1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951
|
<!DOCTYPE html>
<html lang="en">
<!-- documentation for some of the Scheme/Ruby/Forth code included with Snd -->
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>Scheme, Ruby, and Forth Functions included with Snd</title>
<style>
EM.red {color:red; font-style:normal}
EM.error {color:chocolate; font-style:normal}
EM.emdef {font-weight: bold; font-style: normal; padding-right: 0.2cm}
H1 {text-align: center}
UL {list-style-type: none}
DIV.greencenter {text-align: center; background-color: lightgreen; padding-top: 0.1cm; padding-bottom: 0.1cm;}
A {text-decoration:none}
A:hover {text-decoration:underline}
A.quiet {color:black; text-decoration:none}
A.quiet:hover {text-decoration:underline}
A.def {font-weight: bold; font-style: normal; text-decoration:none; padding-right: 0.2cm}
EM.def {font-weight: bold; font-style: normal; text-decoration:none; padding-right: 0.2cm}
TD.center {text-align: center}
PRE.indented {padding-left: 1.0cm}
IMG.indented {padding-left: 1.0cm}
IMG.noborder {border: none; padding-left: 1.0cm}
DIV.center {text-align: center}
BODY.body {background-color: #ffffff; /* white */
margin-left: 0.5cm;
margin-right: 0.5cm;
}
TABLE.grayborder {margin-top: 0.5cm;
margin-bottom: 0.5cm;
margin-left: 1.0cm;
border: 8px solid gray;
padding-left: 0.1cm;
padding-right: 0.1cm;
padding-top: 0.1cm;
padding-bottom: 0.1cm;
}
DIV.topheader {margin-top: 10px;
margin-bottom: 40px;
border: 4px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
font-family: 'Helvetica';
font-size: 30px;
text-align: center;
padding-top: 10px;
padding-bottom: 10px;
}
DIV.header {margin-top: 50px;
margin-bottom: 10px;
font-size: 20px;
font-weight: bold;
border: 4px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
text-align: center;
padding-top: 20px;
padding-bottom: 20px;
}
DIV.innerheader {margin-top: 60px;
margin-bottom: 30px;
border: 4px solid #00ff00; /* green */
background-color: #eefdee; /* lightgreen */
padding-left: 30px;
width: 50%;
padding-top: 20px;
padding-bottom: 20px;
}
DIV.related {text-align:center;
border: 1px solid lightgray;
margin-bottom: 1.0cm;
margin-top: 1.0cm;
padding-top: 10px;
padding-bottom: 10px;
background-color: #f0f0f0;
}
DIV.inset {margin-left: 2.0cm;
margin-right: 2.0cm;
margin-top: 0.5cm;
margin-bottom: 0.5cm;
background-color: #f0f0f0;
padding-left: 0.25cm;
padding-right: 0.25cm;
padding-top: 0.25cm;
padding-bottom: 0.25cm;
}
DIV.seealso {border: 1px solid lightgray;
margin-bottom: 0.5cm;
margin-top: 0.5cm;
padding-top: 10px;
padding-bottom: 10px;
padding-left: 0.5cm;
background-color: #f0f0f0;
}
DIV.simple {margin-left: 1cm;
margin-bottom: 0.5cm;
}
#contents_table tbody tr:nth-child(odd) { background-color: #f2f4ff; }
TABLE.method {margin-top: 0.5cm;
margin-bottom: 0.5cm;
margin-left: 1.0cm;
border: 1px solid gray;
padding-left: 0.1cm;
padding-right: 0.1cm;
padding-top: 0.1cm;
padding-bottom: 0.1cm;
}
TH.title {background-color: lightgreen;
border: 1px solid gray;
padding-top: 0.2cm;
padding-bottom: 0.2cm;
text-align: center;
}
TD.methodtitle {background-color: beige;
border: 1px solid gray;
padding-top: 0.2cm;
padding-bottom: 0.2cm;
text-align: center;
}
DIV.separator {margin-top: 40px;
margin-bottom: 15px;
border: 2px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
padding-top: 4px;
width: 30%;
border-radius: 4px;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
}
DIV.scheme {background-color: #f2f4ff;
border: 1px solid gray;
padding-right: 1.0cm;
margin-bottom: 0.2cm;
}
DIV.ruby {background-color: #fbfbf0;
border: 1px solid gray;
padding-right: 1.0cm;
margin-bottom: 0.2cm;
}
DIV.forth {background-color: #eefdee;
border: 1px solid gray;
padding-right: 1.0cm;
margin-bottom: 0.2cm;
}
DIV.spacer {margin-top: 1.0cm;
}
</style>
</head>
<body class="body">
<div class="topheader" id="introduction">Scheme, Ruby, and Forth Functions included with Snd</div>
<div class="related">
related documentation:
<a href="snd.html">snd.html </a>
<a href="extsnd.html">extsnd.html </a>
<a href="grfsnd.html">grfsnd.html </a>
<a href="sndclm.html">sndclm.html </a>
<a href="sndlib.html">sndlib.html </a>
<a href="fm.html">fm.html </a>
<a href="s7.html">s7.html </a>
<a href="s7-ffi.html">s7-ffi.html </a>
<a href="s7-scm.html">s7-scm.html </a>
<a href="index.html">index.html</a>
</div>
<p>This file describes the Scheme, Ruby, and Forth code included with Snd.
To use this code, load the relevant file:
</p>
<pre class="indented">
Scheme: (load "dsp.scm") or (load-from-path "dsp.scm")
Ruby: load "dsp.rb"
Forth: "dsp.fs" file-eval
</pre>
<p>
To start Snd with
the file already loaded, snd -l v.scm, or put the load statement in your initialization file.
For help with Forth and Snd/CLM, see the Forth documentation section "Snd, CLM, and Fth".
</p>
<table class="grayborder"><tr><td>
<table id="contents_table">
<tr><th colspan=2 class="title">Contents</th></tr>
<tbody>
<tr><td><a href="#analogfilterdoc">analog-filter</a></td>
<td>standard IIR filters (Butterworth, Chebyshev, Bessel, Elliptic)</td></tr>
<tr><td><a href="#animalsdoc">animals</a></td>
<td>a bunch of animals</td></tr>
<tr><td><a href="#autosavedoc">autosave</a></td>
<td>auto-save (edit backup) support</td></tr>
<tr><td><a href="#bessdoc">bess</a></td>
<td>FM demo</td></tr>
<tr><td><a href="#binaryiodoc">binary-io</a></td>
<td>binary files</td></tr>
<tr><td><a href="#birddoc">bird</a></td>
<td>North-American birds</td></tr>
<tr><td><a href="#cleandoc">clean</a></td>
<td>noise reduction</td></tr>
<tr><td><a href="#clminsdoc">clm-ins, jcvoi</a></td>
<td>various CLM instruments</td></tr>
<tr><td><a href="#dlocsigdoc">dlocsig</a></td>
<td>moving sounds (Michael Scholz)</td></tr>
<tr><td><a href="#drawdoc">draw</a></td>
<td>graphics additions</td></tr>
<tr><td><a href="#dspdoc">dsp</a></td>
<td>various DSP-related procedures</td></tr>
<tr><td><a href="#envdoc">env</a></td>
<td>envelope functions</td></tr>
<tr><td><a href="#enveddoc">enved</a></td>
<td>envelope editor</td></tr>
<tr><td><a href="#exampdoc">examp</a></td>
<td>many examples</td></tr>
<tr><td><a href="#extensionsdoc">extensions</a></td>
<td>various generally useful Snd extensions</td></tr>
<tr><td><a href="#fadedoc">fade</a></td>
<td>frequency-domain cross-fades</td></tr>
<tr><td><a href="#freeverbdoc">freeverb</a></td>
<td>a reverb</td></tr>
<tr><td><a href="sndclm.html#othergenerators">generators.scm</a></td>
<td>a bunch of generators</td></tr>
<tr><td><a href="#granidoc">grani</a></td>
<td>CLM's grani (Fernando Lopez-Lezcano) translated by Mike Scholz</td></tr>
<tr><td><a href="#heartdoc">heart</a></td>
<td>use Snd with non-sound (arbitrary range) data</td></tr>
<tr><td><a href="#hooksdoc">hooks</a></td>
<td >functions related to hooks</td></tr>
<tr><td><a href="#indexdoc">index</a></td>
<td>snd-help extension</td></tr>
<tr><td><a href="#dotemacs">inf-snd.el, DotEmacs</a></td>
<td>Emacs subjob support (Michael Scholz, Fernando Lopez-Lezcano)</td></tr>
<tr><td><a href="#jcrevdoc">jcrev</a></td>
<td>John Chowning's ancient reverb</td></tr>
<tr><td><a href="#lintdoc">lint</a></td>
<td>A lint program for scheme code</td></tr>
<tr><td><a href="#maracadoc">maraca</a></td>
<td>Perry Cook's maraca physical model</td></tr>
<tr><td><a href="#marksdoc">marks</a></td>
<td>functions related to marks</td></tr>
<tr><td><a href="#maxfdoc">maxf</a></td>
<td>Max Mathews resonator</td></tr>
<tr><td><a href="#menusdoc">menus</a></td>
<td>additional menus</td></tr>
<tr><td><a href="#mixdoc">mix</a></td>
<td>functions related to mixes</td></tr>
<tr><td><a href="#moogdoc">moog</a></td>
<td>Moog filter</td></tr>
<tr><td><a href="#musglyphs">musglyphs</a></td>
<td>Music notation symbols (from CMN)</td></tr>
<tr><td><a href="#nbdoc">nb</a></td>
<td>Popup File info etc</td></tr>
<tr><td><a href="#noisedoc">noise</a></td>
<td>noise maker</td></tr>
<tr><td><a href="#numericsdoc">numerics</a></td>
<td>various numerical functions</td></tr>
<tr><td><a href="#peakphasesdoc">peak-phases</a></td>
<td>phases for the unpulse-train</td></tr>
<tr><td><a href="#pianodoc">piano</a></td>
<td>piano physical model</td></tr>
<tr><td><a href="#playdoc">play</a></td>
<td>play-related functions</td></tr>
<tr><td><a href="#polydoc">poly</a></td>
<td>polynomial-related stuff</td></tr>
<tr><td><a href="#prc95doc">prc95</a></td>
<td>Perry Cook's physical model examples</td></tr>
<tr><td><a href="#pvocdoc">pvoc</a></td>
<td>phase-vocoder</td></tr>
<tr><td><a href="#rgbdoc">rgb</a></td>
<td>color names</td></tr>
<tr><td><a href="#rubberdoc">rubber</a></td>
<td>rubber-sound</td></tr>
<tr><td><a href="#s7testdoc">s7test</a></td>
<td>s7 regression tests</td></tr>
<tr><td><a href="#selectiondoc">selection</a></td>
<td>functions acting on the current selection</td></tr>
<tr><td><a href="#singerdoc">singer</a></td>
<td>Perry Cook's vocal-tract physical model</td></tr>
<tr><td><a href="#sndolddoc">snd15.scm</a></td>
<td>Backwards compatibility</td></tr>
<tr><td><a href="#snddiffdoc">snddiff</a></td>
<td>sound difference detection</td></tr>
<tr><td><a href="#sndgldoc">snd-gl</a></td>
<td>OpenGL examples (gl.c)</td></tr>
<tr><td><a href="#sndmotifdoc">snd-motif, snd-xm</a></td>
<td>Motif module (xm.c)</td></tr>
<tr><td><a href="#sndtestdoc">snd-test</a></td>
<td>Snd regression tests</td></tr>
<tr><td><a href="#sndwarpdoc">sndwarp</a></td>
<td>Bret Battey's sndwarp instrument</td></tr>
<tr><td><a href="#spectrdoc">spectr</a></td>
<td>instrument steady state spectra</td></tr>
<tr><td><a href="#stochasticdoc">stochastic</a></td>
<td>Bill Sack's dynamic stochastic synthesis</td></tr>
<tr><td><a href="#straddoc">strad</a></td>
<td>string physical model (from CLM)</td></tr>
<tr><td><a href="#tankrevdoc">tankrev</a></td>
<td>Jon Dattorro's plate reverb (Anders Vinjar)</td></tr>
<tr><td><a href="#vdoc">v</a></td>
<td>fm-violin</td></tr>
<tr><td><a href="#wsdoc">ws</a></td>
<td>with-sound</td></tr>
<tr><td><a href="#zipdoc">zip</a></td>
<td>the zipper (the anti-cross-fader)</td></tr>
</tbody>
</table>
</td></tr></table>
<!-- FILE: analog-filter -->
<div class="header" id="analogfilterdoc">analog-filter</div>
<!-- main-index |analogfilterdoc:butterworth filters -->
<!-- main-index |analogfilterdoc:bessel filters -->
<!-- main-index |analogfilterdoc:elliptic filters -->
<!-- main-index |analogfilterdoc:chebyshev filters -->
<pre class="indented">
<em class=emdef>make-butterworth-lowpass</em> order fcut
<em class=emdef>make-butterworth-highpass</em> order fcut
<em class=emdef>make-butterworth-bandpass</em> order flo fhi
<em class=emdef>make-butterworth-bandstop</em> order flo fhi
<em class=emdef>make-chebyshev-lowpass</em> order fcut (ripple-dB 1.0)
<em class=emdef>make-chebyshev-highpass</em> order fcut (ripple-dB 1.0)
<em class=emdef>make-chebyshev-bandpass</em> order flo fhi (ripple-dB 1.0)
<em class=emdef>make-chebyshev-bandstop</em> order flo fhi (ripple-dB 1.0)
<em class=emdef>make-inverse-chebyshev-lowpass</em> order fcut (loss-dB 60.0)
<em class=emdef>make-inverse-chebyshev-highpass</em> order fcut (loss-dB 60.0)
<em class=emdef>make-inverse-chebyshev-bandpass</em> order flo fhi (loss-dB 60.0)
<em class=emdef>make-inverse-chebyshev-bandstop</em> order flo fhi (loss-dB 60.0)
<em class=emdef>make-bessel-lowpass</em> order fcut
<em class=emdef>make-bessel-highpass</em> order fcut
<em class=emdef>make-bessel-bandpass</em> order flo fh
<em class=emdef>make-bessel-bandstop</em> order flo fh
<em class=emdef>make-elliptic-lowpass</em> order fcut (ripple-dB 1.0) (loss-dB 60.0)
<em class=emdef>make-elliptic-highpass</em> order fcut (ripple-dB 1.0) (loss-dB 60.0)
<em class=emdef>make-elliptic-bandpass</em> order flo fhi (ripple-dB 1.0) (loss-dB 60.0)
<em class=emdef>make-elliptic-bandstop</em> order flo fhi (ripple-dB 1.0) (loss-dB 60.0)
;; fcut = cutoff frequency in terms of srate = 1.0,
;; flo = low freq of band, fhi = high freq of band
</pre>
<p>analog-filter.scm has the usual IIR filters: Butterworth, Chebyshev, inverse Chebyshev, Bessel,
and Elliptic filters in lowpass, highpass, bandpass, and bandstop versions. Each of the lowpass and highpass
"make" functions returns a filter generator, whereas the bandstop and bandpass make functions
return a function of one argument, the current input (the filter generators are built-in in these cases).
The filter order should be an even number; very high orders can cause numerical disaster!
The
elliptic filters depend on GSL, so you'll also need GSL (Snd's configure script includes it by default, if possible).
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (make-elliptic-lowpass 8 .1)) ; 8th order elliptic with cutoff at .1 * srate
</pre>
<p>
One quick way to see the frequency response of your filter is to create a sound that sweeps a sinewave upward
in frequency, run it through the filter, then view the entire sound, treating the x axis as frequency
in terms of srate = 1.0 (for convenience):
</p>
<pre class="indented">
(define (filter-sweep flt chan)
(let ((phase 0.0)
(freq 0.0)
(incr (/ (* 2 pi) 44100.0))
(samps (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> 0.5)))
(do ((i 0 (+ i 1)))
((= i samps))
(let ((sval (* .8 (sin phase))))
(set! phase (+ phase freq))
(set! freq (+ freq incr))
(<a class=quiet href="sndclm.html#out-any">out-any</a> i (flt sval) chan)))))
(with-sound (:channels 5 :output "test.snd")
(filter-sweep (make-butterworth-lowpass 8 .1) 0)
(filter-sweep (make-bessel-lowpass 8 .1) 1)
(filter-sweep (make-chebyshev-lowpass 8 .1) 2)
(filter-sweep (make-inverse-chebyshev-lowpass 8 .1) 3)
(filter-sweep (make-elliptic-lowpass 8 .1) 4))
</pre>
<table class="method">
<tr><td class="methodtitle">IIR filters, order=8, low cutoff at .1 (4410Hz), high cutoff at .3 (13230Hz)</td></tr>
<tr><td>
<img src="pix/iir.png" alt="iir filters">
</td></tr>
</table>
<!--
(define (filter-sweep flt chan)
(let ((phase 0.0)
(freq 0.0)
(incr (/ (* 2 pi) 44100.0))
(samps (seconds->samples 0.5)))
(do ((i 0 (+ i 1)))
((= i samps))
(let ((sval (* .8 (sin phase))))
(set! phase (+ phase freq))
(set! freq (+ freq incr))
(out-any i (flt sval) chan)))))
(define low-cut .1)
(define high-cut .3)
(with-sound (:channels 5 :output "test.snd")
(filter-sweep (make-butterworth-lowpass 8 low-cut) 0)
(filter-sweep (make-bessel-lowpass 8 low-cut) 1)
(filter-sweep (make-chebyshev-lowpass 8 low-cut) 2)
(filter-sweep (make-inverse-chebyshev-lowpass 8 low-cut) 3)
(filter-sweep (make-elliptic-lowpass 8 low-cut) 4))
(with-sound (:channels 5 :output "test2.snd")
(filter-sweep (make-butterworth-highpass 8 high-cut) 0)
(filter-sweep (make-bessel-highpass 8 high-cut) 1)
(filter-sweep (make-chebyshev-highpass 8 high-cut) 2)
(filter-sweep (make-inverse-chebyshev-highpass 8 high-cut) 3)
(filter-sweep (make-elliptic-highpass 8 high-cut) 4))
(with-sound (:channels 5 :output "test1.snd")
(filter-sweep (make-butterworth-bandpass 8 low-cut high-cut) 0)
(filter-sweep (make-bessel-bandpass 8 low-cut high-cut) 1)
(filter-sweep (make-chebyshev-bandpass 8 low-cut high-cut) 2)
(filter-sweep (make-inverse-chebyshev-bandpass 8 low-cut high-cut) 3)
(filter-sweep (make-elliptic-bandpass 8 low-cut high-cut) 4))
(with-sound (:channels 5 :output "test3.snd")
(filter-sweep (make-butterworth-bandstop 8 low-cut high-cut) 0)
(filter-sweep (make-bessel-bandstop 8 low-cut high-cut) 1)
(filter-sweep (make-chebyshev-bandstop 8 low-cut high-cut) 2)
(filter-sweep (make-inverse-chebyshev-bandstop 8 low-cut high-cut) 3)
(filter-sweep (make-elliptic-bandstop 8 low-cut high-cut) 4))
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! *axis-label-font* "9x15")
(do ((i 0 (+ i 1)))
((= i 4))
(do ((k 0 (+ 1 k)))
((= k 5))
(set! (x-axis-label i k)
(format #f "~A ~A"
(if (= k 0) "butterworth"
(if (= k 1) "bessel"
(if (= k 2) "chebyshev"
(if (= k 3) "inverse chebyshev"
"elliptic"))))
(if (= i 0) "lowpass"
(if (= i 1) "highpass"
(if (= i 2) "bandpass"
"bandstop")))))))
-->
<div class="seealso">
see also: <a href="#dspdoc">dsp</a> <a href="#exampdoc">examp</a> <a href="#moogdoc">moog</a> <a href="#maxfdoc">maxf</a> <a href="#prc95doc">prc95</a> <a href="#grapheq">graphEq</a> <a href="sndclm.html#filter">clm</a>
</div>
<!-- FILE: animals -->
<div class="header" id="animalsdoc">animals</div>
<p>
People paint birds; why not bird songs? Check out a Hermit Thrush song down 2 or 3 octaves and slowed down as well (via
granular synthesis, for example) — incredibly beautiful 2-part microtonal counterpoint.
animals.scm contains several synthesized animal sounds: frogs, birds, insects, and one mammal.
To hear them all, (calling-all-animals).
</p>
<div class="innerheader">How to Paint a Bird Song</div>
<p>Back in 1980, I wanted some bird songs for "Colony", but my stabs at
a fake bird song were completely unconvincing. So I went to
my battered bird book (Robbins, Bruun, Zim, Singer "Birds of North America" Golden Press, NY 1966)
which had sonograms
of lots of bird songs. Unfortunately, the graphs were so tiny that I could barely
read them:
</p>
<table>
<tr><td>
<img src="pix/golden.png" alt="Lincoln's Sparrow, approximately original size">
</td><td>
<small>Lincoln's Sparrow approximately original size,
but blurrier due to incredibly bad scanner software.
</small>
</td></tr></table>
<p>Graphs like this became <a href="#birddoc">bird.scm</a>. It surprised me that the synthetic
song could sound good even with just a sinewave and a couple sketchy envelopes. But squawks
and screeches were harder. 27 years later, I tackled animal sounds again, but now using Snd
and some extremely high quality recordings, mainly from Cornell. It's not that hard to
match some animal sounds; perhaps someone would like to see the steps I took to match
a Hairy Woodpecker call (hairy-woodpecker in animals.scm).
</p>
<p>
Open the Hairy Woodpecker. Find a squawk that seems within reach, and select it.
</p>
<img class="indented" src="pix/hairy1.png" alt="selecting a squawk">
<p>
Zoom onto the first channel (the vertical slider on the right — we don't care about stereo here), and center the squawk in the time domain window (C-x v).
Get the selection duration in seconds. Start the envelope editor dialog (under the Edit menu). Choose "selection"
and "wave" in that dialog.
</p>
<img class="indented" src="pix/hairy2.png" alt="zoom in">
<p>Since the goal is a CLM instrument that synthesizes this sound, get a "blank bird", and fill
in the duration.
</p>
<pre class="indented">
(definstrument (hairy-woodpecker beg amp)
(let* ((start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> beg))
(dur 0.08) ; filled in from the selection duration
(stop (+ start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> dur)))
(ampf (<a class=quiet href="sndclm.html#make-env">make-env</a> ; left blank for the moment
:duration dur :scaler amp))
(gen1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a>))
(frqf (<a class=quiet href="sndclm.html#make-env">make-env</a> ; ditto
:duration dur :scaler (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> 1.0))))
(do ((i start (+ i 1)))
((= i stop))
(<a class=quiet href="sndclm.html#outa">outa</a> i (* (<a class=quiet href="sndclm.html#env">env</a> ampf) ; just a first guess at the synthesis algorithm
(<a class=quiet href="sndclm.html#oscil">oscil</a> gen1 (<a class=quiet href="sndclm.html#env">env</a> frqf)))))))
</pre>
<p>Now to get an amplitude envelope, set the y axis limits to be from 0.0 to the selection maxamp:
</p>
<pre class="indented">
(set! (<a class=quiet href="extsnd.html#ybounds">y-bounds</a> (<a class=quiet href="extsnd.html#selectedsound">selected-sound</a>) (<a class=quiet href="extsnd.html#selectedchannel">selected-channel</a>)) (list 0 (<a class=quiet href="extsnd.html#selectionmaxamp">selection-maxamp</a>)))
</pre>
<p>
I have this action bound to the "m" key in my ~/.snd initialization file. The change is reflected in
the envelope editor. We can define the amplitude envelope by approximating the shape. Call it "hairy-amp".
</p>
<img class="indented" src="pix/hairy3.png" alt="get amp env">
<p>Now go to the listener and get the value of hairy-amp as a list of breakpoints.
I usually use this function to get the breakpoints:
</p>
<pre class="indented">
> (define (clean-string e)
(format #f "(~{~,3F~^ ~})" e))
> (clean-string hairy-amp)
"(0.000 0.000 0.099 0.188 0.152 0.148 0.211 0.558 0.242 0.267 0.278 0.519 0.434 0.472 0.527 0.543 0.612 0.479
0.792 0.941 0.831 0.523 0.854 1.000 0.913 0.422 0.927 0.200 0.946 0.430 0.971 0.304 1.000 0.000 )"
</pre>
<p>Plug this list into the bird instrument (ampf). Now switch to the FFT view (click "f" and "w"), open the
FFT dialog (Options:Transform), choose Blackman10 window, sonogram, 512. In the color dialog, choose the
"jet" colormap. In the envelope editor, switch from "amp" to "flt", and resize the dialog window so that
its graph fits the displayed spectrum. For fast moving sounds, it's important to align the amp and freq
envelopes exactly, but the FFT delays or blurs stuff, so mess with the graph placement until the amplitude
envelope and the spectrum match (bright spots at loud spots and so on). I bind the arrow keys to precision
movements for this reason (in my ~/.snd file, see <a href="extsnd.html#moveonepixel">move-one-pixel</a>).
</p>
<img class="indented" src="pix/hairy4.png" alt="preapring to get freq env">
<p>Reset the envelope editor (to erase the amp envelope), and press "flt" and "wave" again.
Now zoom in to the main spectral component (drag the FFT y axis up), and
trace out the frequency curve in the envelope editor. Call it hairy-freq,
and get the list of breakpoints as before in the listener. Plug that
into the bird instrument. The "scaler" for the frequency envelope is
the top of the FFT graph in Hz; it is 10KHz in this case.
</p>
<img class="indented" src="pix/hairy5.png" alt="get freq env">
<pre class="indented">
(definstrument (hairy-woodpecker beg amp)
(let* ((start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> beg))
(dur 0.08)
(stop (+ start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> dur)))
(ampf (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0.000 0.000 0.099 0.188 0.152 0.148 0.211 0.558 0.242 0.267 0.278 0.519 0.434 0.472
0.527 0.543 0.612 0.479 0.792 0.941 0.831 0.523 0.854 1.000 0.913 0.422 0.927 0.200
0.946 0.430 0.971 0.304 1.000 0.000 )
:duration dur :scaler amp))
(frqf (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0.000 0.180 0.056 0.213 0.135 0.241 0.167 0.305 0.191 0.396 0.212 0.402 0.242 0.485
0.288 0.506 0.390 0.524 0.509 0.530 0.637 0.537 0.732 0.530 0.770 0.503 0.808 0.503
0.826 0.427 0.848 0.366 0.889 0.345 0.913 0.232 1.000 0.198)
:duration dur :scaler (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> 10000.0)))
(gen1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a>)))
(do ((i start (+ i 1)))
((= i stop))
(<a class=quiet href="sndclm.html#outa">outa</a> i (* (<a class=quiet href="sndclm.html#env">env</a> ampf)
(<a class=quiet href="sndclm.html#oscil">oscil</a> gen1 (<a class=quiet href="sndclm.html#env">env</a> frqf)))))))
</pre>
<p>This squawk has more than one component (it is not just a sine wave), and the components follow more or less
the same amplitude envelope (so we can use polywave). Go to the "single transform"
view (in the Transform dialog), make the FFT size bigger, move the time domain window into about the middle
of the call, and get some estimate of the number of
components and their relative amplitudes (concentrating for now on the steady state). Change the "make-oscil"
to "make-polywave" and give some first stab at the steady-state spectrum:
</p>
<pre class="indented">
...
(gen1 (<a class=quiet href="sndclm.html#make-polywave">make-polywave</a> :partials (list 1 .9 2 .1 3 .01)))
...
(<a class=quiet href="sndclm.html#polywave">polywave</a> gen1 (<a class=quiet href="sndclm.html#env">env</a> frqf))
...
</pre>
<p>Load ws.scm, load the current woodpecker code, and
listen to the squawk: (with-sound (:play #t) (hairy-woodpecker 0.0 0.5)).
Not terrible. If it's cut off during playback, add a dummy silent call to the end:
(with-sound (:play #t) (hairy-woodpecker 0.0 0.5) (hairy-woodpecker 0.5 0.0)).
We're happy at this stage if it's in the right ballpark.
</p>
<img class="indented" src="pix/hairy6.png" alt="first take">
<p>
The attack and decay sections need work. Returning to either FFT view, it's clear
there's a set of components moving together at half the steady state frequency, so add another polywave with its own amplitude envelope:
</p>
<pre class="indented">
(definstrument (hairy-woodpecker beg amp)
(let* ((start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> beg))
(dur 0.08)
(stop (+ start (<a class=quiet href="sndclm.html#secondstosamples">seconds->samples</a> dur)))
(ampf (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0.000 0.000 0.099 0.188 0.152 0.148 0.211 0.558 0.242 0.267 0.278 0.519 0.434 0.472
0.527 0.543 0.612 0.479 0.792 0.941 0.831 0.523 0.854 1.000 0.913 0.422 0.927 0.200
0.946 0.430 0.971 0.304 1.000 0.000 )
:duration dur :scaler amp))
(frqf (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0.000 0.180 0.056 0.213 0.135 0.241 0.167 0.305 0.191 0.396 0.212 0.402 0.242 0.485
0.288 0.506 0.390 0.524 0.509 0.530 0.637 0.537 0.732 0.530 0.770 0.503 0.808 0.503
0.826 0.427 0.848 0.366 0.889 0.345 0.913 0.232 1.000 0.198)
:duration dur :scaler (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> 10000.0)))
(gen1 (<a class=quiet href="sndclm.html#make-polywave">make-polywave</a> :partials (list 1 .9 2 .09 3 .01)))
(gen2 (<a class=quiet href="sndclm.html#make-polywave">make-polywave</a> :partials (list 1 .2 2 .1 3 .1 4 .1 5 .1 6 .05 7 .01))) ; attack and decay
(ampf2 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 1 .3 1 .4 0 .75 0 .8 1 1 1) :duration dur :scaler 1.0))) ; its amplitude
(do ((i start (+ i 1)))
((= i stop))
(let ((frq (<a class=quiet href="sndclm.html#env">env</a> frqf)))
(<a class=quiet href="sndclm.html#outa">outa</a> i (* (<a class=quiet href="sndclm.html#env">env</a> ampf)
(+ (<a class=quiet href="sndclm.html#polywave">polywave</a> gen1 frq)
(* (<a class=quiet href="sndclm.html#env">env</a> ampf2)
(<a class=quiet href="sndclm.html#polywave">polywave</a> gen2 (* 0.5 frq))))))))))
</pre>
<p>Now patience is the key.
Use the speed control to slow playback down by an octave or two.
(Perhaps the frequency envelope should end at a higher point?)
Keep tweaking the envelopes and spectral amplitudes until it sounds right!
Total elapsed time? Two or three hours probably.
</p>
<img class="indented" src="pix/hairy7.png" alt="the end">
<p>animals.scm has all the functions, key bindings, and dialog variable settings mentioned here.
They can save you a ton of time.
</p>
<div class="seealso">
see also: <a href="#birddoc">birds</a>
</div>
<!-- FILE: autosave -->
<div class="header" id="autosavedoc">autosave</div>
<!-- main-index |autosavedoc:auto-save -->
<pre class="indented">
<em class=emdef>auto-save</em>
<em class=emdef>cancel-auto-save</em>
</pre>
<!-- I(auto save):L(auto-save)(exautosave) -->
<!-- I(auto save):A(exautosave) -->
<p>The auto-save code sets up a background process that checks periodically for
unsaved edits, and if any are found it saves them in a temporary file (the name is the base file name enclosed in "#...#" and placed in
the <a href="extsnd.html#tempdir">temp-dir</a> directory).
The time between checks
is set by the variable auto-save-interval which defaults to 60.0 seconds.
To start auto-saving, (load "autosave.scm"). Thereafter (cancel-auto-save)
stops autosaving, and (auto-save) restarts it.
</p>
<!-- FILE: bess -->
<div class="header" id="bessdoc">bess</div>
<p>bess.scm creates a dialog (named "FM Forever!"),
puts up a bunch of scale widgets, and starts two CLM oscils doing
frequency modulation.
Michael Scholz has contributed a Ruby translation of this with many improvements:
bess.rb.
</p>
<img class="indented" src="pix/fm.png" alt="fm dialog">
<pre class="indented">
;; bess plays the following:
(* amp
(<a class=quiet href="sndclm.html#oscil">oscil</a> carosc
(+ (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> frequency)
(* index (<a class=quiet href="sndclm.html#oscil">oscil</a> modosc
(<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> (* ratio frequency)))))))
</pre>
<p>bess1.scm and bess1.rb
give you real-time GUI-based control over the fm-violin while it cycles around in a simple
compositional algorithm. Both were written by
Michael Scholz, based on CLM's bess5.cl and rt.lisp.
