_input (int fd) 
  int mus_sound_close_output (int fd, mus_long_t bytes_of_data) 
  int mus_sound_read (int fd, int beg, int end, int chans, mus_float_t **bufs) 
  int mus_sound_write (int fd, int beg, int end, int chans, mus_float_t **bufs) 
  mus_long_t mus_sound_seek_frample (int fd, mus_long_t frample)
</pre>
<p>mus_float_t defaults to double.  It is set when
sndlib is built, and refers to Sndlib's internal representation of sample values.  
</p>

<p>mus_sound_open_input opens arg for reading.  Most standard
uncompressed formats are readable.  This function returns the associated
file number, or -1 upon failure. </p>

<p>mus_sound_close_input closes an open sound file.  Its argument is
the integer returned by mus_sound_open_input.</p>

<p>mus_sound_open_output opens (creates) the file arg, setting its sampling rate
to be srate, number of channels to chans, sample type
to sample_type (see sndlib.h for these types: MUS_BSHORT,
means 16-bit 2's complement big endian fractions),
header type to header_type (AIFF for example; the available
writable header types are MUS_AIFC (or AIFF), MUS_RIFF ('wave'), MUS_RF64,
MUS_NEXT, MUS_NIST, MUS_CAFF, and MUS_IRCAM), and comment (if any) to
comment.  The header is not considered complete without
an indication of the data size, but since this is rarely known
in advance, it is supplied when the sound file is closed.  mus_sound_open_output
function returns the associated file number.</p>

<p>mus_sound_close_output first updates the file's header to 
reflect the final data size bytes_of_data, then closes
the file.  The argument fd is the integer returned by
mus_sound_open_output.</p>

<p>mus_sound_read reads data from the file indicated by fd,
placing data in the array obufs as mus_float_t values (floats normally).
chans determines how many arrays of
samples are in obufs, which is filled by mus_sound_read from its
index beg to end with zero padding if necessary.
</p>

<p>mus_sound_write writes samples to the file indicated by fd,
starting for each of chans channels in obufs at
beg and ending at end.</p>

<p>mus_sound_seek_frample moves the read or write position for the
file indicated by fd to the desired frample.
</p>


<div class="header" id="hardware">Hardware</div>

<p>The following functions provide access to audio harware.  If an
error occurs, they return -1 (MUS_ERROR). </p>
<pre>
  int mus_audio_initialize(void)
  int mus_audio_open_output(int dev, int srate, int chans, mus_sample_t format, int size)
  int mus_audio_open_input(int dev, int srate, int chans, mus_sample_t format, int size)
  int mus_audio_write(int line, char *buf, int bytes)
  int mus_audio_close(int line)
  int mus_audio_read(int line, char *buf, int bytes)
</pre>

<p>mus_audio_initialize takes care of any necessary initialization.</p>

<p>mus_audio_open_input opens an audio port to read sound data (i.e. a microphone, line in, etc).
The input device is dev (see sndlib.h for details; when in doubt, use MUS_AUDIO_DEFAULT).
The input sampling rate is srate or as close as we
can get to it.  The number of input channels (if available) is chans.
The input sample type is format (when in doubt, use the macro MUS_AUDIO_COMPATIBLE_SAMPLE_TYPE).
And the input buffer size (if settable at all) is size (bytes).  This
function returns an integer to distinguish its port from others that might be
in use.
</p>

<p>mus_audio_open_output opens an audio port to write data (i.e. speakers, line out, etc).
The output device is dev (see sndlib.h).  Its sampling rate is srate, number
of channels chans, sample type format, and buffer size size.  This
function returns the associated line number of the output port.</p>

<p>mus_audio_close closes the port (input or output) associated with line.</p>

<p>mus_audio_read reads sound data from line.  The incoming 'bytes' bytes of data are placed
in buf.  If no error was returned from mus_audio_open_input, the data is in the format requested
by that function with channels interleaved.</p>

<p>mus_audio_write writes 'bytes' bytes of data in buf to the output
port associated with line.  This data is assumed to be in the format
requested by mus_audio_open_output with channels interleaved.</p>