</p>
<div class="seealso">
see also: <a href="fm.html#fmintro">fm</a>
</div>
<!-- FILE: binary-io -->
<div class="header" id="binaryiodoc">binary-io</div>
<!-- main-index |binaryiodoc:binary files -->
<pre class="indented">
<em class=emdef>read|write-l|bint16|32|64</em>
<em class=emdef>read|write-l|bfloat32|64</em>
<em class=emdef>read|write-chars|string</em>
<em class=emdef>read|write-au-header</em>
</pre>
<p>This file has functions to read and write numbers and strings to and from binary files.
The function names are similar to those used for sample-type names, so for example,
read-bint32 reads the next 4 bytes from the current input port,
interpreting them as a big-endian 32-bit integer.
</p>
<!-- FILE: bird -->
<div class="header" id="birddoc">bird</div>
<pre class="indented">
<em class=def id="bird">bird</em> start dur frequency freqskew amplitude freq-envelope amp-envelope
<em class=def id="bigbird">bigbird</em> start dur frequency freqskew amplitude freq-envelope amp-envelope partials
<em class=emdef>one-bird</em> beg maxdur func birdname
<em class=def id="makebirds">make-birds</em> (output-file "test.snd")
</pre>
<p>
bird.scm is a translation of the Sambox/CLM bird songs. The two instruments set
up a sine wave (bird) and waveshaping synthesis (bigbird). Use a
low-pass filter for distance effects (a bird song sounds really silly
reverberated). All the real information is in the amplitude and frequency
envelopes. These were transcribed from sonograms found in some bird guides and articles from
the Cornell Ornithology Lab.
Many of these birds were used in "Colony". To hear all the
birds, (make-birds). This writes the sequence out as "test.snd" using with-sound.
Waveshaping is described in Le Brun, "Digital Waveshaping Synthesis", JAES 1979 April, vol 27, no 4, p250.
The lines
</p>
<pre class="indented">
...
(coeffs (<a class=quiet href="sndclm.html#partialstopolynomial">partials->polynomial</a> (normalize-partials partials)))
...
(<a class=quiet href="sndclm.html#polynomial">polynomial</a> coeffs
(<a class=quiet href="sndclm.html#oscil">oscil</a> os (<a class=quiet href="sndclm.html#env">env</a> gls-env))))))
<!-- ((( -->
</pre>
<p>setup and run the waveshaping synthesis (in this case it's just a fast
additive synthesis). partials->polynomial calculates the Chebyshev
polynomial coefficients given the desired spectrum; the spectrum then
results from driving that polynomial with an oscillator. Besides the
bird guides, there are now numerous recordings of birds that can
be turned into sonograms and transcribed as envelopes. <a href="sndclm.html#oscil">sndclm.html</a> has the
code for the bird instrument in several languages.
</p>
<div class="seealso">
see also: <a href="#animalsdoc">animals</a>
</div>
<!-- FILE: clean -->
<div class="header" id="cleandoc">clean</div>
<p>This file provides a set of noise reduction functions packaged up in:
</p>
<pre class="indented">
<em class=def id="cleanchannel">clean-channel</em> snd chn
<em class=def id="cleansound">clean-sound</em> snd
</pre>
<p>
clean-channel tries to fix up clicks, pops, hum, DC offset, clipped portions, and hiss using a
variety of functions from dsp.scm. The final low-pass filter is relatively conservative (that is,
it's not a very intense filter), so you may want to run another filter over the data after calling
clean-channel.
</p>
<div class="innerheader">A Noisy Story</div>
<!-- INDEX cleandoc:Noise Reduction -->
<p>There is no built-in noise reduction function in Snd.
I believe the most common such function is
some variant of Perry Cook's
Scrubber program (see anoi in clm-ins.scm or fft-squelch in examp.scm).
Secondary tricks involve smoothing functions similar to smooth-channel,
and enveloping to silence stuff between tracks, and so on.
clean-channel came about when
I blithely offered to clean up some recorded telephone conversations.
The first step was to find the clipped locations (where the conversation was
accidentally over-recorded). I did this first because there were places in the
recordings where the DC offset was huge, causing clipping in a signal that would
otherwise have been safe. I hoped to reconstruct the signal at the clipped
points, but these would be hard to find once the DC was removed. A quick check:
</p>
<pre class="indented">
(count-matches (lambda (y) (not (>= 0.9999 y -0.9999))))
</pre>
<p>
returned 5437 (in 18 minutes of sound). That seemed high, and I thought "maybe
those are just one sample clicks that can easily be smoothed over", so
</p>
<pre class="indented">
(define* (count-clips snd chn)
(let ((y0 0.0))
(count-matches
(lambda (y) (let ((val (not (or (>= 0.9999 y0 -0.9999)
(>= 0.9999 y -0.9999)))))
(set! y0 y)
val))
0 snd chn)))
</pre>
<p>
But this returned 4768! I made a list of clipped
portions (this function has at least one bug, but I plowed past it — no
time for perfection...):
</p>
<pre class="indented">
(define* (list-clips snd chn)
(let ((clip-data (make-vector (* 2 (count-clips snd chn)) 0))
(clip-ctr 0)
(clip-beg 0)
(clip-end 0)
(clip-max-len 0)
(in-clip #f)
(samp 0))
(scan-channel
(lambda (y)
(if (not (<= -0.9999 y 0.9999))
(begin
(unless in-clip
(set! in-clip #t)
(set! clip-beg samp))
(set! clip-end samp))
(if in-clip
(begin
(set! in-clip #f)
(set! (clip-data clip-ctr) clip-beg)
(set! (clip-data (+ 1 clip-ctr)) clip-end)
(set! clip-max-len (max clip-max-len (- (+ clip-end 1) clip-beg)))
(set! clip-ctr (+ clip-ctr 2)))))
(set! samp (+ 1 samp))
#f)) ; make sure scan doesn't quit prematurely
(list clip-ctr clip-max-len clip-data)))
</pre>
<p>
which returned a vector of 669 clipped portions, the worst being 42 samples long!
I saved that data in a separate file, just in case of disaster:
</p>
<pre class="indented">
(with-output-to-file "clips" (lambda () (display (list-clips))))
</pre>
<p>
I decided to try to reconstruct the clipped portions before
filtering them.
This
produced sample values outside -1.0 to 1.0,
so I reset the graph y bounds:
</p>
<pre class="indented">
(set! (<a class=quiet href="extsnd.html#ybounds">y-bounds</a>) (list -1.5 1.5))
</pre>
<p>
Now to conjure up a plausible sine wave between the clip begin and
end points. (This is also "just-good-enough" software).
</p>
<pre class="indented">
(define (fix-clip clip-beg-1 clip-end-1)
(and (> clip-end-1 clip-beg-1)
(let* ((dur (- (+ clip-end-1 1) clip-beg-1))
(samps (channel->float-vector (- clip-beg-1 4) (+ dur 9)))
(clip-beg 3)
(clip-end (+ dur 4)))
(let ((samp0 (samps clip-beg))
(samp1 (samps clip-end)))
(unless (>= 0.99 samp0 -0.99)
;; weird! some of the clipped passages have "knees"
;; this looks nuts, but no time to scratch my head
(set! clip-beg (- clip-beg 1))
(set! samp0 (samps clip-beg))
(unless (>= 0.99 samp0 -0.99)
(set! clip-beg (- clip-beg 1))
(set! samp0 (samps clip-beg))))
(unless (>= 0.99 samp0 -0.99)
(set! clip-end (+ 1 clip-end))
(set! samp1 (samps clip-end))
(unless (>= 0.99 samp0 -0.99)
(set! clip-end (+ 1 clip-end))
(set! samp1 (samps clip-end))))
;; now we have semi-plausible bounds
;; make sine dependent on rate of change of current
(let* ((samp00 (samps (- clip-beg 1)))
(samp11 (samps (+ 1 clip-end)))
(dist (- clip-end clip-beg))
(incr (/ pi dist))
(amp (* .125 (+ (abs (- samp0 samp00)) (abs (- samp1 samp11))) dist)))
(if (> samp0 0.0)
;; clipped at 1.0
(do ((i (+ 1 clip-beg) (+ i 1))
(angle incr (+ angle incr)))
((= i clip-end))
(set! (samps i) (+ 1.0 (* amp (sin angle)))))
;; clipped at -1.0
(do ((i (+ 1 clip-beg) (+ i 1))
(angle incr (+ angle incr)))
((= i clip-end))
(set! (samps i) (- -1.0 (* amp (sin angle))))))
(float-vector->channel samps (- clip-beg-1 4)))))))
(define (fix-it n)
;; turn off graphics and fix all the clipped sections
(set! (<a class=quiet href="extsnd.html#squelchupdate">squelch-update</a>) #t)
(do ((i 0 (+ i 1)))
((= i n))
;; "clips" here is a list form of the earlier vector of clip locations
(fix-clip (clips (* i 2))
(clips (+ 1 (* i 2)))))
(set! (<a class=quiet href="extsnd.html#squelchupdate">squelch-update</a>) #f))
(fix-it 669)
</pre>
<p id="notchoutrumbleandhiss">
This produced 418 edits, with a maxamp of 2.26. So scale it back down:
(<a class=quiet href="extsnd.html#scaleto">scale-to</a> .9).
Next I ran some large ffts to see what sort of overall spectrum I had:
(set! (<a class=quiet href="extsnd.html#transformsize">transform-size</a>) (expt 2 23)).
This showed a massive DC component, and numerous harmonics of 60 Hz.
I decided to get rid of the portions that were clearly noise. Since I was dealing with
telephone recordings, I assumed anything under 40 Hz or above
4000 Hz was extraneous:
</p>
<pre class="indented">
(define* (notch-out-rumble-and-hiss snd chn)
(let ((cur-srate (exact->inexact (<a class=quiet href="extsnd.html#srate">srate</a> snd))))
(<a class=quiet href="extsnd.html#filtersound">filter-sound</a>
(list 0.0 0.0 ; get rid of DC
(/ 80.0 cur-srate) 0.0 ; get rid of anything under 40 Hz (1.0=srate/2 here)
(/ 90.0 cur-srate) 1.0 ; now the passband
(/ 7000.0 cur-srate) 1.0
(/ 8000.0 cur-srate) 0.0 ; end passband (40..4000)
1.0 0.0) ; get rid of some of the hiss
;; since I'm assuming the minimum band is 10 Hz here,
;; cur-srate/10 rounded up to next power of 2 seems a safe filter size
;; filter-sound will actually use overlap-add convolution in this case
(floor (expt 2 (ceiling (log (/ cur-srate 10.0) 2))))
snd chn)))
(notch-out-rumble-and-hiss)
</pre>
<p>
By now it was obvious I needed a simple way to play portions of the
sound before and after an edit, sometimes with a tracking cursor.
So I bound a few keys:
</p>
<pre class="indented">
(define (play-from-cursor current)
(<a class=quiet href="extsnd.html#play">play</a> (<a class=quiet href="extsnd.html#cursor">cursor</a>) #f #f #f #f (and (not current) (- (<a class=quiet href="extsnd.html#editposition">edit-position</a>) 1))))
(define (play-from-cursor-with-tracking current)
;; patterned after pfc in extsnd.html
(let ((old-tracking (<a class=quiet href="extsnd.html#withtrackingcursor">with-tracking-cursor</a>)))
(set! (<a class=quiet href="extsnd.html#withtrackingcursor">with-tracking-cursor</a>) #t)
(hook-push <a class=quiet href="extsnd.html#stopplayinghook">stop-playing-hook</a>
(lambda (hook)
(set! (<a class=quiet href="extsnd.html#withtrackingcursor">with-tracking-cursor</a>) old-tracking)))
(<a class=quiet href="extsnd.html#play">play</a> (<a class=quiet href="extsnd.html#cursor">cursor</a>) #f #f #f #f (and (not current) (- (<a class=quiet href="extsnd.html#editposition">edit-position</a>) 1)))))
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\p 0 (lambda ()
"play from cursor"
(play-from-cursor #t) <a class=quiet>keyboard-no-action</a>))
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\P 0 (lambda ()
"play previous from cursor"
(play-from-cursor #f) <a class=quiet>keyboard-no-action</a>))
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\p 4 (lambda ()
"play from cursor with tracking"
(play-from-cursor-with-tracking #t) <a class=quiet>keyboard-no-action</a>))
</pre>
<p>
In words, if the mouse is in the channel graph, 'p' plays from the cursor,
'P' plays the previous version from the cursor, and 'C-p' plays from
the cursor with a "tracking cursor".
In several of the sections (the overall sound consisted of a couple dozen
separate conversations), there was a loud mid-range tone. To figure out what its component frequencies were,
I FFT'd a portion containing only that noise and got this spectrum
(plus a zillion other peaks that didn't look interesting):
</p>
<pre class="indented">
((425 .05) (450 .01) (546 .02) (667 .01) (789 .034) (910 .032) (470 .01))
</pre>
<p>To hear that, I passed this list to <a href="#playsines">play-sines</a>:
</p>
<pre class="indented">
(play-sines '((425 .05) (450 .01) (546 .02) (667 .01) (789 .034) (910 .032) (470 .01)))
</pre>
<p>
And to my surprise, the result was close to the main portion of the hum.
So now to notch out those frequencies,
and see what is left: (notch-sound (list 425 450 470 546 667 789 910) #f 1 10).
This erased most of the hum, but it also
changed the timbre of the voices which wasn't acceptable.
I goofed around with the notch-width and filter-size parameters, looking
for something that would still do the trick without removing
the personal side of the voices, but in only a few cases was the result
usable. What was being said was not very important, but the
individual characteristics of each voice were.
</p>
<p>
The next step was to take out noisy sections between snippets, mostly
using (<a class=quiet href="extsnd.html#envselection">env-selection</a> '(0 1 1 0 10 0 11 1))
and equalizing each snippet, more or less, with scale-selection-by.
There were a few "you-are-being-recorded" beeps which I deleted (via the Edit
menu delete selection option).
In some of the conversations,
between sections of speech the background hum would gradually increase, then
the voice would abruptly start with a large peak amplitude. These
were fixed mostly with small-section scale-by's and envelopes.
In the female voice sections, it seemed to help to:
(<a class=quiet href="extsnd.html#filterselection">filter-selection</a> '(0 0 .01 0 .02 1 1 1) 1024)
which got rid of some of the rumble without noticeably affecting
the vocal timbre.
</p>
<div class="seealso">
see also: <a href="extsnd.html#smoothchannel">smooth-channel</a> <a href="#removeclicks">remove-clicks</a> <a href="#fftsmoother">fft-smoother</a>
<a href="#notchoutrumbleandhiss">notch-out-rumble-and-hiss</a> <a href="#fftsquelch">fft-squelch</a>
<a href="#fftcancel">fft-cancel</a>
<a href="#notchchannel">notch-channel</a> <a href="#anoi">anoi</a>
</div>
<!-- FILE: clm-ins -->
<div class="header" id="clminsdoc">clm-ins</div>
<p>These are instruments from CLM translated for use in Snd. All expect to be called within <a href="#wsdoc">with-sound</a>
or some equivalent environment. This set of instruments is a bit of a grab-bag; some are just examples of synthesis techniques;
a few others are historical, rather than useful. If I were using, for example, the fm trumpet,
I'd remove all the attack and decay parameters, moving that up a level to Common Music or whoever calls the trumpet,
and combine several other parameters to reflect the desired output, rather than the details of the algorithm;
30 parameters could be reduced to less than 10, and the resulting instrument would be much easier to use.
But, it is an historical artifact, so I'm reluctant to change it.
</p>
<p>To try out any of these instruments, start Snd, load ws.scm and clm-ins.scm, then
paste the with-sound call into the listener. It will automatically write the
new sound file and open it in Snd.
</p>
<div class="separator"></div>
<!-- anoi -->
<pre class="indented">
<em class=def id="anoi">anoi</em> file start dur (fftsize 128) (amp-scaler 1.0) (r 6.28)
</pre>
<p>
anoi is a stab at noise reduction
based on Perry Cook's Scrubber.m. It tracks an on-going average spectrum, then tries
to squelch that, obviously aimed at reducing background noise in an intermittent signal.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (anoi "now.snd" 0 2))
</pre>
<div class="separator"></div>
<!-- attract -->
<pre class="indented">
<em class=emdef>attract</em> beg dur amp c
</pre>
<p>attract is a translation to CLM of an instrument developed by James McCartney (CMJ vol 21 no 3 p 6),
based on a "chaotic" equation.
'c' should be between 1 and 10 or thereabouts.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (attract 0 1 .1 1) (attract 1 1 .1 5))
</pre>
<div class="separator"></div>
<!-- bes-fm -->
<pre class="indented">
<em class=emdef>bes-fm</em> beg dur freq amp ratio index
</pre>
<p>bes-fm is J1(J1): <code>(bes-j1 (* index (bes-j1 phase)))</code>; it uses the Bessel functions where FM uses sinusoids. J0 is also good in this context,
and the few other Jn options that I've tried were ok.
</p>
<pre class="indented">
Scheme: (with-sound () (bes-fm 0 1 440 10.0 1.0 4.0))
Ruby: with_sound() do bes_fm(0, 0.5, 440, 5, 1, 8) end
</pre>
<p>So why does this work? My "back-of-the-envelope" guess is that the Bessel functions
are basically a bump at the start followed by a decaying sinusoid, so
the bump
gives us a percussive attack, and the damped sinusoid gives us
a dynamic spectrum, mimicking FM more or less.
The Bessel functions I0, Jn, and Yn are built-in; Kn and In are implemented in Scheme in snd-test.scm. See <a href="sndclm.html#bess">bess</a> and friends
for many more examples.
</p>
<div class="separator"></div>
<!-- main-index |bagpipe:bagpipe -->
<!-- canter -->
<pre class="indented">
<em class=def id="bagpipe">canter</em> beg dur freq amp ...
</pre>
<p>canter is half of a bagpipe instrument developed by Peter Commons (the other portion is <a href="#drone">drone</a> below).
The (required) trailing parameters are:
</p>
<pre class="indented">
deg dis pcrev ampfun ranfun skewfun skewpc ranpc ranfreq indexfun atdr dcdr
ampfun1 indfun1 fmtfun1 ampfun2 indfun2 fmtfun2 ampfun3 indfun3 fmtfun3 ampfun4 indfun4 fmtfun4
</pre>
<p>Here is a portion of a bagpipe tune:
</p>
<pre class="indented">
(let ((fmt1 '(0 1200 100 1000))
(fmt2 '(0 2250 100 1800))
(fmt3 '(0 4500 100 4500))
(fmt4 '(0 6750 100 8100))
(amp1 '(0 .67 100 .7))
(amp2 '(0 .95 100 .95))
(amp3 '(0 .28 100 .33))
(amp4 '(0 .14 100 .15))
(ind1 '(0 .75 100 .65))
(ind2 '(0 .75 100 .75))
(ind3 '(0 1 100 1))
(ind4 '(0 1 100 1))
(skwf '(0 0 100 0))
(ampf '(0 0 25 1 75 1 100 0))
(ranf '(0 .5 100 .5))
(index '(0 1 100 1))
(solid '(0 0 5 1 95 1 100 0))
(bassdr2 '(.5 .06 1 .62 1.5 .07 2.0 .6 2.5 .08 3.0 .56 4.0 .24 5 .98 6 .53 7
.16 8 .33 9 .62 10 .12 12 .14 14 .86 16 .12 23 .14 24 .17))
(tenordr '(.3 .04 1 .81 2 .27 3 .2 4 .21 5 .18 6 .35 7 .03 8 .07 9 .02 10 .025 11 .035)))
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb nrev)
(drone .000 4.000 115.000 (* .25 .500) solid bassdr2 .100 .500 .030 45.000 1 .010 10)
(drone .000 4.000 229.000 (* .25 .500) solid tenordr .100 .500 .030 45.000 1 .010 11)
(drone .000 4.000 229.500 (* .25 .500) solid tenordr .100 .500 .030 45.000 1 .010 9)
(canter .000 2.100 918 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 2.100 .300 688.5 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 2.400 .040 826.2 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 2.440 .560 459 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.000 .040 408 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.040 .040 619.65 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.080 .040 408 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.120 .040 688.5 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.160 .290 459 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.450 .150 516.375 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.600 .040 826.2 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.640 .040 573.75 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.680 .040 619.65 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.720 .180 573.75 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.900 .040 688.5 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)
(canter 3.940 .260 459 (* .25 .700) 45.000 1 .050 ampf ranf skwf
.050 .010 10 index .005 .005 amp1 ind1 fmt1 amp2 ind2 fmt2 amp3 ind3 fmt3 amp4 ind4 fmt4)))
</pre>
<p>It is not easy to keep track of all these arguments in a long note-list; hence the
development of programs such as Score (Leland Smith), Pla (yers truly), and Common Music (Rick Taube).
The full note list is bag.clm in the CLM tarball.
</p>
<div class="separator"></div>
<!-- main-index |cellon:feedback fm -->
<!-- cellon -->
<pre class="indented">
<em class=def id="cellon">cellon</em> beg dur freq amp ...
</pre>
<p>cellon, developed by Stanislaw Krupowiecz, uses feedback FM as in some old synthesizers. There's a brief discussion of it in <a href="fm.html">fm.html</a>.
The trailing parameters are:
</p>
<pre class="indented">
ampfun betafun beta0 beta1 betaat betadc ampat ampdc dis pcrev deg pitch1 glissfun glissat
glissdc pvibfreq pvibpc pvibfun pvibat pvibdc rvibfreq rvibpc rvibfun
</pre>
<p>and I actually don't know what they all do. I think they're dealing with attack and decay portions
of envelopes; in the old days we felt we had to store one envelope, then kludge around with attack and decay
timings to bash that envelope into the correct shape; this made instruments needlessly messy.
Here's a call:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(cellon 0 2 220 .1 '(0 0 25 1 75 1 100 0) '(0 0 25 1 75 1 100 0) .75 1.0 0 0 0 0 1 0 0 220
'(0 0 25 1 75 1 100 0) 0 0 0 0 '(0 0 100 0) 0 0 0 0 '(0 0 100 0)))
</pre>
<p>The use of x axis values between 0 and 100, rather than 0.0 and 1.0 is a dead give-away that
this is really ancient stuff.
</p>
<div class="separator"></div>
<!-- clm-expsrc -->
<pre class="indented">
<em class=def id="clmexpsrc">clm-expsrc</em> beg dur input-file exp-ratio src-ratio amp rev start-in-file
</pre>
<p>clm-expsrc can stretch or compress a sound (using granular synthesis) while optionally changing its sampling rate.
'exp-ratio' sets the expansion amount (greater than 1.0 makes the sound longer), and
'src-ratio' sets the sampling rate change (greater than 1.0 makes it higher in pitch).
So to make a sound twice as long, but keep the pitch the same:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (clm-expsrc 0 4 "oboe.snd" 2.0 1.0 1.0))
</pre>
<p>'start-in-file' sets where we start reading the input file (in seconds); it defaults to 0.0.
</p>
<div class="separator"></div>
<!-- drone -->
<pre class="indented">
<em class=def id="drone">drone</em> beg dur freq amp ampfun synth ampat ampdc amtrev deg dis rvibamt rvibfreq
</pre>
<p>This is the other half of Peter Common's bagpipe — see canter above.
'synth' is a list of partials loaded into a table and read via <a href="sndclm.html#table-lookup">table-lookup</a>.
</p>
<div class="separator"></div>
<!-- expandn -->
<pre class="indented">
<em class=emdef>expandn</em> time duration file amp ...
</pre>
<p>
Here is the documentation from Rick Taube's granular synthesis page, edited slightly for the Scheme CLM.
</p>
<p>
The expandn instrument by Michael Klingbeil performs granular syntheisis by time-stretching (expanding/compressing) an input file.
This effect is achieved by chopping up the input sound into very small segments (grains) that are then overlayed in the ouput stream.
The larger the segments, the more the output sound is smeared, an effect approaching reverberation.
The expandn instrument parameters are:
</p>
<pre class="indented">
time duration filename amplitude
(expand 1.0)
(matrix #f)
(ramp 0.4)
(seglen 0.15)
(srate 1.0)
(hop .05)
(amp-env '(0 0 50 1 100 0))
(input-start 0.0)
(grain-amp 0.8)
(reverb #f)
</pre>
<p>
'time' is the start time of the sound in the output file.
'duration' is the duration of expanded sound. To expand an entire sound, set this to the expansion factor times the input sound's duration.
'filename' is the input file to expand.
'amplitude' is a scaler on the amplitude of the input file. Since the output is created by overlaying many copies of the intput this value is generally less than 1.
'hop' can be a number or an envelope. It is the average length in time between segments (grains) in the output.
'expand' can be a number or an envelope. It sets the amount of expansion to produce in the output file.
'seglen'can be a number or an envelope. It is the length in time of the sound segments (grains).
'srate' can be a number or an envelope. It sets the sampling rate change to apply to the output file.
'amp-env' is the amplitude envelope for the output sound.
'input-start' sets where to start reading in the input file.
'grain-amp' is a scaler on each grain's amplitude.
'matrix' is a list, a mixing matrix.
'reverb' is the reverb amount.
</p>
<div class="separator"></div>
<!-- expfil -->
<pre class="indented">
<em class=emdef>expfil</em> start duration hopsecs rampsecs steadysecs file1 file2
</pre>
<p>expfile interleaves two granular synthesis processes (two readers pasting in tiny sections
of their file, one after the other).
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(expfil 0 2 .2 .01 .1 "oboe.snd" "fyow.snd")
(expfil 2 2 .01 .01 .02 "oboe.snd" "fyow.snd"))
</pre>
<div class="separator"></div>
<!-- exp-snd -->
<pre class="indented">
<em class=emdef>exp-snd</em> file beg dur amp (exp-amt 1.0) (ramp .4) (seglen .15) (sr 1.0) (hop .05) ampenv
</pre>
<p>exp-snd is a granular synthesis instrument with envelopes on
the expansion amount ('exp-amt' as a list), segment ramp steepness ('ramp' as a list),
segment length ('seglen' as a list), hop length ('hop' as a list), amplitude ('ampenv'),
and resampling rate ('sr' as a list).
In the next example, the expansion amount in both calls goes from 1 to 3 over the course of the note,
the ramp time and segment lengths stay the same, the sampling rate changes from 2 to 0.5, and the hop
stays the same (.05 in the first, and .2 in the second).
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(exp-snd "fyow.snd" 0 3 1 '(0 1 1 3) 0.4 .15 '(0 2 1 .5) 0.05)
(exp-snd "oboe.snd" 1 3 1 '(0 1 1 3) 0.4 .15 '(0 2 1 .5) 0.2))
</pre>
<div class="separator"></div>
<!-- fm-bell -->
<pre class="indented">
<em class=def id="fmbell">fm-bell</em> beg dur frequency amplitude amp-env index-env index
</pre>
fm-bell is an <a href="fm.html#fmintro">FM</a> instrument developed by Michael McNabb in Mus10 in the late '70s. It is intended
for low bell sounds (say middle C or so). The lines
<pre class="indented">
(mod1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* frequency 2)))
(mod2 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* frequency 1.41)))
(mod3 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* frequency 2.82)))
(mod4 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* frequency 2.4)))
(car1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(car2 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(car3 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* frequency 2.4)))
</pre>
set up three FM pairs, car1 and mod1 handling the basic harmonic spectra,
car2 and mod2 creating inharmonic spectra (using the square root of 2 more or less
at random), and car3 and mod3 putting a sort of formant at the minor third
(2.4 = a ratio of 12/5 = octave+6/5 = minor tenth).
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(fm-bell 0.0 2.0 220.0 .5
'(0 0 .1000 1 10 .6000 25 .3000 50 .1500 90 .1000 100 0)
'(0 1 2 1.1000 25 .7500 75 .5000 100 .5000)
0.5))
</pre>
<div class="separator"></div>
<!-- fm-drum -->
<pre class="indented">
<em class=def id="fmdrum">fm-drum</em> beg dur freq amp ind (high #f) (deg 0.0) (dist 1.0) (rev-amount 0.01)
</pre>
<p>The fm-drum uses "cascade FM" (see <a href="fm.html">fm.html</a>); it was developed by Jan Mattox.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (fm-drum 0 1.5 55 .3 5 #f) (fm-drum 1.5 1.5 66 .3 4 #t))
</pre>
<div class="separator"></div>
<!-- fm-insect -->
<pre class="indented">
<em class=emdef>fm-insect</em> beg dur freq amp ampenv modfreq modskew modenv index indexenv fmindex ratio deg dist rev
</pre>
<p>The fm-insect started as an attempt to get cicada sounds from FM (for the 5th movement of "Colony"), but
ended with:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 22050)
(let ((locust '(0 0 40 1 95 1 100 .5))
(bug_hi '(0 1 25 .7 75 .78 100 1))
(amp '(0 0 25 1 75 .7 100 0)))
(fm-insect 0 1.699 4142.627 .015 amp 60 -16.707 locust 500.866 bug_hi .346 .500)
(fm-insect 0.195 .233 4126.284 .030 amp 60 -12.142 locust 649.490 bug_hi .407 .500)
(fm-insect 0.217 2.057 3930.258 .045 amp 60 -3.011 locust 562.087 bug_hi .591 .500)
(fm-insect 2.100 1.500 900.627 .06 amp 40 -16.707 locust 300.866 bug_hi .346 .500)
(fm-insect 3.000 1.500 900.627 .06 amp 40 -16.707 locust 300.866 bug_hi .046 .500)
(fm-insect 3.450 1.500 900.627 .09 amp 40 -16.707 locust 300.866 bug_hi .006 .500)
(fm-insect 3.950 1.500 900.627 .12 amp 40 -10.707 locust 300.866 bug_hi .346 .500)
(fm-insect 4.300 1.500 900.627 .09 amp 40 -20.707 locust 300.866 bug_hi .246 .500)))
</pre>
<p>See <a href="#animalsdoc">animals.scm</a> for much more convincing insect calls.
</p>
<div class="separator"></div>
<!-- fm-trumpet -->
<pre class="indented">
<em class=def id="fmtrumpet">fm-trumpet</em> beg dur ...
</pre>
<p>This is Dexter Morrill's FM-trumpet; see CMJ feb 77 p51.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (fm-trumpet 0 .25))
</pre>
<p>As with many instruments from that era, it has a million parameters:
</p>
<pre class="indented">
beg dur (frq1 250.0) (frq2 1500.0) (amp1 0.5) (amp2 0.1)
(ampatt1 0.03) (ampdec1 0.35) (ampatt2 0.03) (ampdec2 0.3)
(modfrq1 250.0) (modind11 0.0) (modind12 2.66)
(modfrq2 250.0) (modind21 0.0) (modind22 1.8)
(rvibamp 0.007) (rvibfrq 125.0) (vibamp 0.007) (vibfrq 7.0) (vibatt 0.6) (vibdec 0.2)
(frqskw 0.03) (frqatt 0.06)
(ampenv1 '(0 0 25 1 75 .9 100 0)) (ampenv2 '(0 0 25 1 75 .9 100 0))
(indenv1 '(0 0 25 1 75 .9 100 0)) (indenv2 '(0 0 25 1 75 .9 100 0))
(degree 0.0) (distance 1.0) (reverb-amount 0.005)
</pre>
<p>The pitch depends on the 'modfrq1' and 'modfrq2' parameters, as well as 'frq1' and 'frq2':
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (fm-trumpet 0 1 :frq1 400 :frq2 1600 :modfrq1 400 :modfrq2 400))
</pre>
<div class="separator"></div>
<pre class="indented">
<em class=def id="fmvoice">fm-voice</em> beg dur ...
</pre>
<p>This is John Chowning's FM voice instrument, used in "Phone" I think.
It is in jcvoi.scm, not clm-ins.scm. Its parameters are:
</p>
<pre class="indented">
beg dur pitch amp vowel-1 sex-1 ampfun1 ampfun2 ampfun3
indxfun skewfun vibfun ranfun
dis pcrev deg vibscl pcran skewscl ranpower glissfun glissamt
</pre>
<p>Here's an example:</p>
<pre class="indented">
(let ((ampf '(0 0 1 1 2 1 3 0)))
(with-sound (:play #t)
(fm-voice 0 1 300 .8 3 1 ampf ampf ampf ampf ampf ampf ampf 1 0 0 .25 .01 0 ampf .01)))
</pre>
<div class="separator"></div>
<!-- main-index |fofins:FOF synthesis -->
<!-- fofins -->
<pre class="indented">
<em class=def id="fofins">fofins</em> beg dur frq amp uvib f0 a0 f1 a1 f2 a2 (amp-env '(0 0 1 1 2 1 3 0))
</pre>
<p>fofins is an implementation of <A HREF="http://www-ccrma.stanford.edu/~serafin/320/lab3/FOF_synthesis.html">FOF synthesis</A>, taken originally from
fof.c of Perry Cook and the article
"Synthesis of the Singing Voice" by Bennett and Rodet in
"Current Directions in Computer Music Research" (MIT Press).