<div class="header" id="music5">Music V</div>

<p>clm.c and friends implement all the generators found in CLM, a
music V implementation, and clm2xen.c ties these into the languages supported by the
xen package (currently s7, Ruby, and Forth).  The
primary clm documentation (which describes both the Scheme and Common Lisp implementations)
is clm.html found in clm-5.tar.gz or sndclm.html in snd.tar.gz alongside sndlib at ccrma-ftp.
The simplest way to try these out is to load them into Snd; see extsnd.html,
<a href="sndscm.html#exampdoc">examp.scm</a>, and <a href="sndscm.html#sndtestdoc">snd-test.scm</a> in snd.tar.gz for more details.
The following briefly describes the C calls (see clm.h).
</p>

<p>clm.c implements a bunch of generators and sound IO handlers.  Each generator
has three associated functions, make-gen, gen, and gen_p; the first
creates the generator (if needed), the second gets the next sample from
the generator, and the last examines some pointer to determine if it is
that kind of generator.  In addition, there are a variety of generic
functions that generators respond to: mus_free, for example, frees a
generator, and mus_frequency returns its current frequency, if relevant.
All generators are pointers to mus_any structs.  
</p>

<ul>
<li>oscil &mdash; generate a sine wave.
<ul>
<li>mus_any *mus_make_oscil (float freq, float phase)
<li>float mus_oscil (mus_any *o, float fm, float pm)
<li>int mus_oscil_p (mus_any *ptr)
</ul>
<pre>
  mus_any *osc;
  osc = mus_make_oscil(440.0, 0.0);
  if (mus_oscil_p(osc)) 
    fprintf(stderr, "%.3f, %.3f ", .1 * mus_oscil(osc, 0.0, 0.0), mus_frequency(osc));
  mus_free(osc);
</pre>
</ul>
<p>The other generators are:</p>
<ul>
<li>sum_of_cosines: generate a pulse train made up of cosines
<li>sum_of_sines: generate a sum of sines
<li>delay: a delay line with optional interpolation
<li>tap: read delay line
<li>comb: comb filter
<li>notch: notch filter
<li>all_pass: all pass filter
<li>table_lookup: interpolating table lookup
<li>sawtooth_wave, triangle_wave, pulse_train, square_wave
<li>rand: white noise (a step function)
<li>rand-interp: interpolating noise
<li>asymmetric_fm: a variety of FM
<li>one_zero, two_zero, one_pole, two_pole: basic filters
<li>formant: create a formant region (two poles, two zeros)
<li>sine_summation: another way to create sine waves
<li>filter, fir_filter, iir_filter: direct form filters of any order
<li>wave_train: sequence of possibly overlapping waves
<li>env: envelopes
<li>polyshape, polywave: waveshaping
<li>readin, file_to_sample, file_to_frample, in_any: file sample input
<li>locsig, sample_to_file, frample_to_file, out_any: file sample output
<li>src: sampling rate conversion
<li>granulate: granular synthesis
<li>convolve: convolution
<li>phase-vocoder: phase vocoder
<li>moving-average: moving window average
<li>ssb-am: single side-bank amplitude modulation
</ul>

<p>Some useful functions provided by clm.c are: </p>
<ul>
<li>float mus_radians_to_hz(float rads): convert radians/sample to cycles/sec.
<li>float mus_hz_to_radians(float hz): and the reverse.
<li>float mus_degrees_to_radians(float deg): convert degrees to radians.
<li>float mus_radians_to_degrees(float rads): and the reverse.
<li>float mus_srate(void): current sampling rate
<li>float mus_set_srate(float rate): set current sampling rate
<li>float mus_ring_modulate(float sig1, float sig2): multiply sig1 by sig2
<li>float mus_amplitude_modulate(float s1, float s2, float s3): AM
<li>float mus_contrast_enhancement(float sig, float index)
<li>float mus_dot_product(float *data1, float *data2, int size)
<li>void mus_clear_array(float *arr, int size)
<li>float mus_array_interp(float *wave, float phase, int size)
<li>float mus_polynomial(float *coeffs, float x, int ncoeffs);
<li>void mus_multiply_arrays(float *data, float *window, int len);
<li>void mus_rectangular_to_polar(float *rl, float *im, int size);
<li>void mus_spectrum(float *rdat, float *idat, float *window, int n, int type)
<li>void mus_fft(float *rl, float *im, int n, int isign)
<li>float *mus_make_fft_window(int size, int type, float beta)
<li>void mus_convolution(float* rl1, float* rl2, int n, int ipow)
<li>float *mus_partials_to_wave(float *partial_data, int partials, float *table, int table_size, int normalize)
<li>float *mus_phase_partials_to_wave(float *partial_data, int partials, float *table, int table_size, int normalize)
<li>float mus_samples_to_seconds(mus_long_t samps)
<li>mus_long_t mus_seconds_to_samples(float secs)
</ul>
<p>and various others: see clm.h.</p>