FOF synthesis sets up a wave with the desired spectrum (to mimic vocal formats, for example),
then calls <a href="sndclm.html#wave-train">wave-train</a> to turn that into a tone.
fofins just adds an amplitude envelope and vibrato.
In the Scheme version, there is also an optional trailing vibrato envelope argument (this is slightly different from the CL version):
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () ; slowly ramp up the vibrato
(fofins 0 4 270 .1 0.005 730 .6 1090 .3 2440 .1
'(0 0 .5 1 3 .5 10 .2 20 .1 50 .1 60 .2 85 1 100 0)
'(0 0 40 0 75 .2 100 1) )
(fofins 0 4 648 .1 0.005 730 .6 1090 .3 2440 .1 ;648 (* 6/5 540)
'(0 0 .5 .5 3 .25 6 .1 10 .1 50 .1 60 .2 85 1 100 0)
'(0 0 40 0 75 .2 100 1) )
(fofins 0 4 135 .1 0.005 730 .6 1090 .3 2440 .1
'(0 0 1 3 3 1 6 .2 10 .1 50 .1 60 .2 85 1 100 0)
'(0 0 40 0 75 .2 100 1)))
</pre>
<div class="separator"></div>
<!-- fullmix -->
<pre class="indented">
<em class=def id="fullmix">fullmix</em> infile beg outdur inbeg matrix srate reverb-amount
</pre>
<p>fullmix is a complicated way to mix stuff. It's built into the CL version of CLM, so there was clamor for some sort
of replacement in other versions of CLM.
fullmix provides a sound file mixer that can handle any number
of channels of data in and out with scalers and envelopes on any path, sampling rate conversion,
reverb — you name it!
'infile' is the file to be mixed:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (fullmix "pistol.snd")) ; this places pistol.snd at time 0
</pre>
<p>'beg' is the start time of the mix in the output sound;
'outdur' is the duration of the mixed-in portion in the output;
'inbeg' is where to start the mix in the input file:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (fullmix "pistol.snd" 1.0 2.0 0.25))
;; start at 0.25 in pistol.snd, include next 2 secs, put at time 1.0 in output
</pre>
<p>'srate' is the amount of sampling rate conversion to apply, and
'reverb' is the amount of the signal to send to the reverberator:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb nrev) (fullmix "pistol.snd" 1.0 2.0 0.25 #f 2.0 0.1)) ; up an octave, lots of reverb!
</pre>
<p>The 'matrix' parameter is much harder to describe. It is either a number or a list of lists.
In the first case, that number is the amplitude scaler on the output:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb nrev) (fullmix "pistol.snd" 1.0 2.0 0.25 0.2 2.0 0.1)) ; same but much softer (0.2 amp)
</pre>
<p>If 'matrix' is a list of lists, each element of the inner lists can be either a number or list a breakpoints (an envelope).
If a number, it is treated as an amplitude scaler for that input and output channel combination. Each inner list
represents an input channel, so if we have a stereo input file going to a stereo output file and we want
the channels to be mixed straight, but channel 0 at .5 amp and channel 1 at .75:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 2) (fullmix "2a.snd" #f #f #f '((0.5 0.0) (0.0 0.75))))
;; ^ ^ ^ ^
;; | | | |
;; 0->0 | 1->0 |
;; 0->1 1->1
</pre>
<p>So, 2a.snd's first channel gets mixed into the output's first channel, scaled by 0.5,
and its second channel goes to the output second channel scaled by 0.75.
If we have four channels in and are writing a mono file, and want to mix in
only the second channel of the input:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 1) (fullmix "4.aiff" #f #f #f '((0.0) (1.0) (0.0) (0.0))))
</pre>
<p>The next complication is that each entry in the inner lists can also be a list of
envelope breakpoints. In that case, an envelope is applied to that portion of the
mix, rather than just a scaler:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 2) (fullmix "oboe.snd" #f #f #f (list (list (list 0 0 1 1 2 0) 0.5))))
;; mono input so one list, envelope output chan 0, scale output chan 1 (two copies of input)
</pre>
<p>And finally(!) each inner list element can also be a CLM env generator:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 2)
(fullmix "oboe.snd" 1 2 0 (list (list .1 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 1 1) :duration 2 :scaler .5)))))
</pre>
<p>Here's a Ruby example:
</p>
<pre class="indented">
with_sound(:channels, 2, :statistics, true) do
fullmix("pistol.snd")
fullmix("oboe.snd", 1, 2, 0, [[0.1, make_env([0, 0, 1, 1], :duration, 2, :scaler, 0.5)]])
end
</pre>
<p>"srate" can be negative (meaning read in reverse) or a list or breakpoints (an src envelope).
Now we need filters!
</p>
<div class="separator"></div>
<!-- gong -->
<pre class="indented">
<em class=emdef>gong</em> beg dur freq amp (degree 0.0) (distance 1.0) (reverb-amount 0.005)
</pre>
<p>gong is an FM instrument developed by Paul Weineke.
</p>
<pre class="indented">
Scheme: (with-sound () (gong 0 3 261.61 .3))
Ruby: with_sound() do gong(0, 3, 261.61, 0.6) end
</pre>
<div class="separator"></div>
<!-- gran-synth -->
<pre class="indented">
<em class=emdef>gran-synth</em> beg dur freq grain-dur grain-hop amp
</pre>
<p>gran-synth sets up a <a href="sndclm.html#wave-train">wave-train</a> playing an enveloped
sinusoid (the "grain" in this case). 'grain-dur' sets the grain's length (in seconds),
'grain-hop' sets the frequency of the <a href="sndclm.html#wave-train">wave-train</a> generator (how quickly the grain is
repeated), and 'freq' sets the grain sinusoid's frequency.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (gran-synth 0 1 300 .0189 .03 .4)) ; grain freq 300Hz, repetition rate 33Hz
</pre>
<div class="separator"></div>
<!-- main-index |grapheq:graphic equalizer -->
<!-- graphEq -->
<pre>
<A class=def>graphEq</A> file beg dur or-beg amp (amp-env '(0 1.0 0.8 1.0 1.0 0.0)) (amp-base 1.0) ...
</pre>
<p id="grapheq">graphEq is a sort of non-graphical graphical equalizer, developed by Marco Trevisani. It sets up a bank of formant
generators with an optional envelope on each formant, then filters and envelopes the input file.
Its trailing parameters are:
</p>
<pre class="indented">
(offset-gain 0)
(gain-freq-list '((0 1 1 0) 440 (0 0 1 1) 660))
(filt-gain-scale 1)
(filt-gain-base 1)
(a1 .99)
(stats #t)
</pre>
<p>'a1' is the formant radius.
'gain-freq-list' is a list of gains and frequencies to
filter
The gains can be either numbers or envelopes (one or the other, not a mixture).
'offset-gain' is an offset (addition) to all the gains.
'filt-gain-scale' and 'filt-gain-base' are similar, but apply to the envelopes, if any.
'stats' prints encouraging numbers if #t.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (graphEq "oboe.snd")) ; accept all the defaults (Scheme is case sensitive)
</pre>
<p>If we want just steady bands:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (graphEq "oboe.snd" 0 0 0 1.0 '(0 1 1 0) 1.0 0 '(.1 440 .3 1500 .2 330)))
</pre>
<div class="separator"></div>
<!-- hammondoid -->
<pre class="indented">
<em class=emdef>hammondoid</em> beg dur freq amp
</pre>
<p>hammondoid is Perry Cook's additive-synthesis Hammond organ.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (hammondoid 0 1 440 .1))
</pre>
<div class="separator"></div>
<!-- jl-reverb -->
<pre class="indented">
<em class=emdef>jl-reverb</em> (decay 3.0)
</pre>
<p>jl-reverb is a cavernous version of John Chowning's ancient reverberator. You can never get enough reverb!
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb jl-reverb) (fm-violin 0 .1 440 .1 :reverb-amount .1))
</pre>
<p>'decay' is the reverb decay time tacked onto the end of the output sound.
To pass parameters to a reverberator, use the with-sound parameter :reverb-data. So, if we want
5 seconds of decay:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb jl-reverb :reverb-data '(5.0)) (fm-violin 0 .1 440 .1 :reverb-amount .1))
;; ^ this is passed as (jl-reverb 5.0)
</pre>
<div class="separator"></div>
<!-- lbj-piano -->
<pre class="indented">
<em class=def id="lbjpiano">lbj-piano</em> beg dur freq amp (pfreq frequency) (degree 45) (reverb-amount 0) (distance 1)
</pre>
<p>lbj-piano, developed by Doug Fulton, uses James A Moorer's piano spectra and
additive synthesis to mimic a piano.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (lbj-piano 0 2 110.0 .2))
</pre>
<p>Doug says, "The high notes sound pretty rotten" and thinks perhaps
one major problem is the lack of mechanical noise.
'pfreq' sets which spectrum to use; it defaults to whatever matches 'freq'.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (lbj-piano 0 2 110.0 .2 :pfreq 550))
</pre>
<div class="separator"></div>
<!-- metal -->
<pre class="indented">
<em class=emdef>metal</em> beg dur freq amp
</pre>
<p>metal is another Perry Cook creation (HeavyMtl); it's an FM instrument:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (metal 0 1 440 .2))
</pre>
<div class="separator"></div>
<!-- nrev -->
<pre class="indented">
<em class=def id="nrev">nrev</em> (reverb-factor 1.09) (lp-coeff 0.7) (volume-1 1.0)
</pre>
<p>nrev, developed by Michael McNabb, is one of the more popular old-style reverbs.
It is much cleaner than jc-reverb.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb nrev) (fm-violin 0 .1 440 .1 :reverb-amount .1))
</pre>
<p>'reverb-factor' controls the length of the decay — it should not exceed 1.21 or so.
'lp-coeff' controls the strength of the low pass filter inserted in the feedback loop.
'volume-1' can be used to boost the reverb output.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb nrev :reverb-data '(:lp-coeff 0.9 :volume-1 2.0))
(fm-violin 0 .1 440 .1 :reverb-amount .1))
</pre>
<div class="separator"></div>
<!-- main-index |pins:SMS synthesis -->
<!-- pins -->
<pre class="indented">
<em class=def id="pins">pins</em> beg dur file amp ...
</pre>
<p>pins is a simple implementation of the spectral modeling synthesis
of Xavier Serra and Julius Smith (sometimes known as "Sansy" or "SMS"). See
Serra, X., J. O. Smith. 1990. "Spectral Modeling Synthesis:A Sound Analysis/Synthesis Based on a Deterministic plus Stochastic Decomposition". Computer Music Journal, vol. 14(4), 1990.
The idea behind SMS is similar to the phase vocoder,
but tracks spectral peaks so that its resynthesis options are much more sophisticated.
The trailing parameters are:
</p>
<pre class="indented">
(transposition 1.0) (time-scaler 1.0) (fft-size 256)
(highest-bin 128) (max-peaks 16) printit attack
</pre>
<p>'transposition' can be used to transpose a sound;
'time-scaler' changes the sound's duration;
'fft-size' may need to be larger if your sampling rate is 44100, or the input sound's
fundamental is below 300 Hz;
'highest-bin' sets how many fft bins we search for spectral peaks;
'max-peaks' sets how many peaks we track (at a maximum) through the sound;
'printit', if set to #t, causes the peak envelopes to be printied;
'attack' is an optional float-vector containing the attack portion of the new sound.
</p>
<pre class="indented">
Scheme: (with-sound () (pins 0.0 1.0 "now.snd" 1.0 :time-scaler 2.0))
Ruby: with_sound() do pins(0, 1, "now.snd", 1, :time_scaler, 2) end
</pre>
<p>Xavier has a website devoted to this system, but it seems to move; search for CLAM or SMS.
</p>
<div class="separator"></div>
<!-- pluck -->
<pre class="indented">
<em class=def id="pluck">pluck</em> beg dur freq amp (weighting .5) (lossfact .9)
</pre>
<p>
pluck is based on
the <A HREF="http://ccrma.stanford.edu/~jos/SimpleStrings/Karplus_Strong_Algorithm.html">Karplus-Strong</A>
algorithm as extended by David Jaffe and Julius Smith — see
Jaffe and Smith, "Extensions of the Karplus-Strong Plucked-String Algorithm"
CMJ vol 7 no 2 Summer 1983, reprinted in "The Music Machine".
The basic idea is to fill an array with noise, then filter the array values as it is played repeatedly,
giving a sharp attack and a ringing decay, much like plucking a guitar. The CMJ article
gives many variations, changing pick position and so on. Jaffe's "Silicon Valley Breakdown"
makes great use of this instrument.
'weighting' is the ratio of the once-delayed to the twice-delayed samples. It defaults to .5 which gives a short decay;
anything other than .5 produces a longer decay. It should be between 0.0 and 1.0.
'lossfact' can be used to shorten decays. The most useful values are between .8 and 1.0.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(pluck 0 1 330 .3 .95 .95)
(pluck .3 2 330 .3 .9 .9999)
(pluck .7 2 330 .3 .8 .99))
</pre>
<p>
In Ruby:
</p>
<pre class="indented">
with_sound() do pluck(0.05, 0.1, 330, 0.1, 0.95, 0.95) end
</pre>
<div class="separator"></div>
<!-- main-index |pqwvox:waveshaping voice -->
<!-- pqw-vox -->
<pre class="indented">
<em class=def id="pqwvox">pqw-vox</em> beg dur freq spacing-freq amp ampfun freqfun freqscl phonemes formant-amps formant-shapes
</pre>
<p>pqw-vox is an extension of Marc LeBrun's instrument vox (described below) to use phase-quadrature (single-sideband)
waveshaping. It uses both Chebyshev polynomial kinds to set up spectra-producing pairs of waveshapers that will
add in such a way as to cancel either the upper or lower set of sidebands. These are then ganged together as in
the vox instrument to mimic moving formants.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(pqw-vox 0 1 300 300 .1 '(0 0 50 1 100 0) '(0 0 100 1) .3 '(0 L 100 L) '(.5 .25 .1)
'((1 1 2 .5) (1 .5 2 .5 3 1) (1 1 4 .5))))
(<a class=quiet href="#wsdoc">with-sound</a> ()
(pqw-vox 0 2 200 200 .1 '(0 0 50 1 100 0) '(0 0 100 1) .1 '(0 UH 100 ER) '(.8 .15 .05)
'((1 1 2 .5) (1 1 2 .5 3 .2 4 .1) (1 1 3 .1 4 .5)))
(pqw-vox 2 2 200 314 .1 '(0 0 50 1 100 0) '(0 0 100 1) .01 '(0 UH 100 ER) '(.8 .15 .05)
'((1 1 2 .5) (1 1 4 .1) (1 1 2 .1 4 .05)))
(pqw-vox 4 2 100 414 .2 '(0 0 50 1 100 0) '(0 0 100 1) .01 '(0 OW 50 E 100 ER) '(.8 .15 .05)
'((1 1 2 .5 3 .1 4 .01) (1 1 4 .1) (1 1 2 .1 4 .05))))
</pre>
<div class="separator"></div>
<!-- pqw -->
<pre class="indented">
<em class=def id="pqw">pqw</em> beg dur freq spacing-freq carrier-freq amplitude ampfun indexfun partials ...
</pre>
<p>pqw is a phase-quadrature waveshaping instrument which produces asymmetric spectra.
The trailing parameters just set the usual degree, distance, and reverb values.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (pqw 0 .5 200 1000 .2 '(0 0 25 1 100 0) '(0 1 100 0) '(2 .1 3 .3 6 .5)))
</pre>
<p>To see the asymmetric spectrum most clearly, set the index function above to '(0 1 100 1).
</p>
<div class="separator"></div>
<!-- resflt -->
<pre class="indented">
<em class=emdef>resflt</em> beg dur driver ...
</pre>
<p>resflt, developed by Richard Karpen and Xavier Serra, sets up three resonators (two-pole filters),
then drives them with either white noise or an <a href="sndclm.html#ncos">ncos</a> pulse train.
Both can be used for vocal effects:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(resflt 0 1.0 0 0 0 #f .1 200 230 10 '(0 0 50 1 100 0) '(0 0 100 1)
500 .995 .1 1000 .995 .1 2000 .995 .1)
(resflt 1 1.0 1 10000 .01 '(0 0 50 1 100 0) 0 0 0 0 #f #f
500 .995 .1 1000 .995 .1 2000 .995 .1))
</pre>
<p>The trailing parameters are:
</p>
<pre class="indented">
ranfreq noiamp noifun cosamp cosfreq1 cosfreq0 cosnum ampcosfun freqcosfun
frq1 r1 g1 frq2 r2 g2 frq3 r3 g3
(degree 0.0) (distance 1.0)(reverb-amount 0.005)
</pre>
<p>Set 'driver' to 0 to get the pulse train, or to 1 to get white noise.
In the latter case, 'ranfreq' is the random number generator frequency, 'noiamp' is its amplitude,
and 'noifun' is an amplitude envelope on its output (filter input)
In the pulse case, 'cosamp' is the pulse train amplitude, 'ampcosfun' the amplitude envelope,
'cosfreq0' and 'cosfreq1' set the frequency limits of 'freqcosfun',
and 'cosnum' sets the number of cosines in the pulse.
The three resonators are centered at 'frq1', 'frq2', 'frq3',
with pole-radius 'r1', 'r2', and 'r3' respectively, and
with gains of 'g1', 'g2', and 'g3'.
</p>
<div class="separator"></div>
<!-- reson -->
<pre class="indented">
<em class=def id="reson">reson</em> beg dur freq amp ...
</pre>
<p>reson is a vocal simulator developed by John Chowning. Its trailing parameters are:
</p>
<pre class="indented">
numformants indxfun skewfun pcskew skewat skewdc vibfreq vibpc ranvibfreq ranvibpc
degree distance reverb-amount data
'data' is a list of lists of form
'(ampf resonfrq resonamp ampat ampdc dev0 dev1 indxat indxdc)
</pre>
<p>Needless to say, no one has ever written out these parameters by hand, so here's an all-time first:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(reson 0.0 1.0 440 .1 2 '(0 0 100 1) '(0 0 100 1) .1 .1 .1 5 .01 5 .01 0 1.0 0.01
'(((0 0 100 1) 1200 .5 .1 .1 0 1.0 .1 .1) ((0 1 100 0) 2400 .5 .1 .1 0 1.0 .1 .1))))
</pre>
<p>But JC got very nice vocal sounds from this — I must have mistyped somewhere...
Here's another stab at it:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(reson 0.0 1.0 440 .1 2 '(0 1 100 0) '(0 0 100 1) .01 .1 .1 5 .01 5 .01 0 1.0 0.01
'(((0 1 100 1) 1000 .65 .1 .1 0 1.0 .1 .1) ((0 0 100 1) 2400 .15 .1 .1 0 1.0 .1 .1))))
</pre>
<p>If you find a good example, please send me it!
</p>
<div class="separator"></div>
<!-- rhodey -->
<pre class="indented">
<em class=emdef>rhodey</em> beg dur freq amp (base .5)
</pre>
<p>rhodey is another of Perry Cook's instruments (an electric piano), based on a pair of FM generators.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (rhodey 0 1 440 .2))
</pre>
<p>One of the oscillators is set to a frequency 15 times the requested 'freq', so for higher notes, you'll need to set the srate higher:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 44100) (rhodey 0 1 880 .2))
</pre>
<div class="separator"></div>
<!-- main-index |rmsgain:rms, gain, balance gens -->
<!-- rms gain balance -->
<pre class="indented">
<em class=def id="rmsgain">rms</em> gen sig
<em class=emdef>balance</em> gen sig comparison
<em class=emdef>gain</em> gen sig rsmval
<em class=emdef>make-rmsgain</em> (hp 10.0)
</pre>
<p>rms, balance, and gain are an implementation of the balance generators of CLM (based
on CSound originals, Scheme versions originally provided by Fabio Furlanete).
This section is a paraphrase of balance.html in the CLM tarball which was
written by Sam Hiesz.
balance, rms, and gain are used to track the RMS value of a signal and use
that information to scale some other signal. rms returns the RMS value;
gain takes a signal and an RMS value and modifies the signal to track the RMS
value; balance packages gain and rms into one function call.
make-rmsgain returns the generator used by rms, gain, and balance.
The 'hp' parameter sets the speed with which the balance process
tracks the RMS signal. An example is worth a zillion words:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 3)
(let ((rg (make-rmsgain))
(rg1 (make-rmsgain 40))
(rg2 (make-rmsgain 2))
(e (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 1 1 2 0) :length 10000))
(e1 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 1 1) :length 10000))
(e2 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 1 1 2 0 10 0) :length 10000))
(o (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> 440.0)))
(do ((i 0 (+ i 1)))
((= i 10000))
(let ((sig (<a class=quiet href="sndclm.html#env">env</a> e)))
(<a class=quiet href="sndclm.html#outa">outa</a> i (balance rg sig (<a class=quiet href="sndclm.html#env">env</a> e2)))
(<a class=quiet href="sndclm.html#outa">outb</a> i (balance rg1 sig (<a class=quiet href="sndclm.html#env">env</a> e1)))
(<a class=quiet href="sndclm.html#outa">outc</a> i (balance rg2 (* .1 (<a class=quiet href="sndclm.html#oscil">oscil</a> o)) (<a class=quiet href="sndclm.html#env">env</a> e2)))))))
</pre>
<div class="separator"></div>
<!-- scratch -->
<pre class="indented">
<em class=def id="scratch">scratch</em> beg file src-ratio turnlist
</pre>
<p>scratch moves back and forth in a sound file according to
a list of turn times much like <a href="#envsoundinterp">env-sound-interp</a>.
With voice input, we can create a "Remembrance of Bugs Bunny":
</p>
<pre class="indented">
Scheme: (with-sound () (scratch 0.0 "now.snd" 1.5 '(0.0 .5 .25 1.0)))
Ruby: with_sound() do scratch(0, "now.snd", 1.5, [0.0, 0.5, 0.25, 1.0]) end
</pre>
<p>I translate this as: "go forward from 0.0 to 0.5 secs, backwards to 0.25 secs, then forward to 1.0 secs".
</p>
<div class="separator"></div>
<!-- main-index |spectra:additive synthesis -->
<!-- spectra -->
<pre class="indented">
<em class=def id="spectra">spectra</em> beg dur freq amp ...
</pre>
<p>spectra is an additive-synthesis instrument with vibrato and an amplitude envelope. It was intended originally
to be used with the spectra in spectra.scm (information laboriously gathered at the dawn of the computer era
by James A Moorer). One such spectrum is labelled "p-a4", so we can hear it via:
</p>
<pre class="indented">
(load "spectr.scm")
(<a class=quiet href="#wsdoc">with-sound</a> ()
(spectra 0 1 440.0 .1 p-a4 '(0.0 0.0 1.0 1.0 5.0 0.9 12.0 0.5 25.0 0.25 100.0 0.0)))
</pre>
<p>The trailing parameters are:
</p>
<pre class="indented">
(partials '(1 1 2 0.5))
(amp-envelope '(0 0 50 1 100 0))
(vibrato-amplitude 0.005)
(vibrato-speed 5.0)
(degree 0.0)
(distance 1.0)
(reverb-amount 0.005)
</pre>
<p>We can pass our own partials:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(spectra 0 1 440.0 .1 '(1.0 .4 2.0 .2 3.0 .2 4.0 .1 6.0 .1)
'(0.0 0.0 1.0 1.0 5.0 0.9 12.0 0.5 25.0 0.25 100.0 0.0)))
</pre>
<div class="separator"></div>
<!-- ssb-fm -->
<pre class="indented">
<em class=def id="ssbfm">ssb-fm</em> gen modsig
<em class=emdef>make-ssb-fm</em> freq
</pre>
<p>These two functions implement
a sort of asymmetric FM using ideas similar to those used in <a href="sndclm.html#ssb-am">ssb-am</a>.
</p>
<div class="separator"></div>
<!-- main-index |stereoflute:flute model -->
<!-- stereo-flute -->
<pre class="indented">
<em class=def id="stereoflute">stereo-flute</em> beg dur freq flow ...
</pre>
<p>This is a physical model of a flute developed by Nicky Hind.
</p>
<pre class="indented">
Scheme:
(with-sound (:channels 2)
(stereo-flute 0 1 440 0.55 :flow-envelope '(0 0 1 1 2 1 3 0))
(stereo-flute 1 3 220 0.55 :flow-envelope '(0 0 1 1 2 1 3 0)))
Ruby:
with_sound() do stereo_flute(0, 2, 440, 0.55, :flow_envelope, [0, 0, 1, 1, 2, 1, 3, 0]) end
</pre>
<p>The trailing parameters are:
</p>
<pre class="indented">
(flow-envelope '(0 1 100 1))
(decay 0.01) ; additional time for instrument to decay
(noise 0.0356)
(embouchure-size 0.5)
(fbk-scl1 0.5) ; these two are crucial for good results
(fbk-scl2 0.55)
(offset-pos 0.764264) ; from 0.0 to 1.0 along the bore
(out-scl 1.0)
(a0 0.7) (b1 -0.3) ; filter coefficients
(vib-rate 5)
(vib-amount 0.03)
(ran-rate 5)
(ran-amount 0.03)
</pre>
<p>As with physical models in general, you may need to experiment a bit to find
parameters that work.
</p>
<div class="separator"></div>
<!-- main-index |telephone:telephone -->
<!-- touch-tone -->
<pre class="indented">
<em class=def id="telephone">touch-tone</em> beg number
</pre>
<p>This instrument produces telephone tones:
</p>
<pre class="indented">
Scheme: (with-sound () (touch-tone 0.0 '(7 2 3 4 9 7 1)))
Ruby: with_sound() do touch_tone(0, [7, 2, 3, 4, 9, 7, 1]) end
</pre>
<p>It is just two sine waves whose frequencies are chosen based on the number pressed.
</p>
<pre class="indented">
1 2 3 697 Hz
4 5 6 770 Hz
7 8 9 852 Hz
0 941 Hz
1209 1336 1477 Hz
</pre>
<p>For more than you really want to know about other such sounds, see
<A HREF="http://www.tech-faq.com/telephone-tone-frequencies.shtml">Telephone Tone Frequencies</A>.
</p>
<div class="separator"></div>
<!-- main-index |tubebell:tubular bell -->
<!-- tubebell -->
<pre class="indented">
<em class=def id="tubebell">tubebell</em> beg dur freq amp (base 32.0)
</pre>
<p>Perry Cook's tubular bell:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(tubebell 0 2 440 .1 32.0)
(tubebell 2 2 220 .1 64.0)
(tubebell 4 2 660 .1 .032))
</pre>
<p>'base' is the envelope base:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(tubebell 0 2 440 .1 32.0)
(tubebell 2 2 220 .1 2048.0)
(tubebell 4 3 660 .1 .032))
</pre>
<div class="separator"></div>
<!-- main-index |twotab:spectral interpolation -->
<!-- two-tab -->
<pre class="indented">
<em class=def id="twotab">two-tab</em> beg dur freq amp ...
</pre>
<p>two-tab interpolates between two spectra.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (two-tab 0 2 440 .1 '(1.0 1.0) '(3.0 1.0)))
;; go from harmonic 1 to harmonic 3
</pre>
<p>The trailing parameters are:
</p>
<pre class="indented">
(partial-1 '(1.0 1.0 2.0 0.5))
(partial-2 '(1.0 0.0 3.0 1.0))
(amp-envelope '(0 0 50 1 100 0))
(interp-func '(0 1 100 0))
(vibrato-amplitude 0.005)
(vibrato-speed 5.0)
(degree 0.0)
(distance 1.0)
(reverb-amount 0.005)
</pre>
<p>'interp-func' determines how we interpolate between the two spectra. When
it is at 1.0, we get only the first, at 0.0 only the second.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (two-tab 0 2 440 .1 '(1.0 1.0) '(3.0 1.0) '(0 0 1 1 2 0) '(0 0 1 1)))
</pre>
<p>is the reverse of the earlier sound. To go out and back:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (two-tab 0 2 440 .1 '(1.0 1.0) '(3.0 1.0) '(0 0 1 1 2 0) '(0 0 1 1 2 0)))
</pre>
<div class="separator"></div>
<!-- main-index |fmvox:fm-talker -->
<!-- vox -->
<pre class="indented">
<em class=def id="fmvox">vox</em> beg dur freq amp ampfun freqfun freqscl voxfun index vibscl
</pre>
<p>vox is a translation of Marc LeBrun's MUS10 waveshaping voice instrument
using FM in this case.
The basic idea is that each of the three vocal formants is created by two
sets of waveshapers (or oscils producing FM), one centered on the even multiple of the base frequency closest to the desired formant frequency,
and the other on the nearest odd multiple. As the base frequency moves (due to vibrato or glissando),
these center frequencies are recalculated on each sample, and the respective amplitudes
set to reflect the distance of the current center frequency from the desired formant frequency. If a center frequency moves
enough that the previous upper member of the pair has
to become the lower member, the upper waveshaper (which has meanwhile ramped to zero amplitude), jumps
down to its new center. The male-speaker formant table was provided by Robert Poor (see the code
for the complete table of formants).
For details on waveshaping, see Le Brun, "Digital Waveshaping Synthesis", JAES 1979 April, vol 27, no 4, p250.
I used vox in the 5th movement of "Colony" and in "The New Music Liberation Army".
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(let ((amp-env '(0 0 25 1 75 1 100 0))
(frq-env '(0 0 5 .5 10 0 100 1)))
(vox 0 2 170 .4 amp-env frq-env .1
'(0 E 25 AE 35 ER 65 ER 75 I 100 UH) '(.8 .15 .05) '(.005 .0125 .025) .05 .1)
(vox 2 2 110 .4 amp-env frq-env .5
'(0 UH 25 UH 35 ER 65 ER 75 UH 100 UH) '(.8 .15 .05) '(.005 .0125 .025))
(vox 4 2 300 .4 amp-env frq-env .1
'(0 I 5 OW 10 I 50 AE 100 OO) '(.8 .15 .05) '(.05 .0125 .025) .02 .1)))
</pre>
<p>Or in Ruby:
</p>
<pre class="indented">
with_sound() do
amp_env = [0, 0, 25, 1, 75, 1, 100, 0]
frq_env = [0, 0, 5, 0.5, 10, 0, 100, 1]
vox(0, 2, 170, 0.4, amp_env, frq_env, 0.1,
[0, :E, 25, :AE, 35, :ER, 65, :ER, 75, :I, 100, :UH], 0.05, 0.1)
vox(2, 2, 300, 0.4, amp_env, frq_env, 0.1,
[0, :I, 5, :OW, 10, :I, 50, :AE, 100, :OO], 0.02, 0.1)
vox(4, 5, 600, 0.4, amp_env, frq_env, 0.1,
[0, :I, 5, :OW, 10, :I, 50, :AE, 100, :OO], 0.01, 0.1)
end
</pre>
<p>vox can also be use for less vocal effects:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:play #t :scaled-to .5)
(vox 0 .25 500 .4 '(0 0 .1 1 1 1 2 .5 3 .25 10 0) '(0 0 5 .5 10 0 100 1) .1
'(0 E 25 OW 35 ER 105 ER) '(.13 .15 .15) '(.005 .005 .015) .05 .1))
</pre>
<div class="separator"></div>
<!-- wurley -->
<pre class="indented">
<em class=emdef>wurley</em> beg dur freq amp
</pre>
<p>Perry Cook's Wurlitzer (I assume).
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (wurley 0 1 440 .1))
</pre>
<div class="separator"></div>
<!-- za, zc, zn -->
<pre class="indented">
<em class=emdef>za</em> time dur freq amp length1 length2 feedback feedforward
<em class=emdef>zc</em> time dur freq amp length1 length2 feedback
<em class=emdef>zn</em> time dur freq amp length1 length2 feedforward
</pre>
<p>The "z" instruments demonstrate "zdelay" effects — interpolating
<a href="sndclm.html#comb">comb</a>, <a href="sndclm.html#notch">notch</a>, and <a href="sndclm.html#all-pass">all-pass</a> filters.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (zn 0 1 100 .1 20 100 .995)
(zn 1.5 1 100 .1 100 20 .995)
(zc 3 1 100 .1 20 100 .95)
(zc 4.5 1 100 .1 100 20 .95)
(za 6 1 100 .1 20 100 .95 .95)
(za 7.5 1 100 .1 100 20 .95 .95))
</pre>
<div class="separator"></div>
<p>snd-test.scm has examples of calling all these instruments.