<p>The more useful generic functions are:</p>
<ul>
<li>int mus_free(mus_any *ptr)
<li>char *mus_describe(mus_any *gen)
<li>float mus_phase(mus_any *gen)
<li>float mus_set_phase(mus_any *gen, float val)
<li>float mus_set_frequency(mus_any *gen, float val)
<li>float mus_frequency(mus_any *gen)
<li>float mus_run(mus_any *gen, float arg1, float arg2)
<li>int mus_length(mus_any *gen)
<li>int mus_set_length(mus_any *gen, int len)
<li>float *mus_data(mus_any *gen)
<li>float *mus_set_data(mus_any *gen, float *data)
<li>char *mus_name(mus_any *ptr)
<li>float mus_scaler(mus_any *gen)
<li>float mus_set_scaler(mus_any *gen, float val)
<li>float mus_apply(mus_any *gen, ...)
</ul>

<p>Errors are reported
through mus_error which can be redirected or muffled.  See clm2xen.c for an example.
</p>



<div class="header" id="examples">Examples</div>

<div class="innerheader" id="sndinfo">sndinfo</div>


<p>This program prints out a description of a sound file (see sndinfo.c).</p>
<pre>
#include "mus-config.h"

#include &lt;math.h&gt;
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#ifndef _MSC_VER
 #include &lt;unistd.h&gt;
#endif
#include &lt;string.h&gt;
#include &lt;errno.h&gt;
#include &lt;time.h&gt;
#include "sndlib.h"

int main(int argc, char *argv[])
{
  int fd, chans, srate;
  mus_long_t samples;
  float length;
  time_t date;
  char *comment;
  char timestr[64];
  mus_sound_initialize();	    /* initialize sndlib */
  fd = mus_file_open_read(argv[1]); /* see if it exists */
  if (fd != -1)
    {
      close(fd);
      date = mus_sound_write_date(argv[1]);
      srate = mus_sound_srate(argv[1]);
      chans = mus_sound_chans(argv[1]);
      samples = mus_sound_samples(argv[1]);
      comment = mus_sound_comment(argv[1]); 
      length = (double)samples / (float)(chans * srate);
      strftime(timestr, 64, "%a %d-%b-%y %H:%M %Z", localtime(&amp;date));
      fprintf(stdout, "%s:\n  srate: %d\n  chans: %d\n  length: %f\n", 
	      argv[1], srate, chans, length);
      fprintf(stdout, "  header: %s\n  sample type: %s\n  written: %s\n  comment: %s\n", 
	      mus_header_type_name(mus_sound_header_type(argv[1])), 
	      mus_sample_type_name(mus_sound_sample_type(argv[1])), 
	      timestr, comment);
    }
  else
    fprintf(stderr, "%s: %s\n", argv[1], strerror(errno));
  return(0);
}

/* in Linux: gcc s1.c -o s1 -I. libsndlib.a -lasound -lm -ldl
 */
</pre>


<div class="innerheader" id="sndplay">sndplay</div>

<p>This code plays a sound file (see sndplay.c):</p>

<pre>
#include "mus-config.h"

#include &lt;math.h&gt;
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#ifndef _MSC_VER
 #include &lt;unistd.h&gt;
#endif
#include &lt;string.h&gt;
#include &lt;errno.h&gt;
#include &lt;time.h&gt;
#include "sndlib.h"

int main(int argc, char *argv[])
{
  int fd, afd, i, j, n, k, chans, srate, outbytes;
  mus_long_t framples;
  mus_float_t **bufs;
  short *obuf;
  #define BUFFER_SIZE 4096
  #define MUS_SAMPLE_TO_SHORT(n) ((short)((n) * (1 &lt;&lt; 15)))

  mus_sound_initialize();	
  fd = mus_sound_open_input(argv[1]);
  if (fd != -1)
    {
      chans = mus_sound_chans(argv[1]);
      srate = mus_sound_srate(argv[1]);
      framples = mus_sound_framples(argv[1]);
      outbytes = BUFFER_SIZE * chans * 2;
      bufs = (mus_float_t **)calloc(chans, sizeof(mus_float_t *));
      for (i = 0; i &lt; chans; i++) 
        bufs[i] = (mus_float_t *)calloc(BUFFER_SIZE, sizeof(mus_float_t));
      obuf = (short *)calloc(BUFFER_SIZE * chans, sizeof(short));
      afd = mus_audio_open_output(MUS_AUDIO_DEFAULT, srate, chans, MUS_AUDIO_COMPATIBLE_SAMPLE_TYPE, outbytes);
      if (afd != -1)
	{
	  for (i = 0; i &lt; framples; i += BUFFER_SIZE)
	    {
	      mus_sound_read(fd, 0, BUFFER_SIZE - 1, chans, bufs);
	      for (k = 0, j = 0; k &lt; BUFFER_SIZE; k++, j += chans)
		for (n = 0; n &lt; chans; n++) 
                  obuf[j + n] = MUS_SAMPLE_TO_SHORT(bufs[n][k]);
	      mus_audio_write(afd, (char *)obuf, outbytes);
	    }
	  mus_audio_close(afd);
	}
      mus_sound_close_input(fd);
      for (i = 0; i &lt; chans; i++) free(bufs[i]);
      free(bufs);
      free(obuf);
    }
  return(0);
}

/* in Linux: gcc s1.c -o s1 -I. libsndlib.a -lasound -lm -ldl
 */
</pre>



<div class="innerheader" id="sndsine">sndsine</div>

<p>This program writes a one channel NeXT/Sun sound file
containing a sine wave at 440 Hz.</p>

<pre>
#include "mus-config.h"

#include &lt;math.h&gt;
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#ifndef _MSC_VER
 #include &lt;unistd.h&gt;
#endif
#include &lt;string.h&gt;
#include &lt;errno.h&gt;
#include &lt;time.h&gt;
#include "sndlib.h"

int main(int argc, char *argv[])
{
  int fd, i, k, framples;
  float phase, incr;
  mus_float_t *obuf[1];
  #define BUFFER_SIZE 4096

  mus_sound_initialize();	
  fd = mus_sound_open_output(argv[1], 22050, 1, MUS_LDOUBLE, MUS_NEXT, "created by sndsine");
  if (fd != -1)
    {
      framples = 22050;
      phase = 0.0;
      incr = 2 * M_PI * 440.0 / 22050.0;
      obuf[0] = (mus_float_t *)calloc(BUFFER_SIZE, sizeof(mus_float_t));
      k = 0;
      for (i = 0; i &lt; framples; i++)
	{
	  obuf[0][k] = 0.1 * sin(phase); /* amp = .1 */
	  phase += incr;
	  k++;
	  if (k == BUFFER_SIZE)
	    {
	      mus_sound_write(fd, 0, BUFFER_SIZE - 1, 1, obuf);
	      k = 0;
	    }
	}
      if (k &gt; 0) mus_sound_write(fd, 0, k - 1, 1, obuf);
      mus_sound_close_output(fd, 22050 * mus_bytes_per_sample(MUS_LDOUBLE));
      free(obuf[0]);
    }
  return(0);
}

/* in Linux: gcc s1.c -o s1 -I. libsndlib.a -lasound -lm -ldl
 * s1 ./test.snd
 *   we need a "complete" output file name here
 */
</pre>



<div class="innerheader" id="clmosc">clmosc</div>

<p>This is program uses the clm.c oscillator and output functions to write the same sine wave 
as we wrote above.</p>
<pre>
#include "mus-config.h"

#include &lt;math.h&gt;
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#ifndef _MSC_VER
 #include &lt;unistd.h&gt;
#endif
#include &lt;string.h&gt;
#include &lt;errno.h&gt;
#include &lt;time.h&gt;

#include "sndlib.h"
#include "clm.h"

int main(int argc, char *argv[])
{
  int i;
  mus_any *osc, *op;
  mus_sound_initialize();	
  osc = mus_make_oscil(440.0, 0.0);
  op = mus_make_sample_to_file("test.snd", 1, MUS_BSHORT, MUS_NEXT);
  if (op) 
    for (i = 0; i &lt; 22050; i++) 
      mus_sample_to_file(op, i, 0, .1 * mus_oscil(osc, 0.0, 0.0));
  mus_free(osc);
  if (op) mus_free(op);
  return(0);
}