</p>
<div class="seealso">
see also: <a href="#birddoc">bird</a> <a href="sndclm.html#sndclmtop">clm</a> <a href="#dlocsigdoc">dlocsig</a> <a href="#exampdoc">examp</a> <a href="#fadedoc">fade</a> <a href="fm.html#fmintro">fm</a> <a href="#vdoc">fmv</a> <a href="#freeverbdoc">freeverb</a> <a href="#grapheq">graphEq</a> <a href="#granidoc">grani</a> <a href="#jcrevdoc">jcrev</a> <a href="#maracadoc">maraca</a>
<a href="#maxfdoc">maxf</a> <a href="#noisedoc">noise</a> <a href="#pianodoc">piano</a> <a href="#prc95doc">prc95</a> <a href="#pvocdoc">pvoc</a> <a href="#singerdoc">singer</a> <a href="#sndwarpdoc">sndwarp</a> <a href="#stochasticdoc">stochastic</a> <a href="#straddoc">strad</a> <a href="#wsdoc">ws</a>
</div>
<!-- FILE: dlocsig -->
<div class="header" id="dlocsigdoc">dlocsig</div>
<p id="dlocsig">dlocsig is a CLM generator developed by Fernando Lopez-Lezcano that can move sounds in two or three dimensions.
Fernando's CLM/lisp-oriented documentation can be found in
dlocsig.html.
dlocsig.rb is Michael Scholz's translation of dlocsig to Ruby.
It has lots of documentation and examples. If you load dlocsig.rb, a new menu is added named "Dlocsig".
If you choose a path from this menu, you get a graphical user-interface to play with the various
envelopes that drive dlocsig. Click the "With_Snd" button to apply the current path choices to the
currently selected sound. Click "Gnuplot" to get a pretty picture of the path (in 3D!).
An instrument that uses dlocsig is:
</p>
<pre class="indented">
(define* (sinewave start-time duration freq amp (amp-env '(0 1 1 1))
(path (make-path :path '(-10 10 0 5 10 10))))
(let ((vals (<em class=red>make-dlocsig</em> :start-time start-time :duration duration :path path)))
(let ((dloc (car vals))
(beg (cadr vals))
(end (caddr vals)))
(let ((osc (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> freq))
(aenv (<a class=quiet href="sndclm.html#make-env">make-env</a> amp-env :scaler amp :duration duration)))
(do ((i beg (+ i 1)))
((= i end))
(<em class=red>dlocsig</em> dloc i (* (<a class=quiet href="sndclm.html#env">env</a> aenv) (<a class=quiet href="sndclm.html#oscil">oscil</a> osc))))))))
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 2) (sinewave 0 1.0 440 .5 :path (make-path '((-10 10) (0.5 0.5) (10 10)) :3d #f)))
</pre>
<!-- FILE: draw -->
<div class="header" id="drawdoc">draw</div>
<p>draw.scm has examples of graphics-oriented extensions.
</p>
<div class="spacer"></div>
<!-- color-samples -->
<pre class="indented">
<em class=emdef>color-samples</em> color beg dur snd chn
<em class=emdef>uncolor-samples</em> snd chn
</pre>
<p>
color-samples displays the samples from sample 'beg' for 'dur' samples in 'color'
whenever they're in the current time domain view. uncolor-samples cancels this action.
To activate this, add it to <a href="extsnd.html#aftergraphhook">after-graph-hook</a>.
</p>
<div class="spacer"></div>
<!-- display-previous-edits -->
<pre class="indented">
<em class=emdef>display-previous-edits</em> snd chn
</pre>
<p>
display-previous-edits displays all the edits of the current sound, with older edits gradually fading away.
To activate this, add it to <a href="extsnd.html#aftergraphhook">after-graph-hook</a>:
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#aftergraphhook">after-graph-hook</a> display-previous-edits)
</pre>
<div class="spacer"></div>
<!-- overlay-rms-env -->
<pre class="indented">
<em class=def id="overlayrmsenv">overlay-rms-env</em> snd chn
</pre>
<p>overlay-rms-env displays the running rms value of the currently displayed data in red, overlayed upon the
normal graph. To activate it, add it to the <a href="extsnd.html#aftergraphhook">after-graph-hook</a>:
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#aftergraphhook">after-graph-hook</a> overlay-rms-env)
</pre>
<div class="spacer"></div>
<!-- overlay-sounds -->
<pre class="indented">
<em class=emdef>overlay-sounds</em> :rest sounds
</pre>
<p>overlay-sounds overlays onto its first argument (a sound) all subsequent arguments: (overlay-sounds 1 0 3).
</p>
<div class="spacer"></div>
<!-- samples-via-colormap -->
<pre class="indented">
<em class=emdef>samples-via-colormap</em> snd chn
</pre>
<p>samples-via-colormap displays the time domain graph using the current colormap (it is really just an example of
<a href="extsnd.html#colormapref">colormap-ref</a>).
To activate this, add it to <a href="extsnd.html#aftergraphhook">after-graph-hook</a>:
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#aftergraphhook">after-graph-hook</a> samples-via-colormap)
</pre>
<img class="indented" src="pix/samplesviacolormap.png" alt="samples-via-colormap">
<!-- FILE: dsp -->
<div class="header" id="dspdoc">dsp</div>
<p>dsp.scm is a DSP grabbag, mostly filters. There are more than 100 functions to describe here, so
an alphabetical list is just a jumble of names. Instead, I've tried to divide them into several vague
categories:
<a href="#dspdocfft">FFTs</a>, <a href="#dspdocfir">FIR filters</a>,
<a href="#dspdociir">IIR filters</a>, <a href="#dspdocgens">synthesis</a>,
<a href="#dspdoceffects">sound effects</a>,
<a href="#dspdocsrc">sampling rate conversion</a>,
<a href="#dspdocalgebra">linear algebra and stats</a>,
and <a href="#dspdocscanned">scanned synthesis</a>.
</p>
<div class="inset"><p>If you're new to DSP, I recommend Lyons' "Understanding Digital Signal Processing" and Steiglitz, "A
Digital Signal Processing Primer";
there are many good books
on advanced calculus — I especially liked Hildebrand, "Advanced Calculus for Applications", but it may
be out of print (this was about 25 years ago, I think); a great book on complex analysis is Needham, "Visual
Complex Analysis"; Poole's "Linear Algebra" is a very straightforward
introduction; also Halmos, "Linear Algebra Problem Book"; the most enjoyable
Fourier Analysis book is by Körner, but you don't want to start with it.
For the ambitious, there is the encyclopedic set of books by Julius Smith.
His "Mathematics of the DFT" and "Introduction to Digital Filters" are very clear.
</p></div>
<!-- dsp FFT -->
<div class="innerheader" id="dspdocfft">FFTs</div>
<!-- main-index |dht:Hartley transform -->
<!-- dht -->
<pre class="indented">
<em class=def id="dht">dht</em> data
</pre>
<p>dht is the slow form of the Hartley transform,
taken from Perry Cook's SignalProcessor.m.
The Hartley transform is a kind of Fourier transform.
</p>
<div class="spacer"></div>
<!-- display-bark-fft -->
<pre class="indented">
<em class=def id="displaybarkfft">display-bark-fft</em> off color1 color2 color3
<em class=emdef>undisplay-bark-fft</em>
</pre>
<p>display-bark-fft shows the current spectrum in the "lisp" graph in three
different frequency scales: bark, mel, and erb, each in a different color.
The default ticks follow the bark scale; click anywhere in the lisp graph
to switch to a different tick scale choice. undisplay-bark-fft turns this
graph off. Here we've used rgb.scm for some color names:
</p>
<pre class="indented">
(display-bark-fft #f sea-green orange alice-blue)
(set! (<a class=quiet href="extsnd.html#selectedgraphcolor">selected-graph-color</a>) gray30)
(set! (<a class=quiet href="extsnd.html#selecteddatacolor">selected-data-color</a>) light-green)
</pre>
<img class="indented" src="pix/bark.png" alt="bark display">
<div class="spacer"></div>
<!-- dolph -->
<pre class="indented">
<em class=def id="dolph">dolph</em> n gamma
</pre>
<p>dolph is the Dolph-Chebyshev fft data window, taken
from Richard Lyons, "Understanding DSP". The C version used by Snd/CLM is in clm.c.
Another version of the same function,
taken (with a few minor changes) from Julius Smith's "Spectral Audio", is named dolph-1.
</p>
<div class="spacer"></div>
<!-- down-oct and stretch-sound-via-dft -->
<pre class="indented">
<em class=def id="downoct">down-oct</em> n snd chn
<em class=def id="stretchsoundviadft">stretch-sound-via-dft</em> factor snd chn
</pre>
<p>down-oct
tries to move a sound down by a factor of n (assumed to be a power of 2, 1 = no change) by goofing with the fft data,
then inverse ffting.
I think this is "stretch" in DSP jargon; to interpolate in the time domain we're squeezing the frequency domain.
The power-of-2 limitation is based on the underlying fft function's insistence on power-of-2 data sizes.
A more general version of this is stretch-sound-via-dft, but it's
extremely slow.
</p>
<div class="spacer"></div>
<!-- goertzel and find-sine -->
<pre class="indented">
<em class=def id="goertzel">goertzel</em> freq beg dur snd
<em class=emdef>find-sine</em> freq beg dur snd
</pre>
<p>goertzel and find-sine find the amplitude of a single component of a spectrum ('freq').
</p>
<pre class="indented">
> (find-sine 550.0 0.0 (framples))
(0.00116420908413177 0.834196665512423) ; car is amplitude, cadr is phase in radians
> (* (goertzel 550.0 0.0 (framples)) (/ 2.0 (framples)))
0.00116630805062827
</pre>
<div class="spacer"></div>
<!-- periodogram -->
<pre class="indented">
<em class=emdef>periodogram</em> N
</pre>
<p>periodogram (the "Bartlett" version, I think) runs over an entire file, piling up 'N' sized chunks of data,
then displays the results in the "lisp graph" area; this needs a lot of work to be useful!
</p>
<div class="spacer"></div>
<!-- scentroid -->
<pre class="indented">
<em class=def id="scentroid">scentroid</em> file (beg 0.0) dur (db-floor -40.0) (rfreq 100.0) (fftsize 4096)
</pre>
<p>scentroid is Brett Battey's CLM scentroid instrument, translated to Snd/Scheme.
To paraphrase Brett:
scentroid returns (in a float-vector) the continuous spectral centroid envelope of a sound.
The spectral centroid is the "center of gravity" of the spectrum, and it
has a rough correlation to our sense of "brightness" of a sound.
'db-floor' sets a lower limit on which framples are included in the analysis.
'rfreq' sets the number of measurements per second.
'fftsize' sets the fft window size (a power of 2).
See also the <a href="sndclm.html#moving-scentroid">moving-scentroid</a> generator in generators.scm.
</p>
<div class="spacer"></div>
<!-- spot-freq -->
<pre class="indented">
<em class=def id="spotfreq">spot-freq</em> samp snd chn
</pre>
<p>spot-freq is a first-pass at using autocorrelation for
pitch tracking; it's easily fooled, but could probably be made relatively robust.
</p>
<pre class="indented">
> (spot-freq 10000) ; this is oboe.snd, in about .5 secs
555.262096862931 ; 555Hz is correct(!)
</pre>
<p>In the next example, we add spot-freq to the <a href="extsnd.html#mouseclickhook">mouse-click-hook</a> (in Ruby),
so that each time we click somewhere in the graph, the pitch at that point is reported:
</p>
<pre class="indented">
$mouse_click_hook.add_hook!("examp-cursor-hook") do |snd, chn, button, state, x, y, axis|
if axis == Time_graph
status_report(format("(freq: %.3f)", spot_freq(cursor(snd, chn))))
end
end
</pre>
<div class="spacer"></div>
<!-- rotate-phase and zero-phase -->
<pre class="indented">
<em class=emdef>rotate-phase</em> func snd chn
<em class=def id="zerophase">zero-phase</em> snd chn
</pre>
<p>These are fft phase manipulators taken from the phazor package of Scott McNab.
zero-phase takes ffts, sets all phases to 0.0, then unffts. rotate-phase
is similar, but applies 'func' to the phases.
</p>
<pre class="indented">
(rotate-phase (lambda (x) 0.0)) ; same as (zero-phase)
(rotate-phase (lambda (x) (random 3.1415))) ; randomizes phases
(rotate-phase (lambda (x) x)) ; returns original
(rotate-phase (lambda (x) (- x))) ; reverses original
</pre>
<p>or in Ruby:
</p>
<pre class="indented">
rotate_phase(lambda {|x| random(PI) }) # randomizes phases
</pre>
<p>and Forth:
</p>
<pre class="indented">
lambda: <{ x }> pi random ; #f #f rotate-phase \ randomizes phases
</pre>
<div class="spacer"></div>
<!-- z-transform and fractional-fourier-transform -->
<pre class="indented">
<em class=def id="ztransform">z-transform</em> rl size z
<em class=def id="fractionalfouriertransform">fractional-fourier-transform</em> rl im size angle
</pre>
<p>z-transform performs a z-transform returning a vector (to accommodate complex results):
</p>
<pre class="indented">
> (define d0 (make-float-vector 8))
d0
;; and similarly for d1 and d2 ...
> (set! (d0 2) 1.0)
1.0
> (set! (d1 2) 1.0)
1.0
> (z-transform d0 8 (exp (make-rectangular 0.0 (* .25 pi))))
;; Ruby: z_transform(d0, 8, exp(Complex(0.0, (2.0 / 8) * PI)))
#(1.0 0.0+1.0i -1.0 0.0-1.0i 1.0 0.0+1.0i -1.0 0.0-1.0i)
> (mus-fft d1 d2 8)
#(1.0 0.0 -1.0 -0.0 1.0 0.0 -1.0 -0.0)
> d2
#(0.0 1.0 0.0 -1.0 0.0 1.0 0.0 -1.0)
</pre>
<p>which is a complicated way of showing that if 'z' is e^2*pi*i/n, you get a fourier transform.
fractional-fourier-transform is the slow (DFT) version
of the fractional Fourier Transform. If 'angle' is 1.0, you get a fourier transform.
</p>
<!-- dsp FIR -->
<div class="innerheader" id="dspdocfir">FIR filters</div>
<!-- FIR filters -->
<pre class="indented">
<em class=def id="makehighpass">make-highpass</em> fc length, <em class=emdef>highpass</em> f in
<em class=def id="makelowpass">make-lowpass</em> fc length, <em class=emdef>lowpass</em> f in
<em class=def id="makebandpass">make-bandpass</em> flo fhi length, <em class=emdef>bandpass</em> f in
<em class=def id="makebandstop">make-bandstop</em> flo fhi length, <em class=emdef>bandstop</em> f in
<em class=def id="makedifferentiator">make-differentiator</em> length, <em class=emdef>differentiator</em> f in
</pre>
<p>make-lowpass and lowpass provide FIR low pass filtering, and similarly for the other four choices.
The order chosen is twice the 'length'; 'fc', 'flo', and 'fhi' are
the edge frequencies in terms of srate = 2 * pi.
</p>
<pre class="indented">
(let ((hp (make-bandpass (* .1 pi) (* .2 pi))))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y)
(bandpass hp y))))
</pre>
<div class="spacer"></div>
<!-- hilbert-transform -->
<pre class="indented">
<em class=def id="makehilberttransform">make-hilbert-transform</em> length
<em class=def id="hilberttransform">hilbert-transform</em> f in
<em class=emdef>hilbert-transform-via-fft</em> snd chn
<em class=def id="soundtoamp_env">sound->amp-env</em> snd chn
</pre>
<p>These functions perform the hilbert transform using either an FIR filter (the first two) or an FFT.
One example of its use is sound->amp-env (from R Lyons). Another is the <a href="sndclm.html#ssb-am">ssb-am</a> generator in CLM.
</p>
<div class="spacer"></div>
<!-- invert-filter -->
<pre class="indented">
<em class=def id="invertfilter">invert-filter</em> coeffs
</pre>
<p>invert-filter inverts an FIR filter.
Say we previously filtered a sound via
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#filterchannel">filter-channel</a> (float-vector .5 .25 .125))
</pre>
<p>and our mouse is broken so we can't use the Undo menu, and we've forgotten that
we could type (undo). Nothing daunted, we use:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#filterchannel">filter-channel</a> (invert-filter (float-vector .5 .25 .125)))
</pre>
<p>There are a million gotchas here. The primary one is that the inverse filter
can "explode" — the coefficients can grow without bound. For example, any
filter returned by <a href="#spectrumtocoeffs">spectrum->coeffs</a> will be problematic.
</p>
<div class="spacer"></div>
<!-- make-spencer-filter -->
<pre class="indented">
<em class=def id="makespencerfilter">make-spencer-filter</em>
</pre>
<p>This returns a CLM <a href="sndclm.html#fir-filter">fir-filter</a> generator with the standard "Spencer Filter" coefficients.
</p>
<div class="spacer"></div>
<!-- notch -->
<pre class="indented">
<em class=def id="notchsound">notch-sound</em> freqs order s c width
<em class=def id="notchchannel">notch-channel</em> freqs order beg dur s c e trunc width
<em class=def id="notchselection">notch-selection</em> freqs order width
</pre>
<p>notch-channel, notch-selection, and notch-sound are aimed at noise reduction.
Each takes a list of frequencies (in Hz), and an optional filter order, and
notches out each frequency. The sharpness of the notch is settable
explicitly via the 'width' argument, and implicitly via the
filter 'order'. A common application cancels 60 Hz hum:
</p>
<pre class="indented">
(notch-channel (do ((freqs ())
(i 60 (+ i 60)))
((= i 3000)
(reverse freqs))
(set! freqs (cons i freqs))))
</pre>
<p>Here we've built a list of multiples of 60 and passed it to notch-channel. Its default notch
width is 2 Hz, and its default order tries to maintain that width given the channel's sampling rate,
so the default filter order can be very high (65536). The filtering is normally done via
convolution (by CLM's convolve generator), so a high filter order is not a big deal. In ideal
cases, this can reduce the hum and its harmonics by about 90%.
But, if the hum is not absolutely stable, you'll probably want wider notches:
</p>
<pre class="indented">
(notch-channel (do ((freqs ())
(i 60 (+ i 60)))
((= i 3000)
(reverse freqs))
(set! freqs (cons i freqs)))
1024)
</pre>
<p>The order of 1024 means we get 20 Hz width minima (44100 Hz srate), so this
notches out much bigger chunks of the spectrum. You get 98% cancellation, but
also lose more of the original signal.
</p>
<div class="spacer"></div>
<!-- savitzky-golay-filter -->
<pre class="indented">
<em class=emdef>make-savitzky-golay-filter</em> size (order 2)
<em class=def id="sgfilter">savitzky-golay-filter</em> f in
</pre>
<p>This the Savitzky-Golay filter, assuming symmetrical positioning. It is an FIR smoothing filter;
perhaps it could be useful in noise reduction.
</p>
<pre class="indented">
(define (unnoise order)
(let ((flt (make-savitzky-golay-filter order 2)))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (savitzky-golay-filter flt y)))))
</pre>
<p>
For more info on this filter, See "Numerical Recipes in C".
</p>
<div class="spacer"></div>
<!-- spectrum->coeffs and fltit -->
<pre class="indented">
<em class=def id="spectrumtocoeffs">spectrum->coeffs</em> order spectrum
<em class=emdef>fltit-1</em> order spectr
</pre>
<p>spectrum->coeffs is a
version of Snd's very simple spectrum->coefficients procedure ("frequency sampling").
It returns the FIR filter coefficients given the filter 'order' and desired 'spectrum' (a float-vector).
An example of its use is fltit-1.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (fltit-1 10 (float-vector 0 1.0 0 0 0 0 0 0 1.0 0)))
</pre>
<div class="spacer"></div>
<!-- volterra-filter -->
<pre class="indented">
<em class=emdef>make-volterra-filter</em> acoeffs bcoeffs
<em class=def id="volterrafilter">volterra-filter</em> flt x
</pre>
<p>volterra-filter and
make-volterra-filter implement one form
of a common non-linear FIR filter.
This version is taken from Monson Hayes "Statistical DSP and Modeling";
it is a slight specialization of the form mentioned by J O Smith and others.
The 'acoeffs' apply to the linear terms, and the 'bcoeffs' to the quadratic.
</p>
<pre class="indented">
(let ((flt (make-volterra-filter (float-vector .5 .1) (float-vector .3 .2 .1))))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (x) (volterra-filter flt x))))
</pre>
<!-- dsp IIR -->
<div class="innerheader" id="dspdociir">IIR filters</div>
<!-- make-biquad -->
<pre class="indented">
<em class=def id="makebiquad">make-biquad</em> a0 a1 a2 b1 b2
</pre>
<p>make-biquad is a wrapper for <a href="sndclm.html#make-filter">make-filter</a>
to return a biquad filter section.
</p>
<div class="spacer"></div>
<!-- cascade->canonical -->
<pre class="indented">
<em class=def id="cascadetocanonical">cascade->canonical</em> coeffs
</pre>
<p>cascade->canonical
converts cascade coefficients to canonical form (the form used by CLM's <a href="sndclm.html#filter">filter</a> generator).
'coeffs' is a list of filter coefficients; the function returns a float-vector, ready for
<a href="sndclm.html#make-filter">make-filter</a>.
</p>
<div class="spacer"></div>
<!-- kalman-filter-channel -->
<pre class="indented">
<em class=def id="kalmanfilterchannel">kalman-filter-channel</em> (Q 1.0e-5)
</pre>
<p>This is an experimental function aimed at noise reduction using a Kalman filter.
</p>
<div class="spacer"></div>
<!-- make-butter* -->
<pre class="indented">
<em class=emdef id="makebutter">make-butter-high-pass</em> fq, <em class=emdef>make-butter-hp</em> M fc
<em class=emdef>make-butter-low-pass</em> fq, <em class=emdef>make-butter-lp</em> M fc
<em class=emdef>make-butter-band-pass</em> fq bw, <em class=emdef>make-butter-bp</em> M f1 f2
<em class=emdef>make-butter-band-reject</em> fq bw, <em class=emdef>make-butter-bs</em> M f1 f2
</pre>
<p>These functions produce Butterworth filters, returning a CLM <a href="sndclm.html#filter">filter</a> generator.
The first named ones (make-butter-high-pass et al) are taken from Sam Heisz's CLM version
of Paris Smaragdis's Csound version of Charles Dodge's code from "Computer Music: synthesis, composition, and performance".
The second set (make-butter-lp et al) provide arbitrary order Butterworths.
'M' * 2 is the filter order, 'f1' and 'f2' are the band edges in Hz.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#clmchannel">clm-channel</a> (make-butter-bp 3 1000 2000))
(<a class=quiet href="extsnd.html#filtersound">filter-sound</a> (make-butter-low-pass 500.0))
</pre>
<p>See also the notch filter in new-effects.scm, and of course <a href="#analogfilterdoc">analog-filter.scm</a>: the latter renders this section obsolete.
</p>
<div class="spacer"></div>
<!-- IIR filters -->
<pre class="indented">
<em class=emdef id="IIRfilters">make-iir-high-pass-2</em> fc din
<em class=emdef>make-iir-low-pass-2</em> fc din
<em class=emdef>make-iir-band-pass-2</em> f1 f2
<em class=emdef>make-iir-band-stop-2</em> f1 f2
<em class=emdef>make-eliminate-hum </em> (hum-freq 60.0) (hum-harmonics 5) (bandwidth 10)
<em class=emdef>make-peaking-2</em> f1 f2 m
</pre>
<p>More IIR filters.
</p>
<pre class="indented">
(map-channel (make-eliminate-hum))
</pre>
<p>make-peaking (a bandpass filter) returns a function suitable for map-channel (it takes one argument, the current sample,
and returns a sample):
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (make-peaking-2 500 1000 1.0))
</pre>
<p>In this case 'm' is the gain in the pass band.
Use the functions in <a href="#analogfilterdoc">analog-filter.scm</a>, rather than this group.
</p>
<!-- dsp generators -->
<div class="innerheader" id="dspdocgens">synthesis</div>
<!-- cheby-hka -->
<pre class="indented">
<em class=def id="chebyhka">cheby-hka</em> k a coeffs
</pre>
<p>This returns the amplitude of the kth harmonic (0=DC) in the waveshaping output
given the index 'a', and harmonic coefficients 'coeffs' (the 0th element is DC amplitude).
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(let ((gen (<a class=quiet href="sndclm.html#make-polyshape">make-polyshape</a> 1000.0 :partials (list 1 .5 2 .25 3 .125 4 .125))))
(do ((i 0 (+ i 1)))
((= i 88200))
(<a class=quiet href="sndclm.html#outa">outa</a> i (* .5 (<a class=quiet href="sndclm.html#polyshape">polyshape</a> gen 0.25))))))
(<em class=red>cheby-hka</em> 1 0.25 (float-vector 0 .5 .25 .125 .125)) ; returns first partial (fundamental) amplitude
</pre>
<div class="spacer"></div>
<!-- flatten-partials -->
<pre class="indented">
<em class=def id="flattenpartials">flatten-partials</em> partials (tries 32)
</pre>
<p>flatten-partials takes a list or float-vector of partial numbers and amplitudes, as passed to <a href="sndclm.html#make-polywave">make-polywave</a>,
and tries to find an equivalent set of amplitudes that produces a less spikey waveform. The difference is primarily one of loudness until
you have a lot of partials.
</p>
<div class="spacer"></div>
<!-- fm-parallel-component -->
<pre class="indented">
<em class=def id="fmparallelcomponent">fm-parallel-component</em> freq-we-want wc wms inds ns bs using-sine
<em class=emdef>fm-cascade-component</em> freq-we-want wc wm1 a wm2 b
<em class=emdef>fm-complex-component</em> freq-we-want wc wm a b interp sine ; "sine" arg currently ignored
</pre>
<p>This returns the amplitude of "freq-we-want" in parallel (complex) FM, where
"wc" is the carrier, "wms" is a list of modulator frequencies, "inds" is a list of the
corresponding indices, "ns" and "bs" are null (used internally), and using-sine is #t if
the modulators are set up to produce a spectrum of sines, as opposed to cosines (we
need to know whether to add or subtract the components that foldunder 0.0).
</p>
<pre class="indented">
(fm-parallel-component 200 2000.0 (list 2000.0 200.0) (list 0.5 1.0) () () #t)
</pre>
<p>To get the same information for FM with a complex index, use fm-compex-component:
(fm-compex-component 1200 1000 100 1.0 3.0 0.0 #f).
For cascade FM (two levels only), use fm-cascade-component.
</p>
<div class="spacer"></div>
<!-- ssb-bank -->
<pre class="indented">
<em class=def id="ssbbank">ssb-bank</em> old-freq new-freq pairs-1 (order 40) (bw 50.0) (beg 0) dur snd chn edpos
<em class=def id="ssbbankenv">ssb-bank-env</em> old-freq new-freq freq-env pairs-1 (order 40) (bw 50.0) (beg 0) dur snd chn edpos
<em class=emdef>shift-channel-pitch</em> freq (order 40) (beg 0) dur snd chn edpos
</pre>
<p>The
ssb-bank functions provide single-sideband amplitude modulation, and pitch/time changes
based on the <a href="sndclm.html#ssb-am">ssb-am</a> generator.
If you run ssb-am on some input signal, the signal is shifted in pitch by
the 'freq' amount. The higher the 'order', the better the sideband cancellation
(amplitude modulation creates symmetrical sidebands, one of which is cancelled by the ssb-am
generator). ssb-bank uses a bank of ssb-am generators, each with its own bandpass filter to
shift a sound's pitch without changing its duration;
the ssb-am generators do the pitch
shift, and the filters pick out successive harmonics,
so each harmonic gets shifted individually (i.e. harmonic relations are maintained despite the pitch shift).
For an oboe at 557 Hz, good values are:
(ssb-bank 557 new-freq 6 40 50).
For a person talking at ca. 150 Hz:
(ssb-bank 150 300 30 100 30) or
(ssb-bank 150 100 40 100 20).
To get a duration change without a pitch change, use this function
followed by sampling rate conversion back to the original pitch:
</p>
<pre class="indented">
(define (stretch-oboe factor)
(ssb-bank 557 (* factor 557) 7 40 40)
(<a class=quiet href="extsnd.html#srcsound">src-sound</a> (/ 1.0 factor)))
</pre>
<p>ssb-bank-env is the same as ssb-bank, but includes a frequency envelope:
(ssb-bank-env 557 880 '(0 0 1 100.0) 7).
shift-channel-pitch applies an <a href="sndclm.html#ssb-am">ssb-am</a> generator to a sound's channel (this
is a variant of amplitude modulation).
'freq' and 'order' are the corresponding arguments to <a href="sndclm.html#make-ssb-am">make-ssb-am</a>.
There is a dialog that runs ssb-bank in snd-motif.scm: create-ssb-dialog.
</p>
<div class="spacer"></div>
<!-- any-random -->
<pre class="indented">
<em class=def id="anyrandom">any-random</em> e
<em class=def id="gaussiandistribution">gaussian-distribution</em> s
<em class=emdef>pareto-distribution</em> a
<em class=emdef>gaussian-envelope</em> s
</pre>
<p>any-random provides the same output as <a href="sndclm.html#rand">rand</a> if the latter's
envelope (distribution function) argument is used, but using a slightly different method
to generate the numbers.
gaussian-envelope makes a gaussian distribution envelope suitable for rand.
Also included is inverse-integrate, a version of
CLM's distribution-to-weighting function.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (any-random 1.0 '(0 1 1 1)))) ; uniform distribution
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (any-random 1.0 '(0 0 0.95 0.1 1 1)))) ; mostly toward 1.0
(let ((g (gaussian-distribution 1.0))) (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (any-random 1.0 g))))
(let ((g (pareto-distribution 1.0))) (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (any-random 1.0 g))))
</pre>
<p>In Ruby:
</p>
<pre class="indented">
map_channel(lambda do |y| any_random(1.0, [0, 1, 1, 1])) # uniform distribution
map_channel(lambda do |y| any_random(1.0, [0, 0, 0.95, 0.1, 1, 1])) # mostly toward 1.0
let(gaussian-distribution(1.0)) do |g| map_channel(lambda do |y| any_random(1.0, g)) end
let(pareto-distribution(1.0)) do |g| map_channel(lambda do |y| any_random(1.0, g)) end
</pre>
<!-- INDEX allrandomnumbers:Random Numbers -->
<TABLE class="method">
<tr><td class="methodtitle">Random Numbers in Snd/CLM</td></tr>
<tr><td>
<blockquote id="allrandomnumbers"><small>
generators, arbitrary distributions, fractals, 1/f: <a href="sndclm.html#randdoc">rand and rand-interp</a><br>
dithering: <a href="#ditherchannel">dither-channel</a>, <a href="#dithersound">dither-sound</a><br>
noise-making instrument: <a href="#noisedoc">noise.scm, noise.rb</a><br>
physical modeling of noisy instruments: <a href="#maracadoc">maraca.scm, maraca.rb</a><br>
arbitrary distribution via rejection method: <a href="#anyrandom">any-random</a><br>
s7: random, random-state: random number between 0 and arg<br>
Ruby: kernel_rand (alias for Ruby's rand), srand: random integer between 0 and arg, or float between 0 and 1<br>
<a href="sndclm.html#mus-random">mus-random, mus_random</a>: random float between -arg and arg<br>
mus-rand-seed (settable)<br>
bounded brownian noise: <a href="sndclm.html#green-noise">green-noise</a><br>
brown and pink noise: <a href="sndclm.html#brown-noise">brown-noise</a>
</small></blockquote>
</td></tr></TABLE>
<!-- dsp effects -->
<div class="innerheader" id="dspdoceffects">effects</div>
<!-- adsat, freqdiv -->
<pre class="indented">
<em class=emdef>adsat</em> size beg dur snd chn
<em class=emdef>freqdiv</em> n snd chn
</pre>
<p>These two functions come from a package of effects developed by sed_sed@my-dejanews.com.
adsat is "adaptive saturation", and freqdiv is "frequency division".
(freqdiv n) repeats each nth sample 'n' times, clobbering the intermediate samples: (freqdiv 8).
It turns your sound into a bunch of square waves.
</p>
<div class="spacer"></div>
<!-- brighten-slightly -->
<pre class="indented">
<em class=emdef>brighten-slightly</em> amount snd chn
</pre>
<p>brighten-slightly is a slight simplification of <a href="sndclm.html#contrast-enhancement">contrast-enhancement</a>.
</p>
<div class="spacer"></div>
<!-- chordalize -->
<pre class="indented">
<em class=def id="chordalize">chordalize</em>
</pre>
<p>chordalize uses harmonically-related comb-filters to bring out a chord in a sound.
The comb filters are controled by chordalize-amount (the default is .95),
chordalize-base (the default is 100 Hz), and chordalize-chord
(the default is (list 1 3/4 5/4)). chordalize returns a function suitable
for map-channel:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (chordalize))
</pre>
<p>chordalize seems to work best with vocal sounds.
</p>
<div class="spacer"></div>
<!-- chorus -->
<pre class="indented">
<em class=def id="chorus">chorus</em>
</pre>
<p>chorus tries to produce the chorus sound effect, but it needs work.
It is controlled by the following variables:
</p>
<pre class="indented">
chorus-size (5) ; number of flangers
chorus-time (.05) ; scales delay line length (flanger)
chorus-amount (20.0) ; amp of <a href="sndclm.html#rand-interp">rand-interp</a> (flanger)
chorus-speed (10.0) ; freq of rand-interp (flanger)
</pre>
<div class="spacer"></div>
<!-- harmonicizer -->
<pre class="indented">
<em class=def id="harmonicizer">harmonicizer</em> freq coeffs pairs (order 40) (bw 50.0) (beg 0) dur snd chn edpos
</pre>
<p>harmonicizer splits a sound into separate sinusoids, then splits each resultant harmonic
into a set of harmonics, then reassembles the sound. The basic idea is very similar to
<a href="#ssbbank">ssb-bank</a>, but harmonicizer splits harmonics, rather than pitch-shifting them.
The result can be a brighter or richer sound.
</p>
<pre class="indented">
(harmonicizer 550.0 (list 1 .5 2 .3 3 .2) 10)
</pre>
<p>'coeffs' is a list of harmonic-number and amplitude pairs, describing the spectrum
produced by each harmonic. 'pairs' controls how many bands are used to split the original sound.
'order' is the bandpass filter's order in each such pair, and 'bw' controls its bandwidth.
</p>
<div class="spacer"></div>
<!-- lpc-coeffs -->
<pre class="indented">
<em class=def id="lpccoeffs">lpc-coeffs</em> data n m
</pre>
<p>lpc-coeffs returns 'm' LPC coeffients (in a vector) given 'n' data points in the float-vector 'data'.
</p>
<div class="spacer"></div>
<!-- lpc-predict -->
<pre class="indented">
<em class=def id="lpcpredict">lpc-predict</em> data n coeffs m nf clipped
</pre>
<p>lpc-predict takes the output of lpc-coeffs ('coeffs') and the length thereof ('m'),
'n' data points 'data', and produces 'nf' new data points (in a float-vector) as its prediction.
If 'clipped' is #t, the new data is assumed to be outside -1.0 to 1.0.
</p>
<pre class="indented">
> (lpc-predict (float-vector 0 1 2 3 4 5 6 7) 8 (lpc-coeffs (float-vector 0 1 2 3 4 5 6 7) 8 4) 4 2)
#(7.906 8.557)
</pre>
<div class="spacer"></div>
<!-- spike -->
<pre class="indented">
<em class=emdef>spike</em> snd chn
</pre>
<p>spike returns a product (rather than the more usual sum) of succesive samples, with the current sample's sign;
this normally produces a more spikey output.
The more successive samples we include in the product, the more we
limit the output to pulses placed at (just after) wave peaks.
In spike's case, just three samples are multiplied.
See also the <a href="#volterrafilter">volterra filter</a>.
</p>
<div class="spacer"></div>
<!-- unclip-channel -->
<pre class="indented">
<em class=def id="unclipchannel">unclip-channel</em> snd chn
</pre>
<p>unclip-channel tries to reconstruct clipped portions of a sound by using LPC to predict (backwards and forwards)
the lost samples.
</p>
<div class="spacer"></div>
<!-- unclip-sound -->
<pre class="indented">
<em class=emdef>unclip-sound</em> snd
</pre>
<p>unclip-sound calls unclip-channel on each channel in the sound 'snd'.
</p>
<!-- dsp src -->
<div class="innerheader" id="dspdocsrc">sampling rate conversion</div>
<!-- linear-src-channel -->
<pre class="indented">
<em class=def id="linearsrcchannel">linear-src-channel</em> srinc snd chn
</pre>
<p>linear-src-channel performs sampling rate conversion using linear interpolation;
this can sometimes be a nice effect.
</p>
<div class="spacer"></div>
<!-- src-duration -->
<pre class="indented">
<em class=def id="srcduration">src-duration</em> env
</pre>
<p>src-duration
takes an envelope representing the
input (src change) to <a href="sndclm.html#src">src</a>, and returns the resultant sound
length.
</p>
<pre class="indented">
(src-duration '(0 1 1 2)) ; -> 0.693147180559945
</pre>
<p>which means that if the original sound was 2 seconds long, and we apply the envelope '(0 1 1 2)
(via <a href="extsnd.html#srcchannel">src-channel</a>, for example) to that sound, the result will be
.693 * 2 seconds long. To scale an src envelope to return a given duration, see src-fit-envelope below.
</p>
<div class="spacer"></div>
<!-- src-fit-envelope -->
<pre class="indented">
<em class=def id="srcfitenvelope">src-fit-envelope</em> env target-dur
</pre>
<p>src-fit-envelope returns a version of "env" scaled so that its duration as an src envelope is "target-dur".
</p>
<pre class="indented">
> (src-duration (src-fit-envelope '(0 1 1 2) 2.0))
2.0
</pre>
<!-- dsp algebra -->
<div class="innerheader" id="dspdocalgebra">stats, linear algebra, etc</div>
<!-- JOS -->
<pre class="indented">
<em class=emdef>channel-mean</em> snd chn ; <f, 1> / n
<em class=emdef>channel-total-energy</em> snd chn ; <f, f>
<em class=emdef>channel-average-power</em> snd chn ; <f, f> / n
<em class=emdef>channel-norm</em> snd chn ; sqrt(<f, f>)
<em class=def id="channelrms">channel-rms</em> snd chn ; sqrt(<f, f> / n)
<em class=emdef>channel-variance</em> snd chn ; <f, f> - ((<f, 1> / n) ^ 2) with quibbles
<em class=emdef>channel-lp</em> u-p snd chn
<em class=emdef>channel-lp-inf</em> snd chn ; max abs f
<em class=emdef>channel2-inner-product</em> s1 c1 s2 c2 ; <f, g>
<em class=emdef>channel2-orthogonal?</em> s1 c1 s2 c2 ; <f, g> == 0
<em class=emdef>channel2-angle</em> s1 c1 s2 c2 ; acos(<f, g> / (sqrt(<f, f>) * sqrt(<g, g>)))
<em class=emdef>channel2-coefficient-of-projection</em> s1 c1 s2 c2 ; <f, g> / <f, f>
<em class=emdef>channel-distance</em> (s1 0) (c1 0) (s2 1) (c2 0) ; sqrt(<f - g, f - g>)
</pre>
<p>These functions are taken from (or at least inspired by) Julius Smith's "Mathematics of the
DFT". Many are standard ways of describing a signal in statistics; others treat a signal
as a vector (channel-distance, for example, returns the Euclidean distance between two
sounds). The 's1' and 's2' parameters refer to sound objects, and the 'c1' and 'c2'
parameters refer to channel numbers.
</p>
<div class="spacer"></div>
<!-- channel-polynomial -->
<pre class="indented">
<em class=def id="channelpolynomial">channel-polynomial</em> coeffs snd chn
<em class=def id="spectralpolynomial">spectral-polynomial</em> coeffs snd chn
<em class=def id="fvpolynomial">float-vector-polynomial</em> v coeffs
</pre>
<p>float-vector-polynomial returns the evaluation of the polynomial (given its coefficients) over an entire
float-vector, each element being treated as "x".
channel-polynomial performs the same operation over
a sound channel.
spectral-polynomial is similar, but operates in the frequency domain (each
multiply being a convolution).
</p>
<pre class="indented">
> (float-vector-polynomial (float-vector 0.0 2.0) (float-vector 1.0 2.0)) ; x*2 + 1
#(1.0 5.0)
> (channel-polynomial (float-vector 0.0 1.0 1.0 1.0)) ; x*x*x + x*x + x
</pre>
<p>The "constant" (0-th coefficient) term in spectral polynomial is treated as a dither amount (that is,
it has the given magnitude, but its phase is randomized, rather than being simple DC).
See also <a href="#polydoc">poly.scm</a>.
In channel-poynomial,
if you have an nth-order polynomial, the resultant spectrum is n times as wide as the original,
so aliasing is a possibility, and even powers create energy at 0Hz.
</p>
<!-- scanned synthesis -->
<div class="innerheader" id="dspdocscanned">scanned synthesis</div>
<!-- main-index |dspdocscanned:scanned synthesis -->
<!-- scanned synthesis -->
<pre class="indented">
<em class=def id="vibratinguniformcircularstring">vibrating-uniform-circular-string</em> size x0 x1 x2 mass xspring damp
<em class=emdef>vibrating-string</em> size x0 x1 x2 masses xsprings esprings damps haptics
</pre>
<p>These functions implement
scanned synthesis of Bill Verplank and Max Mathews.
To watch the wave, open some sound (so Snd has some place to put the graph), turn off
the time domain display (to give our graph all the window)
then
</p>
<pre class="indented">
(let ((size 128))
(let ((x0 (make-float-vector size))
(x1 (make-float-vector size))
(x2 (make-float-vector size)))
(do ((i 0 (+ i 1)))
((= i 12))
(let ((val (sin (/ (* 2 pi i) 12.0))))
(set! (x1 (- (+ i (/ size 4)) 6)) val)))
(do ((i 0 (+ i 1)))
((= i 1024))
(<em class=red>vibrating-uniform-circular-string</em> size x0 x1 x2 1.0 0.1 0.0)
(<a class=quiet href="extsnd.html#graph">graph</a> x0 "string" 0 1.0 -10.0 10.0))))
</pre>
<!-- FILE: env -->
<div class="header" id="envdoc">env</div>
<p>
env.scm provides a variety envelope functions.
An envelope in Snd/CLM is a list of breakpoint pairs. In the function names,
I try to remember to use "envelope" to be a list of breakpoints, and "env" to be the result of <a href="sndclm.html#make-env">make-env</a>,
a CLM env structure passed to the <a href="sndclm.html#env">env</a> generator.
In an envelope,
the x axis extent
is arbitrary, though it's simplest to use 0.0 to 1.0.
(In this file, envelopes are assumed to be flat lists, not float-vectors or lists of lists).
</p>
<div class="spacer"></div>
<!-- add-envelopes -->
<pre class="indented">
<em class=emdef>add-envelopes</em> env1 env2
</pre>
<p>add-envelopes adds two envelopes together:
</p>
<pre class="indented">
> (add-envelopes '(0 0 1 1) '(0 0 1 1 2 0))
(0 0 1/2 3/2 1 1) ; i.e. (0 0 1 1.5 2 1) in the second env's terms
</pre>
<div class="spacer"></div>
<!-- concatenate-envelopes -->
<pre class="indented">
<em class=def id="concatenateenvelopes">concatenate-envelopes</em> :rest envs
</pre>
<p>concatenate-envelopes concatenates its arguments:
</p>
<pre class="indented">
> (concatenate-envelopes '(0 1 1 0) '(0 0 1 1))
(0.0 1 1.0 0 2.0 1)
</pre>
<div class="spacer"></div>
<!-- envelope-exp -->
<pre class="indented">
<em class=emdef>envelope-exp</em> e (power 1.0) (xgrid 100)
</pre>
<p>envelope-exp interpolates segments into envelope to approximate exponential curves.
</p>
<pre class="indented">
> (<a class=quiet>format</a> #f "~{~,3F ~}" (envelope-exp '(0 0 1 1) 3.0 6))
"0.000 0.000 0.167 0.005 0.333 0.037 0.500 0.125 0.667 0.296 0.833 0.579 1.000 1.000 "
</pre>
<div class="spacer"></div>
<!-- envelope-last-x -->
<pre class="indented">
<em class=emdef>envelope-last-x</em> env
</pre>
<p>envelope-last-x returns the maximum x value:
</p>
<pre class="indented">
> (envelope-last-x '(0 1 1 0 2 0))
2
</pre>
<div class="spacer"></div>
<!-- integrate-envelope -->
<pre class="indented">
<em class=def id="integrateenvelope">integrate-envelope</em> env
</pre>
<p>integrate-envelope returns the area under the envelope.
</p>
<pre class="indented">
> (integrate-envelope '(0 0 1 1))
0.5
> (integrate-envelope '(0 1 1 1))
1.0
> (integrate-envelope '(0 0 1 1 2 .5))
1.25
</pre>
<div class="spacer"></div>
<!-- make-power-env -->
<pre class="indented">
<em class=emdef>make-power-env</em> e (scaler 1.0) (offset 0.0) duration
<em class=def id="powerenv">power-env</em> e
<em class=emdef>power-env-channel</em> pe (beg 0) snd chn edpos (edname "power-env-channel")
<em class=emdef id="powenvchannel">powenv-channel</em> envelope (beg 0) dur snd chn edpos
</pre>
<p>make-power-env and power-env implement an extension of exponential
envelopes; each segment has its own base. power-env-channel uses the same
mechanism as an extension of env-channel.
</p>
<pre class="indented">
(let ((pe (make-power-env '(0 0 32.0 1 1 0.0312 2 0 1) :duration 1.0)))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (* y (power-env pe)))))
(let ((pe1 (make-power-env '(0 0 32.0 1 1 0.0312 2 0 1.0 3 .5 3.0 4 0 0) :duration 1.0)))
(power-env-channel pe1))
</pre>
<p>powenv-channel is a simplification of power-env-channel; it takes a breakpoint list rather
than a power-env structure:
</p>
<pre class="indented">
(powenv-channel '(0 0 .325 1 1 32.0 2 0 32.0))
</pre>
<div class="spacer"></div>
<!-- map-envelopes -->
<pre class="indented">
<em class=emdef>map-envelopes</em> func env1 env2
</pre>
<p>map-envelopes applies 'func' to the breakpoints in the two
envelope arguments, returning a new envelope.
</p>
<pre class="indented">
> (map-envelopes + '(0 0 1 1 2 0) '(0 1 2 0))
(0 1 1/2 3/2 1 0) ; i.e. '(0 1 1 1.5 2 0) in the original x-axis bounds
</pre>
<div class="spacer"></div>
<!-- max-envelope -->
<pre class="indented">
<em class=emdef>min-envelope</em> env
<em class=def id="maxenvelope">max-envelope</em> env
</pre>
<p>max-envelope returns the maximum y value in 'env', and min-envelope returns the minimum y value:
</p>
<pre class="indented">
> (max-envelope '(0 0 1 1 2 3 4 0))
3.0
</pre>
<div class="spacer"></div>
<!-- multiply-envelopes -->
<pre class="indented">
<em class=emdef>multiply-envelopes</em> env1 env2
</pre>
<p>multiply-envelopes uses map-envelopes to multiply two envelopes:
</p>
<pre class="indented">
Scheme:
> (multiply-envelopes '(0 0 1 1) '(0 0 1 1 2 0))
(0 0 0.5 0.5 1 0)
Ruby:
> multiply_envelopes([0, 0, 1, 1], [0, 0, 1, 1, 2, 0])
[0.0, 0.0, 0.5, 0.5, 1.0, 0.0]
Forth:
snd> '( 0e 0e 1.0 1.0 ) '( 0e 0e 1.0 1.0 2.0 0.0 ) multiply-envelopes
'( 0.0 0.0 0.5 0.5 1.0 0.0 )
</pre>
<p>The new envelope goes from 0.0 to 1.0 along
the X axis; the multiplied envelopes are stretched or contracted to
fit 0.0 to 1.0, and wherever one has a breakpoint, the corresponding
point in the other envelope is interpolated, if necessary.
</p>
<div class="spacer"></div>
<!-- normalize-envelope -->
<pre class="indented">
<em class=def id="normalizeenvelope">normalize-envelope</em> env (new-max 1.0)
</pre>
<p>normalize-envelope returns a version of 'env' scaled so that its maximum y value is 'new-max'.
</p>
<pre class="indented">
> (normalize-envelope '(0 0 1 1 2 3 4 0) .5)
(0 0.0 1 0.167 2 0.5 4 0.0)
</pre>
<div class="spacer"></div>
<!-- repeat-envelope -->
<pre class="indented">
<em class=emdef>repeat-envelope</em> env repeats reflected normalized
</pre>
<p>repeat-envelope repeats an envelope (concatenates copies of itself).
It's usually easier to use <a href="sndclm.html#mus-reset">mus-reset</a> to restart an envelope over and over (see <a href="sndclm.html#pulsedenv">pulsed-env</a>).
</p>
<pre class="indented">
> (repeat-envelope '(0 0 .1 .9 1 1 1.3 .2 2 0) 2)
(0 0 0.1 0.9 1.0 1 1.3 0.2 2.0 0 2.1 0.9 3.0 1 3.3 0.2 4.0 0)
</pre>
<img class="indented" src="pix/repenv.png" alt="repeated envelope">
<p>If the final y value is different from the first y value (as above), a quick ramp is
inserted between repeats. 'normalized' causes the new envelope's x axis
to have the same extent as the original's. 'reflected' causes every other
repetition to be in reverse.
</p>
<div class="spacer"></div>
<!-- reverse-envelope -->
<pre class="indented">
<em class=def id="reverseenvelope">reverse-envelope</em> env
</pre>
<p>reverse-envelope reverses an envelope.
</p>
<pre class="indented">
> (reverse-envelope '(0 0 1 1 2 1))
(0 1 1 1 2 0)
</pre>
<div class="spacer"></div>
<!-- rms-envelope -->
<pre class="indented">
<em class=def id="rmsenvelope">rms-envelope</em> file (beg 0.0) dur (rfreq 30.0) db
</pre>
<p>rms-envelope returns an rms envelope of a file; it is based on rmsenv.ins in the CLM package.
</p>
<pre class="indented">
> (<a class=quiet>format</a> #f "~{~,3F ~}" (rms-envelope "1a.snd"))
"0.000 0.049 0.033 0.069 0.067 0.049 0.100 0.000 0.133 0.000 0.167 0.000 0.200 0.000 "
</pre>
<div class="spacer"></div>
<!-- scale-envelope -->
<pre class="indented">
<em class=def id="scaleenvelope">scale-envelope</em> env scl (offset 0.0)
</pre>
<p>scale-envelope scales the y values of an envelope by 'scl', and optionally adds 'offset'.
</p>
<div class="spacer"></div>
<!-- stretch-envelope -->
<pre class="indented">
<em class=def id="stretchenvelope">stretch-envelope</em> env old-attack new-attack (old-decay #f) (new-decay #f)
</pre>
<p>stretch-envelope applies attack and optionally decay times
to an envelope, much like divseg in clm-1.
</p>
<pre class="indented">
> (stretch-envelope '(0 0 1 1) .1 .2)
(0 0 0.2 0.1 1.0 1)
> (stretch-envelope '(0 0 1 1 2 0) .1 .2 1.5 1.6)
(0 0 0.2 0.1 1.1 1 1.6 0.5 2.0 0)
</pre>
<div class="spacer"></div>
<!-- window-envelope -->
<pre class="indented">
<em class=emdef>window-envelope</em> beg end env
</pre>
<p>window-envelope returns (as an envelope) the portion of its envelope argument that lies
between the x axis values 'beg' and 'end'. This is useful when you're treating an
envelope as a phrase-level control, applying successive portions of it to many underlying
notes.
</p>
<pre class="indented">
> (window-envelope 1.0 3.0 '(0.0 0.0 5.0 1.0))
(1.0 0.2 3.0 0.6)
</pre>
<div class="seealso">
see also: <a href="sndclm.html#envdoc">make-env</a> <a href="extsnd.html#envchannel">env-channel</a> <a href="snd.html#editenvelope">Enved</a> <a href="#envexptchannel">env-expt-channel</a>
</div>
<!-- FILE: enved -->
<div class="header" id="enveddoc">enved, xm-enved</div>
<p>enved.scm implements an independent envelope editor in each channel.
</p>
<pre class="indented">
<em class=emdef>start-enveloping</em>
<em class=emdef>stop-enveloping</em>
<em class=def id="channelenvelope">channel-envelope</em> snd chn
<em class=def id="playwithenvs">play-with-envs</em> snd
</pre>
<p>
(start-enveloping) opens an envelope editor for each subsequently opened sound.
(stop-enveloping) turns this off.
Each envelope can be read or written via (channel-envelope snd chn).
An example use is play-with-envs which
sets the channel's amplitude from its envelope
during playback
</p>
<img class="indented" src="pix/envs.png" alt="channel enveds">
<div class="spacer"></div>
<p>
Closely related to this is xm-enved.scm which implements a separate envelope editor widget.
</p>
<pre class="indented">
<em class=emdef>xe-create-enved</em> name parent args axis
<em class=emdef>xe-envelope</em> xe-editor
</pre>
<p>
xe-create-enved returns a new envelope editor whose x axis label is 'name', the x and y axis bounds
are in the list 'axis', the editor's parent widget is 'parent', and the Xt-style
resource argument list is 'args'. The editor's current envelope is accessible
as 'xe-envelope'.
</p>
<div class="seealso">
see also: <a href="sndclm.html#envdoc">make-env</a> <a href="extsnd.html#envchannel">env-channel</a> <a href="snd.html#editenvelope">Enved</a> <a href="#envdoc">functions</a> <a href="#envexptchannel">env-expt-channel</a>
</div>
<!-- FILE: examp -->
<div class="header" id="exampdoc">examp</div>
<p>examp.scm has become a bit of a mess; rather than get organized, I just
appended new stuff as it came to mind. In this documentation, I'll divide the functions into the following non-orthogonal categories:
<a href="#ssffts">ffts</a>,
<a href="#ssfilters">filters</a>,
<a href="#sseffects">sound effects</a>,
<a href="#ssmarks">marks</a>,
<a href="#ssselections">selections</a>,
<a href="#ssgraphics">graphics</a>, and
<a href="#ssmisc">miscellaneous stuff</a>
</p>
<!-- examp FFTS -->
<div class="innerheader" id="ssffts">FFTs</div>
<!-- display-correlation -->
<pre class="indented">
<em class=def id="displaycorrelation">display-correlation</em> snd chn y0 y1
</pre>
<p>display-correlation graphs the correlation of the 2 channels of the sound 'snd'.
To make this happen automatically as you move the time domain position
slider: (hook-push <a class=quiet href="extsnd.html#graphhook">graph-hook</a> display-correlation).
The last three parameters are unused; they are just for compatibility with graph-hook.
</p>
<div class="spacer"></div>
<!-- fft-cancel -->
<pre class="indented">
<em class=def id="fftcancel">fft-cancel</em> lo-freq hi-freq snd chn
</pre>
<p>fft-cancel ffts an entire channel, zeroes the bins between 'lo-freq' and 'hi-freq' (in Hz), then inverse ffts,
giving a good notch filter.
</p>
<pre class="indented">
(fft-cancel 500 1000) ; squelch frequencies between 500 and 1000 Hz
</pre>
<div class="spacer"></div>
<!-- fft-edit -->
<pre class="indented">
<em class=def id="fftedit">fft-edit</em> low-freq high-freq snd chn
</pre>
<p>fft-edit takes an fft of the entire sound, removes all energy below 'low-freq' and above 'high-freq' (in Hz),
then inverse fft's. This is the complement of fft-cancel.
</p>
<div class="spacer"></div>
<!-- fft-env-edit -->
<pre class="indented">
<em class=def id="fftenvedit">fft-env-edit</em> env snd chn
</pre>
<p>fft-env-edit is similar to fft-edit, but applies an envelope to the spectral magnitudes.
</p>
<pre class="indented">
(fft-env-edit '(0 0 .1 1 .2 1 .3 0 .5 1 1.0 0)) ; 1.0 = srate / 2 here
</pre>
<div class="spacer"></div>
<!-- fft-env-interp -->
<pre class="indented">
<em class=def id="fftenvinterp">fft-env-interp</em> env1 env2 interp snd chn
</pre>
<p>fft-env-interp performs fft-env-edit twice (using 'env1' and 'env2'), then mixes the two results following the interpolation
envelope 'interp'.
</p>
<div class="spacer"></div>
<!-- fft-peak -->
<pre class="indented">
<em class=emdef>fft-peak</em> snd chn scale
</pre>
<p>fft-peak is an <a href="extsnd.html#aftertransformhook">after-transform-hook</a> function that reports the peak spectral magnitude in the status area.
</p>
<pre class="indented">
Scheme: (hook-push <a class=quiet href="extsnd.html#aftertransformhook">after-transform-hook</a> fft-peak)
Ruby: $after_transform_hook.add_hook!(\"fft-peak\") do |snd, chn, scale|
fft_peak(snd, chn, scale)
end
</pre>
<p>This can be helpful if you're scanning a sound with the fft graph displayed; since it normalizes
to 1.0 (to keep the graph from jumping around simply because the amplitude is changing), it's nice to know what the current peak
actually represents. You can, of course, turn off the normalization:
</p>
<pre class="indented">
(set! (<a class=quiet href="extsnd.html#normalizefft">transform-normalization</a>) dont-normalize)
</pre>
<div class="spacer"></div>
<!-- fft-smoother -->
<pre class="indented">
<em class=def id="fftsmoother">fft-smoother</em> cutoff start samps snd chn
</pre>
<p>fft-smoother uses fft filtering to
smooth a portion of a sound, returning a float-vector with the smoothed data. 'cutoff' sets where we starting zeroing out high frequencies.
</p>
<pre class="indented">
Scheme: (float-vector->channel (fft-smoother .1 (<a class=quiet href="extsnd.html#cursor">cursor</a>) 400 0 0) (<a class=quiet href="extsnd.html#cursor">cursor</a>) 400)
Ruby: vct2channel(fft_smoother(0.1, cursor, 400, 0, 0), cursor, 400)
</pre>
<div class="spacer"></div>
<!-- fft-squelch -->
<pre class="indented">
<em class=def id="fftsquelch">fft-squelch</em> squelch snd chn
</pre>
<p>fft-squelch is similar to fft-edit; any fft bin whose (normalized) magnitude is below 'squelch' is set to 0.0.
This is sometimes useful for noise-reduction.
</p>
<div class="spacer"></div>
<!-- filter-fft -->
<pre class="indented">
<em class=def id="filterfft">filter-fft</em> func (normalize #t) snd chn
</pre>
<p>
This a sort of generalization of the preceding functions. It gets the spectrum of all the data in the given channel,
applies the function 'func' to each element of the spectrum, then inverse ffts. 'func' should take one argument, the
current spectrum value.
</p>
<pre class="indented">
(define brfft
(let ((+documentation+ "(brfft lofrq hifrq) removes all frequencies between lofrq and hifrq: (brfft 1000.0 2000.0)"))
(lambda (lofrq hifrq)
(let* ((fsize (let ((len (<a class=quiet href="extsnd.html#framples">framples</a>)))
(expt 2 (ceiling (log len 2)))))
(ctr -1)
(lo (round (/ (* fsize lofrq) (<a class=quiet href="extsnd.html#srate">srate</a>))))
(hi (round (/ (* fsize hifrq) (<a class=quiet href="extsnd.html#srate">srate</a>)))))
(<em class=red>filter-fft</em> (lambda (y)
(set! ctr (+ 1 ctr))
(if (>= hi ctr lo)
0.0
y)))))))
</pre>
<p>Here are some sillier examples...
</p>
<pre class="indented">
(filter-fft (<a class=quiet href="sndclm.html#make-one-zero">make-one-zero</a> .5 .5))
(filter-fft (<a class=quiet href="sndclm.html#make-one-pole">make-one-pole</a> .05 .95))
(filter-fft (lambda (y) (if (< y .1) 0.0 y))) ; like fft-squelch
(let ((rd (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0 0 0 1 0)))
(<a class=quiet href="extsnd.html#scaleby">scale-by</a> 0)
(filter-fft (lambda (y) (rd)))) ; treat sound as spectrum
(filter-fft <a class=quiet href="sndclm.html#contrast-enhancement">contrast-enhancement</a>)
(filter-fft (lambda (y) (* y y y))) ; extreme low pass
</pre>
<div class="spacer"></div>
<!-- squelch-vowels -->
<pre class="indented">
<em class=def id="squelchvowels">squelch-vowels</em> snd chn
</pre>
<p>squelch-vowels uses fft data to try to distinguish a steady state portion (a vowel in speech) from
noise (a consonant, sometimes), then tries to remove (set to 0.0) the vowel-like portions.
</p>
<div class="spacer"></div>
<!-- superimpose-ffts -->
<pre class="indented">
<em class=def id="superimposeffts">superimpose-ffts</em> snd chn y0 y1
</pre>
<p>superimpose-ffts is a graph-hook function that
superimposes the ffts of multiple (sync'd) sounds.
(hook-push <a class=quiet href="extsnd.html#graphhook">graph-hook</a> superimpose-ffts)
This function needs some work...
</p>
<div class="spacer"></div>
<!-- zoom-spectrum -->
<pre class="indented">
<em class=emdef>zoom-spectrum</em> snd chn y0 y1
</pre>
<p>zoom-spectrum sets the transform size to correspond to the time-domain window size.
(hook-push <a class=quiet href="extsnd.html#graphhook">graph-hook</a> zoom-spectrum).
</p>
<!-- examp FILTERS -->
<div class="innerheader" id="ssfilters">filters</div>
<!-- comb-filter -->
<pre class="indented">
<em class=emdef>comb-filter</em> scaler size
<em class=emdef>zcomb</em> scaler size pm
</pre>
<p>comb-filter is an example of using the CLM <a href="sndclm.html#comb">comb</a> generator.
</p>
<pre class="indented">
Scheme: (<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (comb-filter .8 32))
Ruby: map_channel(comb_filter(0.8, 32))
Forth: 0.8 32 comb-filter-1 map-channel
</pre>
<p>it would be faster to use the comb filter directly:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#clmchannel">clm-channel</a> (<a class=quiet href="sndclm.html#make-comb">make-comb</a> .8 32))
</pre>
<p>zcomb is a time-varying comb
filter using the envelope 'pm' (the envelope is applied to the comb filter delay length).
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (zcomb .8 32 '(0 0 1 10)))
</pre>
<div class="spacer"></div>
<!-- comb-chord -->
<pre class="indented">
<em class=emdef>comb-chord</em> scaler size amp
</pre>
<p>comb-chord uses comb filters at harmonically
related sizes to create a chord (see also <a href="#chordalize">chordalize</a> in dsp.scm).
'amp' is an overall amplitude scaler.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (comb-chord .95 100 .3))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (comb-chord .95 60 .3))
</pre>
<div class="spacer"></div>
<!-- filtered-env -->
<pre class="indented">
<em class=emdef>filtered-env</em> e snd chn
</pre>
<p>filtered-env takes an amplitude envelope 'e' and creates a one-pole
filter, and moves them in parallel over a sound;
as the sound gets softer, the low-pass filter's cutoff frequency
gets lower, a sort of poor-man's distance effect. When 'e'
is at 1.0, no filtering takes place.
</p>
<pre class="indented">
(filtered-env '(0 1 1 0)) ; fade out
</pre>
<div class="spacer"></div>
<!-- formant-filter -->
<pre class="indented">
<em class=emdef>formant-filter</em> radius frequency
</pre>
<p>formant-filter applies a formant to its input.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (formant-filter .99 2400))
</pre>
<p>It's probably faster to use the CLM filter directly:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#filtersound">filter-sound</a> (<a class=quiet href="sndclm.html#make-formant">make-formant</a> 2400 .99))
</pre>
<div class="spacer"></div>
<!-- formants -->
<pre class="indented">
<em class=emdef>formants</em> r1 f1 r2 f2 r3 f3
</pre>
<p>formants applies three formants in parallel.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (formants .99 900 .98 1800 .99 2700))
</pre>
<div class="spacer"></div>
<!-- moving-formant -->
<pre class="indented">
<em class=emdef>moving-formant</em> radius move-envelope
</pre>
<p>moving-formant moves a formant according to an envelope (the envelope y value is in Hz).
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (moving-formant .99 '(0 1200 1 2400)))
</pre>
<div class="spacer"></div>
<!-- notch-filter -->
<pre class="indented">
<em class=emdef>notch-filter</em> scaler size
</pre>
<p>This is an example of calling the CLM <a href="sndclm.html#notch">notch</a> filter.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (notch-filter .8 32))
</pre>
<div class="spacer"></div>
<!-- osc-formants -->
<pre class="indented">
<em class=emdef>osc-formants</em> radius bases amounts freqs
</pre>
<p>osc-formants sets up any number of independently oscillating formants, then calls map-channel.
</p>
<pre class="indented">
Scheme: (osc-formants .99 (float-vector 400.0 800.0 1200.0) (float-vector 80.0 80.0 120.0) (float-vector 4.0 2.0 3.0))
Ruby: osc_formants(0.99, vct(400, 800, 1200), vct(80, 80, 120), vct(4, 2, 3))
</pre>
<p>'bases' are the formant center frequencies; 'freqs' are the oscillator frequencies;
'amounts' are "deviations" — they scale the oscillator outputs which set the runtime
formant frequencies (thereby setting the width of the warbling).