/* in Linux: gcc s1.c -o s1 -I. libsndlib.a -lasound -lgsl -lm -ldl
 */
</pre>

<p>Here is the fm-violin and a sample with-sound call:</p>
<pre>
#include "mus-config.h"

#include &lt;math.h&gt;
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#ifndef _MSC_VER
 #include &lt;unistd.h&gt;
#endif
#include &lt;string.h&gt;
#include &lt;errno.h&gt;
#include &lt;time.h&gt;

#include "sndlib.h"
#include "clm.h"

static int feq(double x, int i) {return(fabs(x - i) &lt; .00001);}

void fm_violin(double start, double dur, double frequency, double amplitude, double fm_index, mus_any *op)
{
  double pervibfrq = 5.0,
         ranvibfrq = 16.0,
         pervibamp = .0025,
         ranvibamp = .005,
         noise_amount = 0.0,
         noise_frq = 1000.0,
         gliss_amp = 0.0,
         fm1_rat = 1.0,
         fm2_rat = 3.0,
         fm3_rat = 4.0,
         reverb_amount = 0.0,
         degree = 0.0, 
         distance = 1.0;
  double fm_env[] = {0.0, 1.0, 25.0, 0.4, 75.0, 0.6, 100.0, 0.0};
  double amp_env[] = {0.0, 0.0,  25.0, 1.0, 75.0, 1.0, 100.0, 0.0};
  double frq_env[] = {0.0, -1.0, 15.0, 1.0, 25.0, 0.0, 100.0, 0.0};
  int beg = 0, end, easy_case = 0, npartials, i;
  double *coeffs, *partials;
  double frq_scl, maxdev, logfrq, sqrtfrq, index1, index2, index3, norm;
  double vib = 0.0, modulation = 0.0, fuzz = 0.0, indfuzz = 1.0;

  mus_any *carrier, *fmosc1, *fmosc2, *fmosc3, *ampf;
  mus_any *indf1, *indf2, *indf3, *fmnoi = NULL, *pervib, *ranvib, *frqf = NULL, *loc;