</p>
<div class="spacer"></div>
<!-- examp SOUND EFFECTS -->
<div class="innerheader" id="sseffects">sound effects</div>
<!-- add-notes -->
<pre class="indented">
<em class=emdef>add-notes</em> notes snd chn
</pre>
<p>add-notes adds (mixes) 'notes' starting at the cursor in the currently selected channel.
'notes' is a list of lists of the form: (list file offset amp).
</p>
<pre class="indented">
Scheme: (add-notes '(("oboe.snd")
("pistol.snd" 1.0 2.0)))
Ruby: add_notes([["oboe.snd"],
["pistol.snd", 1.0, 2.0]])
</pre>
<p>This mixes "oboe.snd" at time 0.0,
then "pistol.snd" at 1.0 (second) scaled by 2.0.
</p>
<div class="spacer"></div>
<!-- am -->
<pre class="indented">
<em class=emdef>am</em> freq
<em class=emdef>ring-mod</em> freq gliss-env
<em class=emdef>ring-modulate-channel</em> freq beg dur snd chn edpos
<em class=emdef>vibro</em> speed depth
</pre>
<p>These functions perform amplitude modulation and ring-modulation. 'freq' is the modulation frequency.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (am 440))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (ring-mod 10 (list 0 0 1 (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> 100))))
(ring-modulate-channel 100.0)
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (vibro 440 0.5))
</pre>
<p>am uses the CLM <a href="sndclm.html#amplitude-modulate">amplitude-modulate</a> generator;
the others are little more than <a href="sndclm.html#oscil">oscil</a> and a multiply.
'gliss-env' in ring-mod controls the frequency of the modulation.
See also <a href="sndclm.html#ssb-am">ssb-am</a>.
</p>
<div class="spacer"></div>
<!-- chain-dsps -->
<pre class="indented">
<em class=def id="chaindsps">chain-dsps</em> beg dur :rest dsps
</pre>
<p>chain-dsps creates a patch of chained generators from its arguments.
Someone wanted to set up generator patches in a note list:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(chain-dsps 0 1.0 '(0 0 1 .25 2 0) (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> 440))
(chain-dsps 1.0 1.0 '(0 0 1 1 2 0) (<a class=quiet href="sndclm.html#make-one-zero">make-one-zero</a> .5) (<a class=quiet href="sndclm.html#make-readin">make-readin</a> "oboe.snd"))
(chain-dsps 2.0 1.0 '(0 0 1 .125 2 0) (let ((osc1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> 220))
(osc2 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> 440)))
(lambda (val) (+ (osc1 val)
(osc2 (* 2 val)))))))
</pre>
<p>The 'dsps' is a sequence of breakpoint lists and generators; the breakpoint lists
are treated as envelopes, and the generators are connected (previous) output to (current) input in the reverse of the order
received. <a href="sndclm.html#readin">readin</a> is an exception; since its input comes
from a file, it is added to the current output.
So, the first call is an <a href="sndclm.html#oscil">oscil</a> multiplied
by an envelope. The second filters and envelopes readin input.
The third sets up an additive synthesis patch.
In Ruby, this example is:
</p>
<pre class="indented">
with_sound() do
chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0], make_oscil(:frequency, 440))
chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0], make_one_pole(0.5), make_readin("oboe.snd"))
chain_dsps(0, 1.0, [0, 0, 1, 1, 2, 0],
let(make_oscil(:frequency, 220),
make_oscil(:frequency, 440))
do |osc1, osc2|
lambda do |val|
osc1.run(val) + osc2.run(2.0 * val)
end
end)
end
</pre>
<div class="spacer"></div>
<!-- compand -->
<pre class="indented">
<em class=emdef>compand</em>
</pre>
<p>These functions lookup a table value based on the current sample amplitude; the table is set up
so that soft portions are slightly amplified.
The companding curve is
taken from Steiglitz "A DSP Primer".
</p>
<div class="spacer"></div>
<!-- cnvtest -->
<pre class="indented">
<em class=emdef>cnvtest</em> snd0 snd1 amp
</pre>
<p>This is an example of using convolution.
It convolves 'snd0' and 'snd1' (using the CLM <a href="sndclm.html#convolve">convolve</a> generator),
then scales by 'amp'. It returns the new maximum amplitude.
</p>
<pre class="indented">
(cnvtest 0 1 .1)
</pre>
<div class="spacer"></div>
<!-- cross-synthesis -->
<pre class="indented">
<em class=def id="crosssynthesis">cross-synthesis</em> cross-snd amp fftsize radius
</pre>
<p>cross-synthesis performs cross-synthesis between 'cross-snd' (a sound) and the currently
selected sound.
'cross-snd' is the sound that controls the spectra.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (cross-synthesis 1 .5 128 6.0))
</pre>
<div class="spacer"></div>
<!-- echo -->
<pre class="indented">
<em class=emdef>echo</em> scaler secs
<em class=emdef>flecho</em> scaler secs
<em class=def id="zecho">zecho</em> scaler secs frq amp
</pre>
<p>These are delay-based sound effects.
echo returns an echo maker ('secs' is the delay in seconds between echos, 'scaler' is
the amplitude ratio between successive echoes).
zecho is similar, but also modulates the echoes.
flecho is a low-pass filtered echo maker.
See <a href="grfsnd.html#sndwithclm">Snd with CLM</a> for
a discussion.
</p>
<pre class="indented">
Scheme:
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (echo .5 .5) 0 44100)
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (zecho .5 .75 6 10.0) 0 65000)
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (flecho .5 .9) 0 75000)
Ruby:
map_channel(echo(0.5, 0.5), 0 44100)
map_channel(zecho(0.5, 0.75, 6, 10.0), 0, 65000)
map_channel(flecho(0.5, 0.9), 0, 75000)
</pre>
<div class="spacer"></div>
<!-- expsrc -->
<pre class="indented">
<em class=def id="expsrc">expsrc</em> rate snd chn
</pre>
<p>expsrc uses sampling rate conversion (the <a href="sndclm.html#src">src</a> generator) and granular synthesis (the <a href="sndclm.html#granulate">granulate</a> generator)
to change the pitch of a sound without changing its duration.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (expsrc 2.0)) ; up an octave
</pre>
<p>There are lots of other related examples: see for example <a href="#clmexpsrc">clm-expsrc</a>, expsnd below,
<a href="#ssbbank">ssb-bank</a>, or the <a href="sndclm.html#phase-vocoder">phase-vocoder</a>.
</p>
<div class="spacer"></div>
<!-- expsnd -->
<pre class="indented">
<em class=def id="expsnd">expsnd</em> rate-envelope snd chn
</pre>
<p>expsnd uses the same technique as expsrc, but uses it to change the tempo according to an envelope while
maintaining the original pitch.
expsnd needs dsp.scm (but doesn't check that it is loaded).
</p>
<pre class="indented">
(expsnd '(0 1 2 .4)) ; speed up
(expsnd '(0 .5 2 2.0)) ; start fast, end slow
</pre>
<div class="spacer"></div>
<!-- main-index |fp:Forbidden Planet -->
<!-- fp -->
<pre class="indented">
<em class=def id="fp">fp</em> sr osamp osfrq snd chn
</pre>
<p>fp drives an <a href="sndclm.html#src">src</a> generator with an oscillator, modulating
a sound. 'sr' is the base sampling rate; 'osamp' is the modulation depth; 'osfrq' is
the modulation frequency. hello-dentist below is a randomized version of this. The name "fp"
refers to "Forbidden Planet" which used this kind of sound effect a lot.
</p>
<pre class="indented">
(fp 1.0 .3 20)
</pre>
<div class="spacer"></div>
<!-- hello-dentist -->
<pre class="indented">
<em class=def id="hellodentist">hello-dentist</em> frq amp snd chn
</pre>
<p>hello-dentist drives n <a href="sndclm.html#src">src</a> generator with a <a href="sndclm.html#rand-interp">rand-interp</a>
generator, producing a random quavering effect, hence the name.
</p>
<pre class="indented">
(hello-dentist 40.0 .1)
</pre>
<p>'frq' is the random number frequency; 'amp' sets the depth of the modulation.
</p>
<div class="spacer"></div>
<!-- place-sound -->
<pre class="indented">
<em class=def id="placesound">place-sound</em> mono-snd stereo-snd panning-envelope-or-degree
</pre>
<p>place-sound mixes a mono sound ('mono-snd', an index) into a stereo sound ('stereo-snd')
with panning determined by 'panning-envelope-or-degree'.
If 'panning-envelope-or-degree' is a number (in degrees),
the place-sound function has the same effect as using
CLM's <a href="sndclm.html#locsig">locsig</a> generator; it mixes a mono sound into a stereo sound, splitting
it into two copies whose amplitudes depend on the desired location.
0 degrees: all in channel 0, 90: all in channel 1.
</p>
<pre class="indented">
(place-sound 0 1 45.0)
;; 0=sound 0 (mono), 1=sound 1 (stereo), 45 deg, so outa * 0.5 and outb * 0.5
</pre>
<p>If 'panning-envelope-or-degree' is an envelope,
the split depends on the panning envelope (0 = all in chan 0, etc).
</p>
<pre class="indented">
(place-sound 0 1 '(0 0 1 1)) ; mix goes from all in outa to all in outb
</pre>
<p>This function could use at least a start time parameter.
</p>
<table class="method">
<tr><td class="methodtitle">Panning or Sound Placement</td></tr>
<tr><td>
<blockquote><small>
Place sound: <a href="#placesound">place-sound</a> above.<br>
Place mix: <a href="#musfilemix">mus-file-mix</a><br>
CLM placement generator: <a href="sndclm.html#locsig">locsig</a><br>
CLM moving sound generator: <a href="#dlocsigdoc">dlocsig</a><br>
Move sound via flanging: see flanging effect in new-effects.scm<br>
Cross fade in frequency domain: <a href="#fadedoc">fade.scm</a>
</small></blockquote>
</td></tr></table>
<div class="spacer"></div>
<!-- pulse-voice -->
<pre class="indented">
<em class=emdef>pulse-voice</em> cosines (freq 440.0) (amp 1.0) (fftsize 256) (r 2.0) snd chn
</pre>
<p>This function is a form of cross-synthesis which drives the resynthesis with a <a href="sndclm.html#ncos">ncos</a> pulse train.
'freq' is the <a href="sndclm.html#ncos">ncos</a> frequency; 'amp' is an overall amplitude scaler;
'cosines' is the number of cosines in the pulse (the more the spikier);
'fftsize' and 'r' (radius) control the <a href="sndclm.html#formant">formant</a> bank
used to get the current spectrum.
</p>
<pre class="indented">
(pulse-voice 80 20.0 1.0 1024 0.01)
(pulse-voice 80 120.0 1.0 1024 0.2)
(pulse-voice 30 240.0 1.0 1024 0.1)
(pulse-voice 6 1000.0 1.0 512)
</pre>
<p>See also voice->unvoiced below.
</p>
<div class="spacer"></div>
<!-- ramp -->
<pre class="indented">
<em class=def id="makeramp">make-ramp</em> (size 128)
<em class=emdef>ramp</em> gen up
</pre>
<p>ramp is a generator that produces a ramp of a given length, then sticks at 0.0 or 1.0 until the 'up' argument changes.
The idea here is that we want to ramp in or out a portion of a sound based on some
factor of the sound data; the ramp generator produces a ramp up when 'up' is #t, sticking
at 1.0, and a ramp down when 'up' is #f, sticking at 0.0.
'size' sets the steepness of the ramp.
A similar, less bumpy effect uses the <a href="sndclm.html#moving-average">moving-average</a> generator.
The following produces a very jittery, wandering amplitude envelope (brownian motion):
</p>
<pre class="indented">
(let ((ramper (make-ramp 1000))) ; ramp via increments of .001
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y)
(* y (ramp ramper (< (random 1.0) .5))))))
</pre>
<div class="spacer"></div>
<!-- reverse-by-blocks -->
<pre class="indented">
<em class=def id="reversebyblocks">reverse-by-blocks</em> block-len snd chn
<em class=emdef>reverse-within-blocks</em> block-len snd chn
</pre>
<p>reverse-by-blocks and reverse-within-blocks work best with
speech. reverse-by-blocks divides a sound into blocks, then recombines those blocks in reverse order.
reverse-within-blocks divides a sound into blocks, then recombines them in order, but with each block internally reversed.
'block-len' is the block length in seconds.
</p>
<pre class="indented">
(reverse-by-blocks .1)
(reverse-within-blocks .1) ; .5 is also good
</pre>
<div class="spacer"></div>
<!-- scramble-channels -->
<pre class="indented">
<em class=emdef>scramble-channels</em> :rest new-order
<em class=emdef>scramble-channel</em> silence
</pre>
<p>scramble-channels uses <a href="extsnd.html#swapchannels">swap-channels</a>
to arbitrarily reorder the current sound's channels. The new channel order
is 'new-order' so
</p>
<pre class="indented">
(scramble-channels 3 2 0 1)
</pre>
<p>replaces chan0 with chan3, chan1 with chan2 and so on.
scramble-channel searches for silences, sets up a list of segments based on
those silences, and randomly re-orders the segments.
'silence' determines the background level that is treated as silence.
</p>
<pre class="indented">
(scramble-channel .01)
</pre>
<p>This function needs cleaner splices between the sections.
</p>
<div class="spacer"></div>
<!-- sound-interp -->
<pre class="indented">
<em class=def id="soundinterp">sound-interp</em> reader loc
<em class=emdef>make-sound-interp</em> start snd chn
<em class=def id="envsoundinterp">env-sound-interp</em> envelope (time-scale 1.0) snd chn
<em class=def id="granulatedsoundinterp">granulated-sound-interp</em> envelope (time-scale 1.0) (grain-length 0.10)
(grain-envelope '(0 0 1 1 2 1 3 0)) (output-hop 0.05) snd chn
</pre>
<p>make-sound-interp returns an interpolating reader for the given channel.
The interpolating reader reads a channel at an arbitary location,
interpolating between samples if necessary. The corresponding generator is sound-interp.
Here we use a sine wave to lookup the current sound:
</p>
<pre class="indented">
(let ((osc (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> :frequency 0.5 :initial-phase (+ pi (/ pi 2))))
(reader (make-sound-interp 0 0 0))
(len (- (<a class=quiet href="extsnd.html#framples">framples</a> 0 0) 1)))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (val)
(sound-interp reader (* len (+ 0.5 (* 0.5 (<a class=quiet href="sndclm.html#oscil">oscil</a> osc))))))))
</pre>
<p>This is effectively phase-modulation with an index of length-of-file-in-samples * 0.5 * hz->radians(oscil-frequency),
or equivalently duration-in-seconds * frequency-in-Hz * pi.
env-sound-interp reads the given channel (via a sound-interp generator)
according to 'envelope' and 'time-scale',
returning a new version of the data in the specified channel
that follows that envelope; that is, when the envelope is 0.0 we get sample 0, when the
envelope is 1.0 we get the last sample, when it is 0.5 we get the middle sample of the
sound and so on.
</p>
<pre class="indented">
Scheme: (env-sound-interp '(0 0 1 1))
Ruby: env_sound_interp([0, 0, 1, 1])
</pre>
<p>returns an unchanged copy of the
current sound. To get the entire sound in reverse:
</p>
<pre class="indented">
Scheme: (env-sound-interp '(0 1 1 0))
Ruby: env_sound_interp([0, 1, 1, 0])
</pre>
<p>And to go forward then backward, taking twice the original duration:
</p>
<pre class="indented">
Scheme: (env-sound-interp '(0 0 1 1 2 0) 2.0)
Ruby: env_sound_interp([0, 0, 1, 1, 2, 0], 2.0)
</pre>
<p><a href="extsnd.html#srcsound">src-sound</a> with an
envelope could be used for this effect, but it is much more direct to apply the
envelope to sound sample positions. A similar function is <a href="#scratch">scratch</a> in clm-ins.scm.
</p>
<p>granulated-sound-interp is similar to env-sound-interp, but uses granular synthesis rather than
sampling rate conversion to recreate the sound, so the effect is one of changing tempo rather
than changing speed (pitch). Here we dawdle for awhile, then race at the end to get the whole sound in:
</p>
<pre class="indented">
(granulated-sound-interp '(0 0 1 .1 2 1) 1.0 0.2 '(0 0 1 1 2 0))
</pre>
<div class="spacer"></div>
<!-- voiced->unvoiced -->
<pre class="indented">
<em class=def id="voicedtounvoiced">voiced->unvoiced</em> amp fftsize r tempo snd chn
</pre>
<p>This function is a form of cross-synthesis which drives the resynthesis with white noise (see also pulse-voice above).
</p>
<pre class="indented">
(voiced->unvoiced 1.0 256 2.0 2.0) ; whispered, twice as fast as original
</pre>
<p>'tempo' is the speed of the resynthesis.
</p>
<!-- examp MARKS -->
<div class="innerheader" id="ssmarks">marks</div>
<!-- first-mark-in-window-at-left -->
<pre class="indented">
<em class=emdef>first-mark-in-window-at-left</em>
</pre>
<p>first-mark-in-window-at-left moves the (time domain)
graph so that the leftmost visible mark is at the left edge.
In large sounds it can be pain to get the left edge of the window
aligned with a specific spot in the sound. In the following example, we assume
the desired left edge has a mark, and the 'l' key (without control)
will move the window left edge to that mark.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\l 0 first-mark-in-window-at-left)
</pre>
<div class="spacer"></div>
<!-- mark-loops -->
<pre class="indented">
<em class=def id="markloops">mark-loops</em>
</pre>
<p>mark-loops places marks at any loop points found in the current sound's header.
Only a few headers support loop points which are apparently used in synthesizers
to mark portions of a waveform that can be looped without causing clicks, thereby lengthening
a sound as a key is held down.
</p>
<!-- examp SELECTIONS -->
<div class="innerheader" id="ssselections">selections</div>
<!-- region-play-list -->
<pre class="indented">
<em class=def id="regionplaylist">region-play-list</em> data
<em class=emdef>region-play-sequence</em> data
</pre>
<p>region-play-list plays a list of regions. 'data' is list of lists:
(list (list reg time)...); region 'reg' is played at time 'time' (in seconds).
</p>
<pre class="indented">
(region-play-list (list (list reg0 0.0) (list reg1 0.5) (list reg2 1.0) (list reg0 1.0)))
</pre>
<p>which plays region reg0 at time 0.0 and 1.0, region reg1 at 0.5, and region reg2 at 1.0.
Similarly, region-play-sequence plays a sequence of regions, one after the other:
</p>
<pre class="indented">
(region-play-sequence (list reg0 reg1 reg2 reg0)) ; play in same order as before, but one after the other
</pre>
<div class="spacer"></div>
<!-- region-rms -->
<pre class="indented">
<em class=def id="regionrms">region-rms</em> reg
</pre>
<p>region-rms returns the rms value of the region's data (in chan 0).
</p>
<div class="spacer"></div>
<!-- selection-rms -->
<pre class="indented">
<em class=def id="selectionrms">selection-rms</em>
</pre>
<p>selection-rms returns the rms value of the selection's data (in chan 0).
</p>
<!-- examp GRAPHICS -->
<div class="innerheader" id="ssgraphics">graphics</div>
<!-- auto-dot -->
<pre class="indented">
<em class=emdef>auto-dot</em> snd chn y0 y1
</pre>
<p>auto-dot sets the dot size (when you're using dots in the time domain) based on
the current graph size.
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#graphhook">graph-hook</a> auto-dot)
</pre>
<div class="spacer"></div>
<!-- display-db -->
<pre class="indented">
<em class=def id="displaydb">display-db</em> snd chn
</pre>
<p>display-db is a <a href="extsnd.html#lispgraphhook">lisp-graph-hook</a> function to display the time domain data in dB.
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#lispgraphhook">lisp-graph-hook</a> display-db)
</pre>
<p>I just noticed that its y axis is labelled upside down.
</p>
<div class="spacer"></div>
<!-- display-energy -->
<pre class="indented">
<em class=def id="displayenergy">display-energy</em> snd chn
</pre>
<p>display-energy is a <a href="extsnd.html#lispgraphhook">lisp-graph-hook</a> function to display the time domain data squared.
<a href="extsnd.html#xdisplayenergy">Here</a> is a picture of it in action.
</p>
<div class="spacer"></div>
<!-- flash-selected-data -->
<pre class="indented">
<em class=emdef>flash-selected-data</em> time-interval
</pre>
<p>flash-selected-data causes the selected channel's graph to
flash red and green. 'time-interval' is in milliseconds:
</p>
<pre class="indented">
(flash-selected-data 100)
</pre>
<p>Not sure why anyone would want such a thing...
examp.scm also has (commented out) functions to display colored text
in rxvt:
</p>
<pre class="indented">
(<a class=quiet>format</a> #t "~Athis is red!~Abut this is not" red-text normal-text)
(<a class=quiet>format</a> #t "~A~Ahiho~Ahiho" yellow-bg red-fg normal-text)
</pre>
<p>It's possible to use the same escape sequences in a normal shell script, of course:
</p>
<pre class="indented">
echo '\e[41m This is red! \e[0m'
</pre>
<!-- examp MISCELLANEOUS EXTENSIONS -->
<div class="innerheader" id="ssmisc">miscellaneous stuff</div>
<!-- all-chans -->
<pre class="indented">
<em class=def id="allchans">all-chans</em>
</pre>
<p>all-chans returns two parallel lists, the first a list of sound objects, the second of channel numbers. If we have
two sounds open (indices 0 and 1 for example), and the second has two channels, (all-chans) returns
'((#<sound 0> #<sound 1> #<sound 1>) (0 0 1)).
The interpretation is: '((sound-with-index0 sound-with-index1 sound-with-index1) (chan0 chan0 chan1)),
so if we're mapping some function with the usual snd chn parameters over all the current channels,
we can get the sound and channel values from these lists.
</p>
<div class="spacer"></div>
<!-- channel-clipped? -->
<pre class="indented">
<em class=emdef>channel-clipped?</em> snd chn
</pre>
<p>channel-clipped? returns #t and a sample number if it finds clipping in the given channel.
examp.scm also has commented out code that places a mark at the start of each clipped
section in a sound, and adds a menu item ("Show Clipping") under the View menu.
</p>
<div class="spacer"></div>
<!-- do-chans -->
<pre class="indented">
<em class=emdef>do-chans</em> func origin
<em class=emdef>do-all-chans</em> func origin
<em class=emdef>do-sound-chans</em> func origin
</pre>
<p>do-chans applies 'func' to all the sync'd channels using 'origin' as the edit history indication.
do-all-chans is the same but applies 'func' to all channels of all sounds.
do-sound-chans applies 'func' to all channels in the currently selected sound.
</p>
<pre class="indented">
(do-all-chans (lambda (val) (* 2.0 val))) ; double all samples
</pre>
<div class="spacer"></div>
<!-- every-sample? -->
<pre class="indented">
<em class=def id="everysample">every-sample?</em> func
</pre>
<p>every-sample? applies 'func' to each sample in the current channel and returns
#t if 'func' is not #f for all samples; otherwise it moves the cursor to the first offending sample.
</p>
<pre class="indented">
> (every-sample? (lambda (y) (< (abs y) .1)))
#f
> (cursor)
4423
> (sample (cursor))
0.101104736328125
</pre>
<div class="spacer"></div>
<!-- explode-sf2 -->
<pre class="indented">
<em class=def id="explodesf2">explode-sf2</em>
</pre>
<p>explode-sf2 turns a soundfont file (assuming it
is the currently selected sound) into a bunch of files of the form sample-name.aif.
It is based on <a href="extsnd.html#soundfontinfo">soundfont-info</a>; that documentation
includes a function, mark-sf2, that places a named mark at start of each new member of the font
and unnamed marks at the various loop points.
</p>
<div class="spacer"></div>
<!-- find-click -->
<pre class="indented">
<em class=emdef>find-click</em> loc
</pre>
<p>find-click finds the next click, starting its search at 'loc'.
It returns #f if it can't find a click.
</p>
<div class="spacer"></div>
<!-- finfo -->
<pre class="indented">
<em class=def id="finfo">finfo</em> filename
</pre>
<p>finfo returns a description of the file 'filename'.
</p>
<pre class="indented">
> (finfo "oboe.snd")
"oboe.snd: chans: 1, srate: 22050, Sun/Next, big endian short (16 bits), len: 2.305"
</pre>
<div class="spacer"></div>
<!-- locate-zero -->
<pre class="indented">
<em class=emdef>find-pitch</em> pitch
<em class=def id="locatezero">locate-zero</em> limit
<em class=emdef>next-peak</em>
<em class=def id="searchforclick">search-for-click</em>
<em class=def id="zeroplus">zero+</em>
</pre>
<p>locate-zero looks for the next sample where adjacent samples together are less than 'limit'
and moves the cursor to that sample.
The others are
examples of searching procedures (to be used with <a href="snd.html#menufind">C-s</a> and friends):
zero+ finds the next
positive-going zero crossing (if searching forwards).
next-peak finds
the next maximum or minimum in the waveform.
search-for-click looks for a click.
find-pitch finds the next
place where 'pitch' (in Hz) is predominate.
For example, type C-s (in the graph), then in the status area:
(find-pitch 600), and if the function finds some place in the sound
where 600 Hz seems to be the basic pitch, it moves the cursor there and
reports the time in the status area text window.
</p>
<div class="spacer"></div>
<!-- mpg -->
<pre class="indented">
<em class=def id="mpg">mpg</em> mpgfile rawfile
</pre>
<p>mpg uses the "system" function to call mpg123 to translate an MPEG
format sound file to a headerless ("raw") file containing 16-bit samples.
</p>
<pre class="indented">
(mpg "mpeg.mpg" "mpeg.raw")
</pre>
<p>This is now built-in if the Snd configuration process can find mpg123.
</p>
<div class="spacer"></div>
<!-- open-next-file-in-directory -->
<pre class="indented">
<em class=def id="opennextfileindirectory">open-next-file-in-directory</em>
<em class=emdef>click-middle-button-to-open-next-file-in-directory</em>
</pre>
<p>click-middle-button-to-open-next-file-in-directory sets up the mouse-click-hook and open-hook so that clicking the middle
mouse button closes the current file and opens the next (alphabetical
by filename) in the current directory. These are used in edit123.scm.
</p>
<div class="spacer"></div>
<!-- play-ac3 -->
<pre class="indented">
<em class=emdef>play-ac3</em> name
</pre>
<p>play-ac3 tries to play an AC3 encoded sound file by calling a52dec.
</p>
<div class="spacer"></div>
<!-- read-ascii -->
<pre class="indented">
<em class=emdef>read-ascii</em> file (out-filename "test.snd") (out-type mus-next) (out-format mus-bshort) (out-srate 44100)
</pre>
<p>read-ascii tries to turn a text file into a sound file.
Octave or perhaps WaveLab produce these files; each line has one integer (as text), apparently a signed short.
The read-ascii parameters describe the output file.
</p>
<div class="spacer"></div>
<!-- read-flac -->
<pre class="indented">
<em class=emdef>read-flac</em> file
<em class=emdef>write-flac</em> snd
</pre>
<p>read-flac and write-flac deal with FLAC files. This is now built into Snd if the flac
program can be found at configuration time.
</p>
<div class="spacer"></div>
<!-- read-ogg -->
<pre class="indented">
<em class=emdef>read-ogg</em> file
<em class=emdef>write-ogg</em> snd
</pre>
<p>read-ogg and write-ogg deal with OGG files. This is now built into Snd if the oggdec and offenc
programs can be found at configuration time.
</p>
<div class="spacer"></div>
<!-- read-speex -->
<pre class="indented">
<em class=emdef>read-speex</em> file
<em class=emdef>write-speex</em> snd
</pre>
<p>read-speex and write-speex deal with SPEEX files. This is now built into Snd if speexdec and speexenc
can be found at configuration time.
</p>
<div class="spacer"></div>
<!-- remove-clicks -->
<pre class="indented">
<em class=def id="removeclicks">remove-clicks</em>
</pre>
<p>remove-clicks looks for obvious clicks and uses smooth-sound to remove them.
See also remove-single-sample-clicks and remove-pops in clean.scm.
</p>
<div class="spacer"></div>
<!-- sounds->segment-data -->
<pre class="indented">
<em class=def id="soundstosegmentdata">sounds->segment-data</em> main-dir (output-file "sounds.data")
</pre>
<p>This function takes a directory name, and runs through all the sounds in the embedded
directories, returning a text file with segment start and end times, and segment maxamps.
</p>
<pre class="indented">
(sounds->segment-data "/home/bil/test/iowa/sounds/" "iowa.data")
</pre>
<p>It was written to find the note boundaries in the Iowa musical instrument sound library.
</p>
<div class="spacer"></div>
<!-- sort-samples -->
<pre class="indented">
<em class=emdef>sort-samples</em> bins
</pre>
<p>sort-samples provides a histogram of the samples (by amplitude) in 'bins' bins.
</p>
<pre class="indented">
> (sort-samples 20) ; bins go by 0.05
#(129017 90569 915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
;; so 915 samples were > 0.1 in absolute value
</pre>
<div class="spacer"></div>
<!-- sync-everything -->
<pre class="indented">
<em class=def id="sync-everything">sync-everything</em>
</pre>
<p>sync-everything sets the sync fields of all currently open sounds to the same unique value.
</p>
<div class="spacer"></div>
<!-- update-graphs -->
<pre class="indented">
<em class=def id="updategraphs">update-graphs</em>
</pre>
<p>update-graphs updates (redraws) all graphs.
</p>
<div class="spacer"></div>
<!-- window-rms -->
<pre class="indented">
<em class=emdef>window-rms</em>
</pre>
<p>window-rms returns the rms of the data in currently selected graph window.
</p>
<div class="spacer"></div>
<!-- window-samples -->
<pre class="indented">
<em class=def id="windowsamples">window-samples</em> snd chn
</pre>
<p>window-samples returns (in a float-vector) the samples
displayed in the current window for the given channel.
This is just a trivial wrapper for <a href="extsnd.html#channeltofv">channel->float-vector</a>.
</p>
<div class="spacer"></div>
<!-- xb-open -->
<pre class="indented">
<em class=def id="xbopen">xb-open</em> snd
<em class=emdef>xb-close</em> snd
<em class=emdef>switch-to-buf</em>
</pre>
<p>These provide Emacs-like C-x b support where only one sound is visible at a time.
To activate it:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\b 0 switch-to-buf #t)
(hook-push <a class=quiet href="extsnd.html#closehook">close-hook</a> xb-close)
(hook-push <a class=quiet href="extsnd.html#afteropenhook">after-open-hook</a> xb-open)
</pre>
<!-- FILE: extensions -->
<div class="header" id="extensionsdoc">extensions</div>
<p>These were originally scattered around examp.scm; I thought it would be more
convenient if they were in one file.
</p>
<div class="spacer"></div>
<!-- channels-equal? -->
<pre class="indented">
<em class=def id="channelsequal">channels-equal?</em> snd1 chn1 snd2 chn2 (allowable-difference 0.0)
<em class=def id="channelseq">channels=?</em> snd1 chn1 snd2 chn2 (allowable-difference 0.0)
</pre>
<p>channels=? returns #t if the two specified channels are the same within the
given 'allowable-difference'.
The 'allowable-difference' is checked on each sample, so any sample-wise difference
larger than that causes the comparison to return #f.
channels-equal? returns #t if channels=?
and the channels are the same length. In channels=? one the other hand, the trailing (extra) samples
in one channel are compared with 0.0 (that is, the shorter channel is padded out with zeros).
</p>
<div class="spacer"></div>
<!-- channel-sync -->
<pre class="indented">
<em class=def id="channelsync">channel-sync</em> snd chn
</pre>
<p>channel-sync uses the channel-properties list to implement a channel-local sync field. (This property is currently
not used anywhere).
</p>
<div class="spacer"></div>
<!-- contrast-channel -->
<pre class="indented">
<em class=def id="contrastchannel">contrast-channel</em> index beg dur snd chn edpos
</pre>
<p>contrast-channel applies the CLM <a href="sndclm.html#contrast-enhancement">contrast-enhancement</a> function to a channel;
this is largely equivalent to the control panel Contrast slider.
</p>
<div class="spacer"></div>
<!-- contrast-sound -->
<pre class="indented">
<em class=def id="contrastsound">contrast-sound</em> index (beg 0) dur snd
</pre>
<p>contrast-sound applies <a href="sndclm.html#contrast-enhancement">contrast-enhancement</a> to every channel of the sound 'snd'.
It is the multichannel version of <a href="#contrastchannel">contrast-channel</a>.