  beg = start * mus_srate();
  end = beg + dur * mus_srate();
  frq_scl = mus_hz_to_radians(frequency);
  maxdev = frq_scl * fm_index;
  if ((noise_amount == 0.0) &amp;&amp; 
      (feq(fm1_rat, floor(fm1_rat))) &amp;&amp; 
      (feq(fm2_rat, floor(fm2_rat))) &amp;&amp; 
      (feq(fm3_rat, floor(fm3_rat)))) 
    easy_case = 1;
  logfrq = log(frequency);
  sqrtfrq = sqrt(frequency);
  index1 = maxdev * 5.0 / logfrq; 
  if (index1 &gt; M_PI) index1 = M_PI;
  index2 = maxdev * 3.0 * (8.5 - logfrq) / (3.0 + frequency * .001); 
  if (index2 &gt; M_PI) index2 = M_PI;
  index3 = maxdev * 4.0 / sqrtfrq; 
  if (index3 &gt; M_PI) index3 = M_PI;
  if (easy_case)
    {
      npartials = floor(fm1_rat);
      if ((floor(fm2_rat)) &gt; npartials) npartials = floor(fm2_rat);
      if ((floor(fm3_rat)) &gt; npartials) npartials = floor(fm3_rat);
      npartials++;
      partials = (double *)calloc(npartials, sizeof(double));
      partials[(int)(fm1_rat)] = index1;
      partials[(int)(fm2_rat)] = index2;
      partials[(int)(fm3_rat)] = index3;
      coeffs = mus_partials_to_polynomial(npartials, partials, 1);
      norm = 1.0;
    }
  else norm = index1;
  carrier = mus_make_oscil(frequency, 0.0);
  if (easy_case == 0)
    {
      fmosc1 = mus_make_oscil(frequency * fm1_rat, 0.0);
      fmosc2 = mus_make_oscil(frequency * fm2_rat, 0.0);
      fmosc3 = mus_make_oscil(frequency * fm3_rat, 0.0);
    }
  else fmosc1 = mus_make_oscil(frequency, 0.0);
  ampf = mus_make_env(amp_env, 4, amplitude, 0.0, 1.0, dur, 0, NULL);
  indf1 = mus_make_env(fm_env, 4, norm, 0.0, 1.0, dur, 0, NULL);
  if (gliss_amp != 0.0) 
    frqf = mus_make_env(frq_env, 4, gliss_amp * frq_scl, 0.0, 1.0, dur, 0, NULL);
  if (easy_case == 0)
    {
      indf2 = mus_make_env(fm_env, 4, index2, 0.0, 1.0, dur, 0, NULL);
      indf3 = mus_make_env(fm_env, 4, index3, 0.0, 1.0, dur, 0, NULL);
    }
  pervib = mus_make_triangle_wave(pervibfrq, frq_scl * pervibamp, 0.0);
  ranvib = mus_make_rand_interp(ranvibfrq, frq_scl * ranvibamp);
  if (noise_amount != 0.0) fmnoi = mus_make_rand(noise_frq, noise_amount * M_PI);
  loc = mus_make_locsig(degree, distance, reverb_amount, 1, (mus_any *)op, 0, NULL, MUS_INTERP_LINEAR);
  for (i = beg; i &lt; end; i++)
    {
      if (noise_amount != 0.0) fuzz = mus_rand(fmnoi, 0.0);
      if (frqf) vib = mus_env(frqf); else vib = 0.0;
      vib += mus_triangle_wave(pervib, 0.0) + mus_rand_interp(ranvib, 0.0);
      if (easy_case)
	modulation = mus_env(indf1) * 
                     mus_polynomial(coeffs, mus_oscil(fmosc1, vib, 0.0), npartials);
      else
	modulation = mus_env(indf1) * mus_oscil(fmosc1, (fuzz + fm1_rat * vib), 0.0) + 
	             mus_env(indf2) * mus_oscil(fmosc2, (fuzz + fm2_rat * vib), 0.0) + 
	             mus_env(indf3) * mus_oscil(fmosc3, (fuzz + fm3_rat * vib), 0.0);
      mus_locsig(loc, i, mus_env(ampf) * mus_oscil(carrier, vib + indfuzz * modulation, 0.0));
    }
  mus_free(pervib);
  mus_free(ranvib);
  mus_free(carrier);
  mus_free(fmosc1);
  mus_free(ampf);
  mus_free(indf1);
  if (fmnoi) mus_free(fmnoi);
  if (frqf) mus_free(frqf);
  if (!(easy_case))
    {
      mus_free(indf2);
      mus_free(indf3);
      mus_free(fmosc2);
      mus_free(fmosc3);
    }
  else
    free(partials);
  mus_free(loc);
}

int main(int argc, char *argv[])
{
  mus_any *op = NULL;
  mus_sound_initialize();	
  op = mus_make_sample_to_file("test.snd", 1, MUS_BSHORT, MUS_NEXT);
  if (op)
    {
      fm_violin(0.0, 20.0, 440.0, .3, 1.0, op);
      mus_free(op);
    }
  return(0);
}
/* in Linux: gcc s1.c -o s1 -I. libsndlib.a -lasound -lgsl -lm -ldl
 */
</pre>

<p>The CLM version is v.ins, the Scheme version can be found in <a href="sndscm.html#vdoc">v.scm</a>,
and the Ruby version is in v.rb.
This code can be run:</p>
<pre>
cc v.c -o vc -O2 -lm io.o headers.o audio.o sound.o clm.o -DLINUX
</pre>

<p>For generators such as src that take a function for "as-needed" input,
you can use something like:</p>
<pre>
static mus_float_t input_as_needed(void *arg, int dir) {/* get input here &mdash; arg is "sf" passed below */}

static SCM call_phase-vocoder(void)
{
  mus_any *pv;
  int sf; /* file channel or whatever */
  pv = mus_make_phase_vocoder(NULL, 512, 4, 128, 0.5, NULL, NULL, NULL, (void *)sf);
  mus_phase_vocoder(pv, &amp;input_as_needed);
  /* etc */
}