</p>
<div class="spacer"></div>
<!-- dither-channel -->
<pre class="indented">
<em class=def id="ditherchannel">dither-channel</em> (amount .00006) beg dur snd chn edpos
</pre>
<p>dither-channel adds "dithering" (noise) to a channel; some experts insist this makes everything copacetic.
The noise consists of two white noise generators adding together.
</p>
<div class="spacer"></div>
<!-- dither-sound -->
<pre class="indented">
<em class=def id="dithersound">dither-sound</em> (amount .00006) (beg 0) dur snd
</pre>
<p>dither-sound adds dithering to every channel of the sound 'snd'.
It is the multichannel version of <a href="#ditherchannel">dither-channel</a>.
</p>
<div class="spacer"></div>
<!-- enveloped-mix -->
<pre class="indented">
<em class=def id="envelopedmix">enveloped-mix</em> filename beg env
</pre>
<p>enveloped-mix is like <a href="#mixsound">mix-sound</a>, but includes an
amplitude envelope over the mixed-in data.
</p>
<pre class="indented">
(enveloped-mix "pistol.snd" 0 '(0 0 1 1 2 0))
</pre>
<div class="spacer"></div>
<!-- env-expt-channel -->
<pre class="indented">
<em class=def id="envexptchannel">env-expt-channel</em> env exponent (symmetric #t) beg dur snd chn edpos
<em class=def id="anyenvchannel">any-env-channel</em> env func beg dur snd chn edpos
<em class=emdef>ramp-expt</em> a0 a1 exponent (symmetric #t) beg dur snd chn edpos
<em class=def id="sineenvchannel">sine-env-channel</em> env beg dur snd chn edpos
<em class=def id="sineramp">sine-ramp</em> a0 a1 beg dur snd chn edpos
<em class=def id="blackman4envchannel">blackman4-env-channel</em> env beg dur snd chn edpos
<em class=emdef>blackman4-ramp</em> a0 a1 beg dur snd chn edpos
<em class=def id="envsquaredchannel">env-squared-channel</em> env (symmetric #t) beg dur snd chn edpos
<em class=emdef>ramp-squared</em> a0 a1 (symmetric #t) beg dur snd chn edpos
</pre>
<p>These functions goof around with envelopes in various amusing ways.
any-env-channel takes an envelope and a function to produce the connection between successive
breakpoints, and applies the two to the current channel as an envelope. This packages up most of
the "boilerplate" associated with applying an envelope to a sound. It is used by the other
enveloping functions: sine-env-channel, blackman4-env-channel, and env-squared-channel.
sine-ramp and sine-env-channel are the sinusoidal versions of <a href="extsnd.html#rampchannel">ramp-channel</a>
and <a href="extsnd.html#envchannel">env-channel</a>.
</p>
<pre class="indented">
(sine-env-channel '(0 0 1 1 2 -.5 3 1))
</pre>
<p>applies the given envelope to the current channel,
connecting the points with a sinusoidal curve.
Similarly, blackman4-env-channel connects the dots with
a sum of cosines, and env-squared-channel connects the dots with an x^2 curve. To get any other positive exponent,
use env-expt-channel. The 'symmetric' argument determines whether the
up and down moving ramps look symmetrical around a break point.
</p>
<table>
<tr><td><img src="pix/exptenvs.png" alt="exponential envelopes"></td><td>
<pre class="indented">
(env-channel '(0 0 1 1 2 -.75 3 0))
(env-sound '(0 0 1 1 2 -.75 3 0) 0 100 32.0)
(env-sound '(0 0 1 1 2 -.75 3 0) 0 100 .032)
(env-sound '(0 0 1 1 2 -.75 3 0) 0 100 0.0)
(sine-env-channel '(0 0 1 1 2 -.75 3 0))
(env-squared-channel '(0 0 1 1 2 -.75 3 0))
(blackman4-env-channel '(0 0 1 1 2 -.75 3 0))
(env-squared-channel '(0 0 1 1 2 -.75 3 0) #f)
(env-expt-channel '(0 0 1 1 2 -.75 3 0) 3.0)
(env-expt-channel '(0 0 1 1 2 -.75 3 0) 3.0 #f)
(env-expt-channel '(0 0 1 1 2 -.75 3 0) .3)
(env-expt-channel '(0 0 1 1 2 -.75 3 0) .3)
</pre>
</td></tr></table>
<div class="spacer"></div>
<!-- for-each-sound-file -->
<pre class="indented">
<em class=def id="foreachsoundfile">for-each-sound-file</em> func dir
<em class=def id="mapsoundfiles">map-sound-files</em> func dir
<em class=def id="matchsoundfiles">match-sound-files</em> func dir
</pre>
<p>for-each-sound-file and
map-sound-files apply 'func' to each sound file in 'dir'.
The 'func' is passed one argument, the sound file name.
map-sound-files returns a list of the results, if any, returned from 'func'.
match-sound-files applies 'func' to each sound file in 'dir' and returns a list of files for which func does not return #f.
</p>
<pre class="indented">
(for-each-sound-file
(lambda (n)
(when (> (<a class=quiet href="extsnd.html#mussoundduration">mus-sound-duration</a> n) 10.0)
(<a class=quiet href="extsnd.html#sndprint">snd-print</a> (format #f "~%~A" n))))
".")
</pre>
<div class="spacer"></div>
<!-- insert-channel -->
<pre class="indented">
<em class=def id="insertchannel">insert-channel</em> filedat beg dur snd chn edpos
</pre>
<p>insert-channel inserts the specified data ('filedat') in the given channel at the given location.
See <a href="#mixchannel">mix-channel</a> for a description of 'filedat'.
</p>
<div class="spacer"></div>
<!-- mix-channel -->
<pre class="indented">
<em class=def id="mixchannel">mix-channel</em> filedat beg dur snd chn edpos
</pre>
<p>mix-channel is a "regularized" version of the file mixing functions (<a class=quiet href="extsnd.html#mix">mix</a> and
<a href="#mixsound">mix-sound</a>).
Its first argument can be either a filename (a string), a sound, or a list containing the filename (or index), the
start point in the file, and (optionally) the channel of the file to mix:
</p>
<pre class="indented">
(mix-channel "pistol.snd") ; mixing starts at sample 0, entire sound is mixed
(mix-channel "pistol.snd" 10000) ; mixing starts at sample 10000 in current sound
(mix-channel (list "pistol.snd" 1000)) ; mixed data starts at sample 1000 in pistol.snd
(mix-channel (list "2.snd" 0 1)) ; mixed data reads channel 1 in 2.snd
</pre>
<div class="spacer"></div>
<!-- mono->stereo -->
<pre class="indented">
<em class=def id="monotostereo">mono->stereo</em> new-name snd1 chn1 snd2 chn2
<em class=def id="stereotomono">stereo->mono</em> orig-snd chan1-name chan2-name
<em class=emdef>mono-files->stereo</em> new-name chan1-file chan2-file
</pre>
<p>mono->stereo combines two mono sounds (currently open in Snd) into one (new) stereo file.
mono-files->stereo
is the same, but the source sounds are files, not necessarily already open in Snd.
stereo->mono takes a stereo sound and produces two new mono sounds.
(The corresponding stereo->mono-files can be based on the existing
<a href="extsnd.html#extractchannel">extract-channel</a> function).
</p>
<div class="spacer"></div>
<!-- normalized-mix -->
<pre class="indented">
<em class=def id="normalizedmix">normalized-mix</em> filename beg in-chan snd chn
</pre>
<p>normalized-mix is like <a href="extsnd.html#mix">mix</a> but the mixed result has same peak amplitude as the
original data.
</p>
<div class="spacer"></div>
<!-- normalize-sound -->
<pre class="indented">
<em class=def id="normalizesound">normalize-sound</em> amp (beg 0) dur snd
</pre>
<p>normalize-sound scales the sound 'snd' to peak amplitude 'amp'.
It is the multichannel version of <a href="extsnd.html#normalizechannel">normalize-channel</a>.
</p>
<div class="spacer"></div>
<!-- offset-channel -->
<pre class="indented">
<em class=def id="offsetchannel">offset-channel</em> amount beg dur snd chn edpos
</pre>
<p>offset-channel adds a constant (DC offset) to a channel.
</p>
<div class="spacer"></div>
<!-- offset-sound -->
<pre class="indented">
<em class=def id="offsetsound">offset-sound</em> off (beg 0) dur snd
</pre>
<p>offset-sound adds 'off' to every sample in the sound 'snd'.
It is the multichannel version of <a href="#offsetchannel">offset-channel</a>.
</p>
<div class="spacer"></div>
<!-- pad-sound -->
<pre class="indented">
<em class=def id="padsound">pad-sound</em> beg dur snd
</pre>
<p>pad-sound places a block of 'dur' zeros in every channel of the sound 'snd' starting at 'beg'.
It is the multichannel version of <a href="extsnd.html#padchannel">pad-channel</a>.
</p>
<div class="spacer"></div>
<!-- redo-channel -->
<pre class="indented">
<em class=emdef>redo-channel</em> (edits 1) snd chn
</pre>
<p>redo-channel is a "regularized" version of <a href="extsnd.html#redo">redo</a>.
</p>
<div class="spacer"></div>
<!-- scale-sound -->
<pre class="indented">
<em class=def id="scalesound">scale-sound</em> scl (beg 0) dur snd
</pre>
<p>scale-sound multiplies every sample in the sound 'snd' by 'scl'.
It is the multichannel version of <a href="extsnd.html#scalechannel">scale-channel</a>.
</p>
<div class="spacer"></div>
<!-- undo-channel -->
<pre class="indented">
<em class=emdef>undo-channel</em> (edits 1) snd chn
</pre>
<p>undo-channel is a "regularized" version of <a href="extsnd.html#undo">undo</a>.
</p>
<!-- FILE: fade -->
<div class="header" id="fadedoc">fade</div>
<!-- main-index |fadedoc:cross-fade (frequency domain) -->
<p>
The two functions in fade.scm perform frequency-domain cross-fades, that is, the
cross-fade is handled by a bank of bandpass filters (<a class=quiet href="sndclm.html#formant">formant</a> generators). The effect
is sometimes only slightly different from a normal (time-domain) cross-fade, but
there are some interesting possibilities ("sound evaporation", etc).
</p>
<pre class="indented">
<em class=emdef>cross-fade</em> beg dur amp file1 file2 ramp-beg ramp-dur ramp-type bank-dur fs fwidth
</pre>
<p>
cross-fade stitches 'file1' to 'file2' using filtering to provide the
join (rather than amplitude ramps). 'ramp-type' can be 0: sweep up,
1: sweep down, 2: sweep split from the middle; "sweep up" means that the
low frequencies are filtered out first, etc. 'fs' is how many formants to
set up; 'fwidth' is the formant resonance width control; 'ramp-beg' and
'ramp-dur' set the start point and length of the sweep; 'bank-dur'
controls how much time is spent in the formant bank before starting or after ending
the ramp.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (cross-fade 0 2 1.0 "oboe.snd" "trumpet.snd" 0.5 1.0 0 .1 256 2))
(float-vector->channel (cross-fade 0 1.5 1.0 0 1 0.5 .5 0 1.0 256 2))
</pre>
<p>
These fades seem more successful to me when done relatively quickly (the opposite of the dissolve-fade below
which is best if done as slowly as possible). With any luck the "sweep up" case can produce a sort of "evaporation" effect.
A similar idea is behind dissolve-fade:
</p>
<div class="spacer"></div>
<pre class="indented">
<em class=def id="dissolvefade">dissolve-fade</em> beg dur amp file1 file2 fsize r lo hi
</pre>
<p>It ramps in and out frequency bands chosen at random. The original hope was to get something like a graphical dissolve,
but it turns out to be better to let the random changes float along with no overall
direction. If the current band amplitude is 1.0, we send it toward 0.0 and vice versa. Given patience
and a suitably noisy original, strange pitches emerge and submerge. 'fsize' is the formant bank size;
'r' is the same as 'fwidth' in cross-fade (resonance width) modulo a factor of 2 (sigh...).
'lo' and 'hi' set the portion of the formant bank that is active during the dissolve.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (dissolve-fade 0 1 1.0 "oboe.snd" "trumpet.snd" 256 2 0 128))
(float-vector->channel (dissolve-fade 0 2 1 0 1 1024 2 2 #f))
</pre>
<!-- FILE: freeverb -->
<div class="header" id="freeverbdoc">freeverb</div>
<p>freeverb is Jezar Wakefield's reverberator, translated by Michael Scholz from CLM's freeverb.ins (written by Fernando Lopez-Lezcano), and documented
in freeverb.html in the CLM tarball.
</p>
<pre class="indented">
<em class=def id="freeverb">freeverb</em>
(room-decay 0.5)
(damping 0.5)
(global 0.3)
(predelay 0.03)
(output-gain 1.0)
(output-mixer #f)
(scale-room-decay 0.28)
(offset-room-decay 0.7)
(combtuning '(1116 1188 1277 1356 1422 1491 1557 1617))
(allpasstuning '(556 441 341 225))
(scale-damping 0.4)
(stereo-spread 23)
(verbose #f)
</pre>
<p>Here is a paraphrase of some of Fernando's documentation.
'room-decay'
determines the decay time of the reverberation.
'damping' set the high frequency damping; this parameter can be a number, or an array or a list (with same number of elements as output channels). It is possible to control the damping for each output channel.
'global'
controls how the outputs of all reverbs (one per channel) are mixed into the output stream. Specifying "0" will connect each reverberator directly to each output channel, "1" will mix all reverberated channels equally into all output channels. Intermediate values will allow for an arbitrary balance between local and global reverberation. The overall gain of the mixing matrix is kept constant. 'output-mixer' overrides this parameter.
'predelay'
sets the predelay that is applied to the input streams. An array or list lets you specify the individual predelays for all chanenels.
'output-gain'
is the overall gain multiplier for the output streams.
'output-mixer'
sets the output mixing matrix directly (rather than through 'global').
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb freeverb :reverb-data '(:output-gain 3.0))
(fm-violin 0 .1 440 .1 :reverb-amount .1))
</pre>
<div class="seealso">
see also: <a href="#jcrevdoc">jcrev</a> <a href="#nrev">nrev</a> <a href="extsnd.html#convolvewith">convolution</a>
</div>
<!-- FILE: grani -->
<div class="header" id="granidoc">grani</div>
<p>This is Fernando Lopez-Lezcano's CLM <A HREF="http://ccrma.stanford.edu/~nando/clm/grani/">grani</A>
granular synthesis instrument translated to Scheme by Mike Scholz.
The Ruby version is in clm-ins.rb.
</p>
<pre class="indented">
<em class=def id="grani">grani</em> start-time duration amplitude file
(input-channel 0) ; input file channel from which samples are read
(grains 0) ; if not 0, total number of grains to be generated
(amp-envelope '(0 0 0.3 1 0.7 1 1 0)) ; overall amplitude envelope for note
(grain-envelope '(0 0 0.3 1 0.7 1 1 0)) ; env for each individual grain
(grain-envelope-end #f) ; if not #f, a second grain env
(grain-envelope-transition '(0 0 1 1)) ; interp 0: use grain-envelope, 1: use grain-envelope-end
(grain-envelope-array-size 512) ; <a href="sndclm.html#make-table-lookup">make-table-lookup</a> table size
(grain-duration 0.1) ; number or envelope setting grain duration (in seconds)
(grain-duration-spread 0.0) ; random spread around 'grain-duration'
(grain-duration-limit 0.002) ; minimum grain duration (in seconds)
(srate 0.0) ; number or envelope setting sampling rate conversion
(srate-spread 0.0) ; random spread of src around 'srate'
(srate-linear #f) ; if #f, srate (envelope) is exponential
(srate-base (expt 2 (/ 12))) ; srate env base if exponential
(srate-error 0.01) ; error bound for exponential conversion
(grain-start '(0 0 1 1)) ; env that sets input file read point of current grain
(grain-start-spread 0.0) ; random spread around 'grain-start'
(grain-start-in-seconds #f) ; if #f, treat 'grain-start' as a percentage
(grain-density 10.0) ; env on number of grains / second in output
(grain-density-spread 0.0) ; random spread around 'grain-density'
(reverb-amount 0.01)
(reverse #f) ; if #t, input is read backwards
(where-to 0) ; locsig stuff — see the full documentation
(where-bins ())
(grain-distance 1.0) ; distance of sound source (<a href="sndclm.html#locsig">locsig</a>)
(grain-distance-spread 0.0) ; random spread around 'grain-distance'
(grain-degree 45.0)
(grain-degree-spread 0.0)
(verbose #t)
(<a class=quiet href="#wsdoc">with-sound</a> (:channels 2 :reverb jc-reverb :reverb-channels 1)
(grani 0 1 .5 "oboe.snd" :grain-envelope '(0 0 0.2 0.2 0.5 1 0.8 0.2 1 0)))
</pre>
<div class="seealso">
see also: <a href="sndclm.html#granulate">granulate</a> <a href="#expsrc">expsrc</a> <a href="extsnd.html#customcontrols">expand</a>
</div>
<!-- FILE: heart -->
<div class="header" id="heartdoc">heart</div>
<p>
Snd can be used with non-sound data, and <a href="#wsdoc">with-sound</a> makes it easy to
write such data to a sound file. An example is heart.scm. In this code, we search a file for blood pressure
readings (they are scattered around with a bunch of other stuff), then write those numbers to a stereo
sound file (the sphygmometer readings are between 70 and 150), then open that file in Snd with all the sound-related
clipping features turned off. We also tell Snd to skip the data file in its start-up load process (since it
is an uninterpretable text file) by incrementing script-arg.
</p>
<img class="indented" src="pix/usync.png" alt="heart picture">
<!-- FILE: hooks -->
<div class="header" id="hooksdoc">hooks</div>
<p>hooks.scm and hooks.rb have various <a href="extsnd.html#sndhooks">hook</a>-related functions.
</p>
<!-- describe-hook -->
<pre class="indented">
<em class=def id="describehook">describe-hook</em> hook
</pre>
<p>describe-hook tries to decipher the functions on the hook list; this is almost identical to hook-functions.
</p>
<div class="spacer"></div>
<!-- hook-member -->
<pre class="indented">
<em class=def id="hookmember">hook-member</em> func hook
</pre>
<p>hook-member returns #t if 'func' is already on the hook list, equivalent to
(member value (hook-functions hook))
</p>
<div class="spacer"></div>
<!-- reset-all-hooks -->
<pre class="indented">
<em class=def id="resetallhooks">reset-all-hooks</em>
</pre>
<p>reset-all-hooks resets all of Snd's built-in hooks.
</p>
<div class="spacer"></div>
<!-- snd-hooks -->
<pre class="indented">
<em class=def id="sndscmhooks">snd-hooks</em>
</pre>
<p>snd-hooks returns a list of all Snd built-in non-channel hooks.
</p>
<div class="spacer"></div>
<!-- with-local-hook -->
<pre class="indented">
<em class=def id="withlocalhook">with-local-hook</em> hook local-hook-procs thunk
</pre>
<p>with-local-hook is a kind of "let" for hooks;
it evaluates 'thunk' with 'hook' set to 'local-hook-procs' (a list which can be nil), then restores 'hook' to its previous state upon exit.
The result returned by 'thunk' is returned by with-local-hook.
</p>
<!-- FILE: index -->
<div class="header" id="indexdoc">index</div>
<pre class="indented">
<em class=def id="html">html</em> obj
</pre>
<p>index.scm provides a connection between firefox
and the Snd documentation. The index itself is
built by make-index.scm, then accessed through the function html.
(html arg), where 'arg' can be a string, a symbol, or a procedure sends the html reader to the corresponding url
in the Snd documents.
</p>
<div class="seealso">
see also: <a href="extsnd.html#htmlprogram">html-program</a> <a href="extsnd.html#sndhelp">snd-help</a> <a href="extsnd.html#sndurls">snd-urls</a>
</div>
<!-- FILE: inf-snd.el, DotEmacs -->
<div class="header" id="dotemacs">inf-snd.el, DotEmacs</div>
<p>These two files provide support for Snd as an Emacs subjob. inf-snd.el is by Michael Scholz,
and DotEmacs is by Fernando Lopez-Lezcano. Both can be loaded in your ~/.emacs file (or ~/.xemacs/init.el if you're
using xemacs).
</p>
<p>
DotEmacs sets up "dialects" for various versions of Common Lisp and for Snd, then
binds C-x C-l to run ACL. This is intended for CCRMA'S 220 class, but it might
be of interest to others. Much fancier is inf-snd.el. What follows is taken almost
verbatim from Mike Scholz's comments in that file:
</p>
<p>
inf-snd.el defines a snd-in-a-buffer package for Emacs.
It includes a Snd-Ruby mode (snd-ruby-mode), a Snd-Scheme mode
(snd-scheme-mode), and a Snd-Forth mode (snd-forth-mode) for editing source files.
The commands inf-snd-help and snd-help
access the description which Snd provides for many functions.
Using the prefix key C-u you get the HTML version of Snd's help.
With tab-completion in the status area you can scan all functions at
a glance.
A menu "Snd/Ruby" is placed in the Emacs menu bar. Entries in this
menu are disabled if no inferior Snd process exists.
These variables may need to be customized to fit your system:
</p>
<pre class="indented">
inf-snd-ruby-program-name "snd-ruby" Snd-Ruby program name
inf-snd-scheme-program-name "snd-s7" Snd-Scheme program name using s7
inf-snd-forth-program-name "snd-forth" Snd-Forth program name
inf-snd-working-directory "~/" where Ruby or Scheme scripts reside
inf-snd-index-path "~/" path to snd-xref.c
inf-snd-prompt-char ">" listener prompt
snd-ruby-mode-hook nil to customize snd-ruby-mode
snd-scheme-mode-hook nil to customize snd-scheme-mode
snd-forth-mode-hook nil to customize inf-snd-forth-mode
</pre>
<p>
You can start inf-snd-ruby-mode either with the prefix-key
(C-u M-x run-snd-ruby) — you will be asked for program name and
optional arguments — or directly via (M-x run-snd-ruby). In the latter
case, the variable inf-snd-ruby-program-name needs to be set correctly.
inf-snd-scheme-mode and inf-snd-forth-mode are handled in the same way.
Here's an example for your ~/.emacs file:
</p>
<pre class="indented">
(autoload 'run-snd-ruby "inf-snd" "Start inferior Snd-Ruby process" t)
(autoload 'run-snd-scheme "inf-snd" "Start inferior Snd-Scheme process" t)
(autoload 'run-snd-forth "inf-snd" "Start inferior Snd-Forth process" t)
(autoload 'snd-ruby-mode "inf-snd" "Load snd-ruby-mode." t)
(autoload 'snd-scheme-mode "inf-snd" "Load snd-scheme-mode." t)
(autoload 'snd-forth-mode "inf-snd" "Load snd-forth-mode." t)
(setq inf-snd-ruby-program-name "snd-ruby -notebook")
(setq inf-snd-scheme-program-name "snd-scheme -separate")
(setq inf-snd-forth-program-name "snd-forth")
(setq inf-snd-working-directory "~/Snd/")
(setq inf-snd-index-path "~/Snd/snd/")
</pre>
<p>
See inf-snd.el for more info and examples of specializing these modes.
You can change the mode while editing a Snd-Ruby, Snd-Scheme, or Snd-Forth source file with
M-x snd-ruby-mode, M-x snd-scheme-mode, or M-x snd-forth-mode. To have Emacs determine
automatically which mode to set, you can use special
file-extensions. I use file-extension ".rbs" for Snd-Ruby source
files, ".cms" for Snd-Scheme, and ".fth" for Snd-Forth.
</p>
<pre class="indented">
(set-default 'auto-mode-alist
(append '(("\\.rbs$" . snd-ruby-mode)
("\\.cms$" . snd-scheme-mode))
auto-mode-alist))
</pre>
<p>
Or you can use the local mode variable in source files, e.g. by
"-*- snd-ruby -*-" or "-*- snd-scheme -*-" in first line.
</p>
<p>
Key bindings for inf-* and snd-*-modes
</p>
<pre class="indented">
\e\TAB snd-completion symbol completion at point
C-h m describe-mode describe current major mode
</pre>
<p>
Key bindings of inf-snd-ruby|scheme|forth-mode:
</p>
<pre class="indented">
C-c C-s inf-snd-run-snd (Snd-Ruby|Scheme|Forth from a dead Snd process buffer)
M-C-l inf-snd-load load script in current working directory
C-c C-f inf-snd-file open view-files-dialog of Snd
M-C-p inf-snd-play play current sound file
C-c C-t inf-snd-stop stop playing all sound files
C-c C-i inf-snd-help help on Snd-function (snd-help)
C-u C-c C-i inf-snd-help-html help on Snd-function (html)
C-c C-q inf-snd-quit send exit to Snd process
C-c C-k inf-snd-kill kill Snd process and buffer
</pre>
<p>
Key bindings of snd-ruby|scheme|forth-mode editing source
files:
</p>
<pre class="indented">
C-c C-s snd-run-snd
M-C-x snd-send-definition
C-x C-e snd-send-last-sexp
C-c M-e snd-send-definition
C-c C-e snd-send-definition-and-go
C-c M-r snd-send-region
C-c C-r snd-send-region-and-go
C-c M-o snd-send-buffer
C-c C-o snd-send-buffer-and-go
C-c M-b snd-send-block (Ruby only)
C-c C-b snd-send-block-and-go (Ruby only)
C-c C-z snd-switch-to-snd
C-c C-l snd-load-file
C-u C-c C-l snd-load-file-protected (Ruby only)
C-c C-f snd-file open view-files-dialog of Snd
C-c C-p snd-play play current sound file
C-c C-t snd-stop stop playing all sound files
C-c C-i snd-help help on Snd-function (snd-help)
C-u C-c C-i snd-help-html help on Snd-function (html)
C-c C-q snd-quit send exit to Snd process
C-c C-k snd-kill kill Snd process and buffer
</pre>
<p>If xemacs complains that comint-snapshot-last-prompt is not defined,
get the latest comint.el; I had to go to the xemacs CVS site since
Fedora Core 5's xemacs (21.4) had an obsolete copy. Then scrounge
around until you find xemacs-packages/xemacs-base/comint.el.
Don't use the comint.el in the emacs package. It's not a tragedy
if this variable isn't defined — you just don't get a prompt in
the Snd Emacs window, but things still work.
If either emacs or
xemacs complains that it can't find gforth.el, you can find that
file in the gforth package or site (or perhaps you can comment out
the line (require 'forth-mode "gforth") in inf-snd.el). Finally, if temporary-file-directory
is undefined, you can set it alongside the rest of the variables.
So, for example, I (Bill S) have the following in my ~/.xemacs/init.el:
</p>
<pre class="indented">
(setq load-path
(append (list nil
"/home/bil/cl"
"/home/bil/test/gforth-0.6.2" ; gforth.el
)
load-path))
(autoload 'run-snd-ruby "inf-snd" "Start inferior Snd-Ruby process" t)
(autoload 'run-snd-scheme "inf-snd" "Start inferior Snd-Scheme process" t)
(autoload 'run-snd-forth "inf-snd" "Start inferior Snd-Forth process" t)
(autoload 'snd-ruby-mode "inf-snd" "Load snd-ruby-mode." t)
(autoload 'snd-scheme-mode "inf-snd" "Load snd-scheme-mode." t)
(autoload 'snd-forth-mode "inf-snd" "Load snd-forth-mode." t)
(setq inf-snd-ruby-program-name "~/ruby-snd/snd") ; these are my local Snd's
(setq inf-snd-scheme-program-name "~/cl/snd")
(setq inf-snd-forth-program-name "~/forth-snd/snd")
(setq inf-snd-working-directory "~/cl/")
(setq inf-snd-index-path "~/cl/")
(setq inf-snd-working-directory "~/cl/")
(setq inf-snd-index-path "~/cl/")
(setq temporary-file-directory "~/zap/")
</pre>
<p>If emacs complains about ruby-mode or something similar, you
probably need to get ruby-mode.el and inf-ruby.el from
ftp://ftp.ruby-lang.org/pub/ruby/ruby-*.tar.gz, or gforth.el from
ftp://ftp.gnu.org/pub/gnu/gforth/gforth-0.[67].*.tar.gz.
</p>
<!-- FILE: jcrev -->
<div class="header" id="jcrevdoc">jcrev</div>
<p id="reverbexamples">
jc-reverb is a reverberator developed by John Chowning a long time ago
(I can't actually remember when — before 1976 probably), based
on <a href="http://ccrma.stanford.edu/~jos/pasp/Schroeder_Reverberator_called_JCRev.html">ideas</a>
of Manfred Schroeder.
It "colors" the
sound much more than <a href="#clminsdoc">nrev</a>, and has noticeable echoes,
but I liked the effect a lot. new-effects.scm has a version of jc-reverb
that runs as a normal snd editing function (via <a href="extsnd.html#mapchannel">map-channel</a>), whereas the
jcrev.scm version assumes it is being called within with-sound:
</p>
<pre class="indented">
Scheme:
(with-sound (:reverb jc-reverb) (fm-violin 0 .1 440 .1 :reverb-amount .1))
Ruby:
with_sound(:reverb, :jc_reverb) do fm_violin_rb(0, 0.1, 440, 0.1) end
Forth:
0 1 440 0.2 ' fm-violin :reverb ' jc-reverb with-sound
</pre>
<p>jc-reverb has three parameters:
</p>
<pre class="indented">
<em class=def id="jcreverb">jc-reverb</em> low-pass (volume 1.0) amp-env
</pre>
<p>
if 'low-pass' if #t, a low pass filter is inserted before the output;
'volume' can be used to boost the output;
'amp-env' is an amplitude envelope that can be used to squelch the reverb ringing at the end of a piece.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:reverb jc-reverb :reverb-data '(#t 1.5 (0 0 1 1 2 1 3 0))) (fm-violin 0 .1 440 .1))
</pre>
<!-- INDEX reverbexamples:Reverb -->
<TABLE class="method">
<tr><td class="methodtitle">Reverbs in Snd</td></tr>
<tr><td>
<blockquote><small>
freeverb: <a href="#freeverbdoc">freeverb.scm, freeverb.rb</a><br>
jc-reverb: <a href="#jcrevdoc">jcrev.scm</a><br>
jl-reverb: <a href="#clminsdoc">clm-ins.scm</a><br>
nrev: <a href="#clminsdoc">clm-ins.scm</a><br>
control panel reverb: <a href="snd.html#reverb">Reverb</a>, <a href="extsnd.html#reverbdecay">control variables</a><br>
convolution reverb: <a href="extsnd.html#convolvewith">conrev</a><br>
*reverb*: <a href="#wsdoc">with-sound</a>
</small></blockquote>
</td></tr></TABLE>
<!-- FILE: lint -->
<div class="header" id="lintdoc">lint</div>
<!-- main-index |lintdoc:lint for scheme -->
<p>lint.scm is a lint program for Scheme. It tries to find errors or infelicities in your code.
To try it:
</p>
<pre class="indented">
(lint "some-code.scm")
</pre>
<p>lint tries to reduce false positives, so its default is somewhat laconic. There are several
variables at the start of lint.scm to control additional output:
</p>
<pre class="indented">
*report-unused-parameters* ; if #t, report unused function/macro parameters
*report-unused-top-level-functions* ; if #t, report unused functions
*report-undefined-variables* ; if #t, report undefined identifiers
*report-shadowed-variables* ; if #t, report function parameters that are shadowed
*report-minor-stuff* ; if #t, report all sorts of other stuff
</pre>
<p>lint is not real smart about functions defined outside the current file, so *report-undefined-variables*
sometimes is confused. *report-minor-stuff* adds output about overly complicated boolean and numerical
expressions, dangerous floating point operations, bad docstrings (this check is easily confused), and
whatever else it finds that it thinks is odd.
</p>
<!-- FILE: maraca -->
<div class="header" id="maracadoc">maraca</div>
<!-- main-index |maracadoc:maracas -->
<p>The maracas are physical models developed by Perry Cook (CMJ, vol 21 no 3 Fall 97, p 44).