</pre>

<!--
void src_file(const char *file, double ratio)
{
  mus_any **rds, **srcs;
  char *temp_out;
  const char *comment;
  int k, chan, chans, width = 32, out_fd, sample_type, header_type, buffer_size;
  mus_long_t samp, old_samps, new_samps;
  mus_float_t old_srate, new_srate;
  mus_float_t **obufs;

  old_srate = mus_srate();
  new_srate = mus_sound_srate(file); /* need have no connection with previous CLM srate setting */
  mus_set_srate(new_srate);

  chans = mus_sound_chans(file);
  sample_type = mus_sound_sample_type(file);
  header_type = mus_sound_header_type(file);
  comment = mus_sound_comment(file);
  buffer_size = mus_file_buffer_size();
  old_samps = mus_sound_framples(file);
  new_samps = old_samps / ratio;  /* old-srate/new-srate in-coming */

  temp_out = snd_tempnam();
  out_fd = mus_sound_open_output(temp_out, new_srate, chans, sample_type, header_type, comment);

  srcs = (mus_any **)malloc(chans * sizeof(mus_any *));
  rds = (mus_any **)malloc(chans * sizeof(mus_any *));
  obufs = (mus_float_t **)malloc(chans * sizeof(mus_float_t));

  for (chan = 0; chan < chans; chan++)
    {
      rds[chan] = mus_make_readin(file, chan, 0, 1);
      srcs[chan] = mus_make_src(NULL, ratio, width, (void *)rds[chan]);
      obufs[chan] = (mus_float_t *)malloc(buffer_size * sizeof(mus_float_t));
    }

  for (k = 0, samp = 0; samp < new_samps; samp++)
    {
      for (chan = 0; chan < chans; chan++)
	obufs[chan][k] = MUS_FLOAT_TO_SAMPLE(mus_src(srcs[chan], 0.0, &input_as_needed));
      k++;
      if (k == buffer_size)
	{
	  mus_sound_write(out_fd, 0, buffer_size - 1, chans, obufs);
	  k = 0;
	}
    }
  if (k > 0) 
    mus_sound_write(out_fd, 0, k - 1, chans, obufs);

  mus_sound_close_output(out_fd, new_samps * chans * mus_bytes_per_sample(sample_type));
  mus_sound_forget(file);

  for (chan = 0; chan < chans; chan++)
    {
      free(obufs[chan]);
      mus_free(srcs[chan]);
      mus_free(rds[chan]);
    }
  free(obufs);
  free(srcs);
  free(rds);

  move_file(temp_out, file);
  free(temp_out);
  mus_set_srate(old_srate);
}
-->

<p>
Michael Scholz
has written a package using these functions, and several CLM instruments:
see the sndins directory, and in particular the README file, for details.
</p>




<div class="innerheader" id="otherexamples">Other examples</div>

<p>The primary impetus for the sound library was the development
of Snd and CLM, both of which are freely available.
</p>



<div class="header" id="sndlibxen">Extension Languages</div>

<p>Much of sndlib is accessible at run time in any program that has one of
the languages supported by the xen package (s7, Ruby, Forth);
the modules sndlib2xen and clm2xen tie most of the library into that language
making it possible to call the library functions from its interpreter.  The documentation
is scattered around, unfortunately: the clm side is in sndclm.html and extsnd.html with many
examples in Snd's <a href="sndscm.html#exampdoc">examp.scm</a>.  Most of these are obvious translations of the
constants and functions described above into Scheme.  To initialize sndlib, call Init_sndlib,
or, at run time, use s7's loader and s7_init_sndlib:
</p>

<pre>
(let ((sndlib (load "libsndlib.so" 
                (inlet (curlet) :init_func 's7_init_sndlib))))
  ....)
</pre>

<p>Init_sndlib ties most of the functions mentioned above into the extension language (s7, Forth, or Ruby).
</p>

<pre>
  mus-next mus-aifc mus-rf64 mus-riff mus-nist mus-raw mus-ircam mus-aiff mus-bicsf mus-soundfont mus-voc mus-svx mus-caff

  mus-bshort mus-lshort mus-mulaw mus-alaw mus-byte mus-ubyte mus-bfloat
  mus-lfloat mus-bint mus-lint mus-b24int mus-l24int mus-bdouble mus-ldouble
  mus-ubshort mus-ulshort

  mus-sound-samples (filename)             samples of sound according to header (can be incorrect)
  mus-sound-framples (filename)              framples of sound according to header (can be incorrect)
  mus-sound-duration (filename)            duration of sound in seconds
  mus-sound-datum-size (filename)          bytes per sample
  mus-sound-data-location (filename)       location of first sample (bytes)
  mus-sound-chans (filename)               number of channels (samples are interleaved)
  mus-sound-srate (filename)               sampling rate
  mus-sound-header-type (filename)         header type (e.g. mus-aiff)
  mus-sound-sample-type (filename)         sample type (e.g. mus-bshort)
  mus-sound-length (filename)              true file length (bytes)
  mus-sound-type-specifier (filename)      original header type identifier
  mus-sound-maxamp(filename)               returns a list of max amps and locations thereof
  mus-sound-loop-info(filename)            returns list of 4 loop values (the actual mark positions here, not
                                           the so-called id's), then base-note and base-detune
  
  mus-header-type-name (type)              e.g. "AIFF"
  mus-sample-type-name (format)            e.g. "16-bit big endian linear"
  mus-sound-comment (filename)             header comment, if any
  mus-sound-write-date (filename)          sound write date
  sample-type-bytes-per-sample (format)    bytes per sample

  mus-sound-open-input (filename)          open filename (a sound file) returning an integer ("fd" below)
  mus-sound-open-output (filename srate chans sample-type header-type comment)
                                           create a new sound file with the indicated attributes, return "fd"
  mus-sound-reopen-output (filename chans sample-type header-type data-location)
                                           reopen (without disturbing) filename, ready to be written
  mus-sound-close-input (fd)               close sound file
  mus-sound-close-output (fd bytes)        close sound file and update its length indication, if any
  mus-sound-read (fd beg end chans sdata)  read data from sound file fd loading the data array from beg to end
                                           sdata is a float-vector that should be able to accommodate the read
  mus-sound-write (fd beg end chans sdata) write data to sound file fd
  mus-sound-seek-frample (fd frample)          move to frample in sound file fd
  mus-file-clipping (fd)                   whether output is clipped in file 'fd'
  mus-clipping ()                          global clipping choice

  mus-oss-set-buffers (num size)           in Linux (OSS) sets the number and size of the OSS "fragments"

;;; this function prints header information
(define info
  (lambda (file)
    (string-append
     file
     ": chans: " (number-&gt;string (mus-sound-chans file))
     ", srate: " (number-&gt;string (mus-sound-srate file))
     ", " (mus-header-type-name (mus-sound-header-type file))
     ", " (mus-sample-type-name (mus-sound-sample-type file))
     ", len: " (number-&gt;string
                (/ (mus-sound-samples file)
                   (* (mus-sound-chans file) (mus-sound-srate file)))))))
</pre>


<div class="innerheader">s7 repl and sndlib</div>

<pre>
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;unistd.h&gt;

#include "mus-config.h"
#include "s7.h"
#include "xen.h"
#include "clm.h"
#include "clm2xen.h"

static void mus_error_to_s7(int type, char *msg)
{
  s7_error(s7,                               /* s7 is declared in xen.h, defined in xen.c */
	   s7_make_symbol(s7, "mus-error"),
	   s7_cons(s7, s7_make_string(s7, msg), s7_nil(s7)));
}

int main(int argc, char **argv)
{
  s7 = s7_init();

  s7_xen_initialize(s7);
  Init_sndlib();
  mus_error_set_handler(mus_error_to_s7); /* catch low-level errors and pass them to s7-error */

  if (argc == 2)
    {
      fprintf(stderr, "load %s\n", argv[1]);
      s7_load(s7, argv[1]);
    }
  else 
    {
      s7_load(s7, "repl.scm");
      s7_eval_c_string(s7, "((*repl* 'run))");
    }

  return(0);
}

/* gcc -o sl sl.c /home/bil/test/sndlib/libsndlib.a -Wl,-export-dynamic -lasound -lm -I. -ldl -lgsl -lgslcblas -lfftw3
 *
 * (load "sndlib-ws.scm")
 * (load "v.scm")
 * (set! *clm-player* (lambda (file) (system (format #f "sndplay ~A" file))))
 * (with-sound (:play #t) (fm-violin 0 1 330 .1))
 */
</pre>


<div class="related">
related documentation: &nbsp;
<a href="snd.html">snd.html &nbsp;</a>
<a href="grfsnd.html">grfsnd.html &nbsp;</a>
<a href="extsnd.html">extsnd.html &nbsp;</a>
<a href="sndscm.html">sndscm.html &nbsp;</a>
<a href="sndclm.html">sndclm.html &nbsp;</a>
<a href="s7.html">s7.html &nbsp;</a>
<a href="s7-ffi.html">s7-ffi.html &nbsp;</a>
<a href="s7-scm.html">s7-scm.html &nbsp;</a>
<a href="index.html">index.html</a>
</div>

</body>
</html>