</p>
<pre class="indented">
<em class=emdef>maraca</em> beg dur
(amp .1)
(sound-decay 0.95)
(system-decay 0.999)
(probability .0625)
(shell-freq 3200.0)
(shell-reso 0.96)
maraca: (<a class=quiet href="#wsdoc">with-sound</a> () (maraca 0 5 .5))
cabasa: (<a class=quiet href="#wsdoc">with-sound</a> () (maraca 0 5 .5 0.95 0.997 0.5 3000.0 0.7))
<em class=emdef>big-maraca</em> beg dur
(amp .1)
(sound-decay 0.95)
(system-decay 0.999)
(probability .0625)
(shell-freqs '(3200.0))
(shell-resos '(0.96))
(randiff .01)
(with-filters #t)
tambourine:
(<a class=quiet href="#wsdoc">with-sound</a> ()
(big-maraca 0 1 .25 0.95 0.9985 .03125 '(2300 5600 8100) '(0.96 0.995 0.995) .01))
sleighbells:
(<a class=quiet href="#wsdoc">with-sound</a> ()
(big-maraca 0 2 .15 0.97 0.9994 0.03125 '(2500 5300 6500 8300 9800)
'(0.999 0.999 0.999 0.999 0.999)))
sekere:
(<a class=quiet href="#wsdoc">with-sound</a> ()
(big-maraca 0 2 .5 0.96 0.999 .0625 '(5500) '(0.6)))
windchimes:
(<a class=quiet href="#wsdoc">with-sound</a> ()
(big-maraca 0 4 .5 0.99995 0.95 .001 '(2200 2800 3400) '(0.995 0.995 0.995) .01 #f))
</pre>
<p>
big-maraca is like maraca, but takes a list of resonances and includes low-pass filter (or no filter).
</p>
<div class="seealso">
see also: <a href="#noisedoc">noise</a> <a href="sndclm.html#randdoc">rand</a>
</div>
<!-- FILE: marks -->
<div class="header" id="marksdoc">marks</div>
<p>marks.scm/rb is a collection of mark-related functions.
</p>
<!-- define-selection-via-marks -->
<pre class="indented">
<em class=def id="defineselectionviamarks">define-selection-via-marks</em> m1 m2
</pre>
<p>define-selection-via-marks selects the portion between the given marks, then returns the selection length.
The marks defining the selection bounds must be in the same channel.
</p>
<div class="spacer"></div>
<!-- describe-mark -->
<pre class="indented">
<em class=def id="describemark">describe-mark</em> mark
</pre>
<p>describe-mark returns a description of the movements of the mark over the channel's edit history:
</p>
<pre class="indented">
> (define m (add-mark 1234))
m
> (describe-mark m)
((#<mark 1> sound: 0 "oboe.snd" channel: 0) 1234 478)
</pre>
<p>Here I placed a mark in oboe.snd at sample 1234, then deleted a few samples
before it, causing it to move to sample 478.
</p>
<div class="spacer"></div>
<!-- fit-selection-between-marks -->
<pre class="indented">
<em class=def id="fitselectionbetweenmarks">fit-selection-between-marks</em> m1 m2
</pre>
<p>fit-selection-between-marks tries to squeeze the current selection between two marks,
using the granulate generator to fix up the selection duration (it currently does a less than perfect job).
</p>
<div class="spacer"></div>
<!-- mark-click-info -->
<pre class="indented">
<em class=def id="markclickinfo">mark-click-info</em> mark
</pre>
<p>mark-click-info is a <a href="extsnd.html#markclickhook">mark-click-hook</a> function that describes a mark and its properties. It
is used by <a href="#withmarkedsound">with-marked-sound</a> in ws.scm.
</p>
<div class="spacer"></div>
<!-- mark-explode -->
<pre class="indented">
<em class=def id="markexplode">mark-explode</em> (htype mus-next) (dformat mus-bfloat)
</pre>
<p>mark-explode splits a sound into a bunch of separate files based on mark placements. Each mark becomes the
first sample of a separate sound.
</p>
<div class="spacer"></div>
<!-- mark-name->id -->
<pre class="indented">
<em class=def id="marknametoid">mark-name->id</em> name
</pre>
<p>mark-name->id is like <a href="extsnd.html#findmark">find-mark</a>, but searches all currently accessible channels.
If a such a mark doesn't exist, it returns 'no-such-mark.
</p>
<div class="spacer"></div>
<!-- move-syncd-marks -->
<pre class="indented">
<em class=def id="movesyncdmarks">move-syncd-marks</em> sync samples-to-move
</pre>
<p>move-syncd-marks moves any marks sharing the <a href="extsnd.html#marksync">mark-sync</a> value 'sync' by
'samples-to-move' samples.
</p>
<div class="spacer"></div>
<!-- pad-marks -->
<pre class="indented">
<em class=def id="padmarks">pad-marks</em> marks secs
</pre>
<p>pad-marks inserts 'secs' seconds of silence before each in a list of marks.
</p>
<div class="spacer"></div>
<!-- play-between-marks -->
<pre class="indented">
<em class=def id="playbetweenmarks">play-between-marks</em> snd m1 m2
</pre>
<p>play-between-marks
plays the portion in the sound 'snd' between the given marks.
</p>
<div class="spacer"></div>
<!-- play-syncd-marks -->
<pre class="indented">
<em class=def id="playsyncdmarks">play-syncd-marks</em> sync
</pre>
<p>play-syncd-marks starts
playing from all the marks sharing its 'sync' argument (see <a href="extsnd.html#marksync">mark-sync</a>).
</p>
<div class="spacer"></div>
<!-- report-mark-names -->
<pre class="indented">
<em class=def id="reportmarknames">report-mark-names</em>
</pre>
<p>report-mark-names causes a named mark to display its name in the status area when
its sample happens to be played.
</p>
<div class="spacer"></div>
<!-- save-mark-properties -->
<pre class="indented">
<em class=def id="savemarkproperties">save-mark-properties</em>
</pre>
<p>save-mark-properties sets up an <a href="extsnd.html#aftersavestatehook">after-save-state-hook</a> function to save any mark-properties.
</p>
<div class="spacer"></div>
<!-- snap-mark-to-beat -->
<pre class="indented">
<em class=def id="snapmarktobeat">snap-mark-to-beat</em>
</pre>
<p>snap-mark-to-beat forces a dragged mark to end up on a beat.
</p>
<div class="spacer"></div>
<!-- snap-marks -->
<pre class="indented">
<em class=def id="snapmarks">snap-marks</em>
</pre>
<p>snap-marks places marks at the start and end of the current selection in all its portions (i.e. in every channel that
has selected data).
It returns a list of all the marks it has added.
</p>
<pre class="indented">
> (selection-position)
360
> (selection-framples)
259
> (snap-marks)
(#<mark 0> #<mark 1>)
> (mark-sample (integer->mark 0))
360
> (mark-sample (integer->mark 1))
619
</pre>
<div class="spacer"></div>
<!-- syncup -->
<pre class="indented">
<em class=def id="syncup">syncup</em> marks
</pre>
<p>syncup synchronizes a list of marks (positions them all at the same sample number) by inserting silences as needed.
</p>
<p>marks.scm also has code that tries to make it simpler to sync marks together —
you just click the marks that should share a <a href="extsnd.html#marksync">mark-sync</a> field,
rather than laboriously setting each one in the listener;
see start-sync and stop-sync.
There is also some code (look for "eval-header" toward the end of the file) that saves mark info in a
sound file header, and reads it when the file is subsequently reopened.
</p>
<div class="seealso">
see also: <a href="#addmarkpane">add-mark-pane</a> <a href="extsnd.html#sndmarks">Marks</a> <a href="#markloops">mark-loops</a> <a href="#menusdoc">marks-menu</a>
</div>
<!-- FILE: maxf -->
<div class="header" id="maxfdoc">maxf</div>
<p>These files are translations (thanks to Michael Scholz!) of CLM's maxf.ins
(thanks to Juan Reyes!). They implement a variant of the CLM <a href="sndclm.html#formant">formant</a> generator developed
by Max Mathews and Julius Smith (see their online <a href="http://ccrma.stanford.edu/~jos/smac03maxjos/">paper</a>).
For a version of the filter closer to the paper, see the <a href="sndclm.html#firmant">firmant</a> generator.
maxf.scm and maxf.rb provide a kind of demo instrument showing various ways to
use the filter (banks tuned to different sets of frequencies, etc).
</p>
<pre class="indented">
<em class=emdef>maxfilter</em> file beg (att 1.0) (numf 1) (freqfactor 1.0) (amplitude 1.0)
(amp-env '(0 1 100 1)) (degree (random 90.0)) (distance 1.0) (reverb-amount 0.2)
</pre>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (maxfilter "dog.snd" 0))
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 44100) (maxfilter "dog.snd" 0 :numf 12))
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 44100) (maxfilter "dog.snd" 0 :numf 13 :att 0.75))
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 44100) (maxfilter "dog.snd" 0 :numf 2 :att 0.25 :freqfactor 0.5))
</pre>
<!-- FILE: menus -->
<div class="header" id="menusdoc">menus</div>
<!-- main-index |menusdoc:menus, optional -->
<p>The files described in this section either add new top-level menus to Snd, or
modify existing ones. Most were written by Dave Phillips.
</p>
<!-- edit-menu -->
<pre class="indented">
<em class=emdef>edit-menu.scm</em>
</pre>
<p>edit-menu.scm adds some useful options to the Edit menu:
</p>
<pre class="indented">
Selection->new ; save selection in a new file, open that file
Cut selection->new ; save selection in a new file, delete selection, open the file
Append selection ; append selection to end of selected sound
Make stereofile ; make a new 2-chan file, copy currently selected sound to it
Trim front ; find first mark in each sync'd channel and remove all samples before it
Trim back ; find last mark in each sync'd channel and remove all samples after it
Crop ; find first and last mark in each sync'd channel and remove all samples outside them
</pre>
<!-- I(trim sound):M(Edit: Trim)(menusdoc) -->
<!-- I(trim sound):A(menusdoc) -->
<div class="separator"></div>
<!-- fft-menu.scm -->
<pre class="indented">
<em class=emdef>fft-menu.scm</em>
</pre>
<p>fft-menu.scm adds an "FFT Edits" top-level menu. It has entries for:
</p>
<pre class="indented">
FFT notch filter ; use FFT to notch out a portion of the spectrum
FFT squelch ; use FFT to squelch low-level noise
Squelch vowels ; use FFT to squelch vowel-like portions of speech
</pre>
<div class="separator"></div>
<!-- marks-menu.scm -->
<pre class="indented">
<em class=emdef>marks-menu.scm</em>
</pre>
<p>marks-menu.scm adds a "Marks" top-level menu with entries:
</p>
<pre class="indented">
Play between marks ; play samples between marks
Loop play between marks ; continuous play looping between marks
Trim before mark ; remove samples before mark
Trim behind mark ; remove samples after mark
Crop around marks ; remove samples outside marks
Fit selection to marks ; squeeze selection to fit between marks
Define selection by marks ; define selection based on marks
Mark sync ; if on, click mark to sync with other marks
Mark sample loop points ; place marks at header loop points, if any
Show loop editor ; edit loop points; this dialog is not really functional yet
Delete all marks ; delete all marks
Explode marks to files ; writes a separate file for each set of marks
</pre>
<div class="separator"></div>
<!-- new-effects.scm -->
<pre class="indented">
<em class=emdef id="neweffectsdoc">new-effects.scm, effects-utils.scm, effects.rb, effects.fs</em>
</pre>
<p>new-effects.scm (effects.rb, effects.fs) implements an Effects menu.
There are a ton of choices, most of them
presented in separate dialogs. The gain dialog is illustrated below.
Some of the outer menu items are:
</p>
<table><tr><td>
<pre class="indented">
Amplitude effects (gain, normalize)
Delay effects (various echos)
Filter effects (various filters)
Frequency effects (src, expsrc)
Modulation effects (AM)
Reverbs (nrev, jcrev, convolution)
Various (flange, locsig, etc)
Octave down
Remove clicks
Remove DC
Compand
Reverse
</pre>
</td><td>
<img class="indented" src="pix/gain.png" alt="gain effect dialog">
</td></tr></table>
<!-- I(reverse samples):M(Effects: Reverse)(menusdoc) -->
<!-- I(reverberate file):M(Effects: Reverberate)(menusdoc) -->
<!-- I(normalize sound):M(Effects: Normalize)(menusdoc) -->
<!-- I(normalize sound):A(menusdoc) -->
<!-- I(normalize sound):L(scale-to)(scaleto) -->
<!-- I(insert zeros):M(Effects: Add Silence)(menusdoc) -->
<!-- I(change tempo):M(Effects: Expsrc)(menusdoc) -->
<p>Most of these are either simple calls on Snd functions ("invert" is (<a class=quiet href="extsnd.html#scaleby">scale-by</a> -1)),
or use functions in the other scm files. The actual operations follow the <a class=quiet href="extsnd.html#sync">sync</a> chain of the
currently active channel.
</p>
<div class="separator"></div>
<!-- special-menu.scm -->
<pre class="indented">
<em class=emdef>special-menu.scm</em>
</pre>
<p>special-menu.scm adds a "Special" menu with entries:
</p>
<pre class="indented">
Append file
MIDI to WAV (using Timidity)
Record input channel
Envelope new file (see <a href="#enveddoc">start-enveloping</a>)
Play panned
Save as MP3 (using bladeenc)
Save as Ogg (using oggenc)
Explode SF2 (using the code <a href="#explodesf2">explode-sf2</a> in examp.scm)
</pre>
<p>
misc.scm loads these menus and interface improvements, adds several sound file extensions,
adds some hook functions for mpeg files,
and
includes a number of options such as show-disk-space.
It then adds these menu items:
</p>
<pre class="indented">
File:Delete ; delete the selected file
File:Rename ; rename the selected file
Edit:Append selection ; append selection to end of current sound
Edit:Replace with selection ; put copy of selection at cursor
</pre>
<p>I think Dave expects you to customize this to suit yourself, perhaps even moving the stuff
you want to your initialization file.
</p>
<div class="seealso">
see also: <a href="extsnd.html#addtomainmenu">add-to-main-menu</a>.
</div>
<!-- FILE: mix -->
<div class="header" id="mixdoc">mix</div>
<!-- main-index |mixdoc:cross-fade (amplitude) -->
<p>mix.scm provides various mix utilities.
</p>
<!-- check-mix-tags -->
<pre class="indented">
<em class=def id="checkmixtags">check-mix-tags</em> snd chn
</pre>
check-mix-tags looks at the current mix tags in the given channel, and if any are
found that appear to be overlapping, it moves one of them down a ways.
<div class="spacer"></div>
<!-- color-mixes -->
<pre class="indented">
<em class=def id="colormixes">color-mixes</em> mix-list new-color
</pre>
color-mixes sets the color of each mix in 'mix-list' to 'new-color'.
<div class="spacer"></div>
<!-- delay-channel-mixes -->
<pre class="indented">
<em class=def id="delaychannelmixes">delay-channel-mixes</em> beg dur snd chn
</pre>
delay-channel-mixes adds dur (which can be negative) to the
begin time of each mix that starts after beg in the given channel.
<div class="spacer"></div>
<!-- env-mixes -->
<pre class="indented">
<em class=def id="envmixes">env-mixes</em> mix-list envelope
</pre>
env-mixes applies 'envelope' as an overall amplitude envelope to the mixes in 'mix-list'.
<div class="spacer"></div>
<!-- find-mix -->
<pre class="indented">
<em class=def id="findmix">find-mix</em> sample snd chn
</pre>
find-mix returns the identifier of the mix at sample 'sample' (or anywhere in the given channel if
'sample' is not specified), or #f if no mix is found.
<div class="spacer"></div>
<!-- mix-click-info -->
<pre class="indented">
<em class=def id="mixclickinfo">mix-click-info</em> mix
</pre>
mix-click-info is a <a href="extsnd.html#mixclickhook">mix-click-hook</a> function that posts a description of the
clicked mix in the help dialog.
<div class="spacer"></div>
<!-- mix-click-sets-amp -->
<pre class="indented">
<em class=def id="mixclicksetsamp">mix-click-sets-amp</em>
</pre>
mix-click-sets-amp adds a <a href="extsnd.html#mixclickhook">mix-click-hook</a> function so that
if you click a mix, it is removed (its amplitude is set to 0.0);
a subsequent click resets it to its previous value.
This is intended to make it easy to compare renditions with and without a given mix.
<div class="spacer"></div>
<!-- mix-maxamp -->
<pre class="indented">
<em class=def id="mixmaxamp">mix-maxamp</em> mix
</pre>
mix-maxamp returns the maxamp in the given mix.
<div class="spacer"></div>
<!-- mix-name->id -->
<pre class="indented">
<em class=def id="mixnametoid">mix-name->id</em> name
</pre>
mix-name->id returns the mix with the given name, or 'no-such-mix if none can be found.
<div class="spacer"></div>
<!-- mix-sound -->
<pre class="indented">
<em class=def id="mixsound">mix-sound</em> file start
</pre>
mix-sound mixes 'file' (all chans) into the currently selected sound at 'start'.
<div class="spacer"></div>
<!-- mix->float-vector -->
<pre class="indented">
<em class=def id="mixtofv">mix->float-vector</em> mix
</pre>
mix->float-vector returns a mix's samples in a float-vector.
<div class="spacer"></div>
<!-- mixes-length -->
<pre class="indented">
<em class=emdef>mixes-length</em> mix-list
</pre>
mixes-length returns the number of samples between the start of the first mix in 'mix-list' and
the last end point.
<div class="spacer"></div>
<!-- mixes-maxamp -->
<pre class="indented">
<em class=emdef>mixes-maxamp</em> mix-list
</pre>
mixes-maxamp returns the maxamp of the mixes in 'mix-list'.
<div class="spacer"></div>
<!-- move-mixes -->
<pre class="indented">
<em class=def id="movemixes">move-mixes</em> mix-list samps
</pre>
move-mixes moves each mix in 'mix-list' by 'samps' samples. To move all sync'd mixes together whenever one of them is dragged:
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#mixreleasehook">mix-release-hook</a>
(lambda (hook)
(let* ((id (hook 'id))
(samps-moved (hook 'samples))
(result (= (<a class=quiet href="extsnd.html#mixsync">mix-sync</a> id) 0)))
(if (not result)
(<em class=red>move-mixes</em> (<a class=quiet href="#syncdmixes">syncd-mixes</a> (<a class=quiet href="extsnd.html#mixsync">mix-sync</a> id)) samps-moved))
(set! (hook 'result) result))))
</pre>
<p>See also <a href="#snapmixtobeat">snap-syncd-mixes-to-beat</a>. </p>
<!-- pan-mix -->
<pre class="indented">
<em class=def id="panmix">pan-mix</em> file beg env snd auto-delete
</pre>
<p>pan-mix
mixes 'file' into the current sound starting at 'beg' using the envelope 'env'
to pan the mixed samples (0: all chan 1, 1: all chan 0).
So,
</p>
<pre class="indented">
(pan-mix "oboe.snd" 1000 '(0 0 1 1))
</pre>
<p>goes from all chan 0 to all chan 1.
'auto-delete' determines
whether the in-coming file should be treated as a temporary file and deleted when the mix
is no longer accessible.
</p>
<div class="spacer"></div>
<!-- pan-mix-region -->
<pre class="indented">
<em class=emdef>pan-mix-region</em> region beg env snd
</pre>
pan-mix-region is similar to pan-mix above, but mixes a region, rather than a file.
<div class="spacer"></div>
<!-- pan-mix-selection -->
<pre class="indented">
<em class=emdef>pan-mix-selection</em> beg env snd
</pre>
pan-mix-selection is similar to pan-mix above, but mixes the current selection, rather than a file.
<div class="spacer"></div>
<!-- pan-mix-float-vector -->
<pre class="indented">
<em class=def id="panmixfv">pan-mix-float-vector</em> data beg env snd
</pre>
pan-mix-float-vector is similar to pan-mix above, but mixes a float-vector, rather than a file.
The argument 'data' represents one channel of sound.
To sync all the panned mixes together:
<pre class="indented">
(let ((new-sync (+ 1 (<a class=quiet href="extsnd.html#mixsyncmax">mix-sync-max</a>))))
(for-each
(lambda (id)
(set! (<a class=quiet href="extsnd.html#mixsync">mix-sync</a> id) new-sync))
(<em class=red>pan-mix-float-vector</em> (make-float-vector 10 0.5) 100 '(0 0 1 1))))
</pre>
<div class="spacer"></div>
<!-- play-mixes -->
<pre class="indented">
<em class=def id="playmixes">play-mixes</em> mix-list
</pre>
play-mixes plays the mixes in 'mix-list'.
<div class="spacer"></div>
<!-- scale-mixes -->
<pre class="indented">
<em class=def id="scalemixes">scale-mixes</em> mix-list scl
</pre>
scale-mixes scales the amplitude of each mix in 'mix-list' by 'scl'.
<div class="spacer"></div>
<!-- scale-tempo -->
<pre class="indented">
<em class=def id="scaletempo">scale-tempo</em> mix-list scl
</pre>
scale-tempo changes the positions of the mixes in 'mix-list' to reflect a tempo change of 'scl'.
(scale-tempo (mixes 0 0) 2.0) makes the mixes in snd 0, chan 0 happen twice as slowly.
To reverse the order of the mixes: (scale-tempo (mixes 0 0) -1).
<div class="spacer"></div>
<!-- set-mixes-tag-y -->
<pre class="indented">
<em class=emdef>set-mixes-tag-y</em> mix-list new-y
</pre>
set-mixes-tag-y sets the tag y location of each mix in 'mix-list' to 'new-y'.
<div class="spacer"></div>
<!-- silence-all-mixes -->
<pre class="indented">
<em class=def id="silenceallmixes">silence-all-mixes</em>
</pre>
This sets all mix amplitudes to 0.0.
<div class="spacer"></div>
<!-- silence-mixes -->
<pre class="indented">
<em class=def id="silencemixes">silence-mixes</em> mix-list
</pre>
silence-mixes sets the amplitude of each mix in 'mix-list' to 0.0.
<div class="spacer"></div>
<!-- snap-mix-to-beat -->
<pre class="indented">
<em class=def id="snapmixtobeat">snap-mix-to-beat</em>
</pre>
snap-mix-to-beat forces a dragged mix to end up on a beat (see <a href="extsnd.html#xaxisstyle">x-axis-in-beats</a>).
To turn this off, (hook-remove mix-release-hook snap-mix-1). To snap the dragged mix,
and every other mix syncd to it, use snap-syncd-mixes-to-beat.
<div class="spacer"></div>
<!-- src-mixes -->
<pre class="indented">
<em class=def id="srcmixes">src-mixes</em> mix-list scl
</pre>
src-mixes scales the speed (resampling ratio) of each mix in 'mix-list' by 'scl'.
<div class="spacer"></div>
<!-- sync-all-mixes -->
<pre class="indented">
<em class=emdef>sync-all-mixes</em> (new-sync 1)
</pre>
sync-all-mixes sets the mix-sync field of every active mix to 'new-sync'.
<div class="spacer"></div>
<!-- syncd-mixes -->
<pre class="indented">
<em class=def id="syncdmixes">syncd-mixes</em> sync
</pre>
syncd-mixes returns a list (possibly null) of all mixes whose mix-sync field is set to 'sync'.
Most of the functions in mix.scm take a 'mix-list'; to form that list based on a given
mix-sync value, use syncd-mixes:
<pre class="indented">
(<a class=quiet href="#scalemixes">scale-mixes</a> (syncd-mixes 2) 2.0)
</pre>
which scales the amplitude by 2.0 of any mix whose mix-sync field is 2.
<div class="spacer"></div>
<!-- transpose-mixes -->
<pre class="indented">
<em class=def id="transposemixes">transpose-mixes</em> mix-list semitones
</pre>
transpose-mixes sets the speed of mix in 'mix-list' to cause a transposition by the given number of semitones.
<div class="spacer"></div>
<div class="seealso">
see also: <a href="extsnd.html#sndmixes">Mixes</a> <a href="snd.html#mixingfiles">View:Mix</a> <a href="#mixchannel">mix-channel</a> <a href="#fadedoc">dissolve-fade</a> <a href="#musfilemix">mus-file-mix</a>
</div>
<!-- FILE: moog -->
<div class="header" id="moogdoc">moog</div>
<pre class="indented">
<em class=emdef>make-moog-filter</em> frequency Q
<em class=def id="moogfilter">moog-filter</em> gen input
</pre>
<p>moog is a translation of CLM's moog.lisp (written by Fernando Lopez-Lezcano —
http://ccrma.stanford.edu/~nando/clm/moog),
itself a translation of Tim Stilson's original C code. The functions provide
a kind of CLM generator view of the filter. Fernando describes it as a
"Moog style four pole lowpass (24db/Oct) filter clm unit generator,
variable resonance, warm, analog sound ;-)". <!-- ( -->
In make-moog-filter, 'frequency' is the cutoff frequency
in Hz (more or less) and 'Q' controls the resonance: 0.0 = no resonance, whereas
1.0 causes the filter to oscillate at 'frequency'.
</p>
<pre class="indented">
(define (moog freq Q)
(let ((gen (<em class=red>make-moog-filter</em> freq Q)))
(lambda (inval)
(<em class=red>moog-filter</em> gen inval))))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (moog 1200.0 .7))
</pre>
<p>The Ruby version of this is in examp.rb, and the Forth version is in examp.fs.
</p>
<!-- FILE: musglyphs -->
<div class="header" id="musglyphs">musglyphs</div>
<p>musglyphs.scm provides Scheme/Snd wrappers to load CMN's cmn-glyphs.lisp (directly!),
thereby defining most of the standard music notation symbols. Each of the original
functions (e.g. draw-bass-clef) becomes a Snd/Scheme procedure of the form
(name x y size style snd chn context).
(draw-bass-clef 100 100 50) draws a bass clef in the current graph
at position (100 100) of size 50; since the 'style' argument defaults to
#f, the clef is displayed as a filled polygon; use #t to get an outline of
the clef instead.
</p>
<img class="indented" src="pix/sndcmn.png" alt="Snd with music symbols">
<p>
A fancier <a href="extsnd.html#waltzexample">example</a> is included in musglyphs.scm. It takes a list of notes, each mixed as a virtual mix,
and displays the note pitches as music notation on two staves at the top of the graph. The two main
drawing functions are draw-staff and draw-a-note. The staves are drawn via an <a href="extsnd.html#aftergraphhook">after-graph-hook</a>
function, and the notes are displayed via <a href="extsnd.html#drawmixhook">draw-mix-hook</a>.
<a href="extsnd.html#mixwaveformheight">mix-waveform-height</a> sets the overall size of the music notation.
The note list data is passed into these functions by setting various <a href="extsnd.html#mixproperties">mix-properties</a>:
'frequency and 'instrument (the first to give the pitch, the second the staff).
</p>
<p>There's also an even fancier version of the same thing that treats the note heads as the mix tags, and
changes the mix pitch if you drag the note up or down.
</p>
<!-- FILE: nb -->
<div class="header" id="nbdoc">nb</div>
<p>nb.scm provides popup help for files in the View:Files dialog. As you move
the mouse through the file list, the help dialog posts information about the file
underneath the mouse. This uses a slightly fancier file information procedure
than <a href="#finfo">finfo</a> in examp.scm.
</p>
<!-- main-index |nbdoc:file database -->
<pre class="indented">
<em class=emdef>nb</em> file note
<em class=emdef>unb</em> file
<em class=emdef>prune-db</em>
</pre>
<p>nb adds 'note' to the info associated with a file: (nb "test.snd" "test's info").
unb erases any info pertaining to a file: (unb "test.snd").
prune-db removes any info associated with defunct files.
The Ruby version of nb (written by Mike Scholz) has several other features — see nb.rb
for details.
</p>
<!-- FILE: noise -->
<div class="header" id="noisedoc">noise</div>
<p>The noise files are translations (thanks to Michael Scholz) of CLM's noise.ins.
noise.ins has a very long pedigree; I think it dates back to about 1978. It can produce
those all-important whooshing sounds.
</p>
<pre class="indented">
<em class=def id="fmnoise">fm-noise</em> startime dur freq0 amp ampfun ampat ampdc
freq1 glissfun freqat freqdc rfreq0 rfreq1 rfreqfun rfreqat rfreqdc
dev0 dev1 devfun devat devdc
(degree 0.0) (distance 1.0) (reverb-amount 0.005)
</pre>
<p>
This is an old instrument, so one must make allowances. 'ampat' and 'ampdc'
are the amplitude envelope ('ampfun') attack and decay times, and similarly for
the frequency envelope 'glissfun', the random number frequency envelope 'rfreqfun'
and the index envelope 'devfun' (dev = "deviation", and old radio-style name for the
FM index). Each envelope must go on the x axis from 0 to 100; the attack portion ends
at 25, the decay portion starts at 75 (once upon a time there was
a generator named LINEN; his full name was Line-Segment Envelope, but everyone
just called him LINEN; they had to shout because he was a bit deaf).
'rfreq' is the frequency of the random number generator;
if it is below about 25 Hz, you get automatic composition; above that
you start to get noise. Well, you get a different kind of noise.
'dev' is the bandwidth of the noise; very narrow 'dev' gives a
whistle, very broad more of a whoosh. This is simple FM
where the modulating signal is white noise.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(fm-noise 0 2.0 500 0.25 '(0 0 25 1 75 1 100 0) 0.1 0.1 1000 '(0 0 100 1) 0.1 0.1
10 1000 '(0 0 100 1) 0 0 100 500 '(0 0 100 1) 0 0))
</pre>
<p>
There is also a generator-like version of the instrument:
</p>
<pre class="indented">
<em class=emdef>make-fm-noise</em> len freq (amp 0.25) (ampfun '(0 0 25 1 75 1 100 0)) (ampat 0.1)
(ampdc 0.1) (freq1 1000) (glissfun '(0 0 100 1)) (freqat 0.1) (freqdc 0.1)
(rfreq0 10) (rfreq1 1000) (rfreqfun '(0 0 100 1)) (rfreqat 0) (rfreqdc 0)
(dev0 100) (dev1 500) (devfun '(0 0 100 1)) (devat 0) (devdc 0)
(degree (random 90.0)) (distance 1.0) (reverb-amount 0.005)
</pre>
<div class="seealso">
see also: <a href="#maracadoc">maraca</a> <a href="sndclm.html#randdoc">rand</a>
</div>
<!-- FILE: numerics -->
<div class="header" id="numericsdoc">numerics</div>
<p>This file has a variety of functions oriented toward some experiments that
so far haven't panned out.
</p>
<pre class="indented">
<em class=emdef>factorial</em> n
<em class=emdef>binomial</em> n k
<em class=emdef>n-choose-k</em> n k
<em class=emdef>plgndr</em> l m x
<em class=emdef>legendre-polynomial</em> a x
<em class=emdef>legendre</em> n x
<em class=emdef>gegenbauer</em> n x (alpha 0.0)
<em class=emdef>chebyshev-polynomial</em> a x (kind 1)
<em class=emdef>chebyshev</em> n x (kind 1)
<em class=emdef>hermite-polynomial</em> a x
<em class=emdef>hermite</em> n x
<em class=emdef>laguerre-polynomial</em> a x (alpha 0.0)
<em class=emdef>laguerre</em> n x (alpha 0.0)
<em class=emdef>Si</em> x
<em class=emdef>Ci</em> x
<em class=emdef>sin-m*pi/n</em> m n
<em class=emdef>show-digits-of-pi-starting-at-digit</em> start
</pre>
<p>In this case, "the code is the documentation" — these functions
are informal, experimental, etc.
One amusing function is sin-m*pi/n. It
returns an expression giving the exact value of sin(m*pi/n), m and n integer,
if we can handle n. Currently n can be anything of the form 2^a 3^b 5^c 7^d 11^e 13^f 17^g 257^h,
so (sin-m*pi/n 1 60) returns an exact expression for sin(pi/60). The expression is not reduced
much.
</p>
<pre class="indented">
> (sin-m*pi/n 1 9)
(/ (- (expt (+ (sqrt 1/4) (* 0+1i (sqrt 3/4))) 1/3) (expt (- (sqrt 1/4) (* 0+1i (sqrt 3/4))) 1/3)) 0+2i)
> (eval (sin-m*pi/n 1 9))
0.34202014332567
> (sin (/ pi 9))
0.34202014332567
> (sin (/ pi (* 257 17)))
0.00071906440440859
> (eval (sin-m*pi/n 1 (* 17 257)))
0.00071906440440875
</pre>
<p>Another amusing function is show-digits-of-pi-starting-at-digit, translated from a C program
written by David Bailey. It shows 10 (hex) digits of the expansion of pi starting from any
point in that expansion.
</p>
<!-- FILE: peak-phases -->
<div class="header" id="peakphasesdoc">peak-phases</div>
<p>peak-phases.scm contains the phases that produce a minimum peak amplitude ("low peak-factor") sum of sinusoids,
the unpulse-train, so to speak. I started with the questions: given a sum of
n equal amplitude harmonically related sinusoids, what set of initial phases minimizes
the peak amplitude? What is that peak as a function of n? Can we find any pattern
to the initial phases so that a tiresome search is unnecessary? For the second question,
there are several simple cases. If all harmonics are cosines, the peak amplitude is
n (they all are 1 at the start). If we have 2 harmonics, and vary the initial phase of
the second from 0.0 to 2*pi, graphing the resulting peak amplitude, we get:
</p>
<img class="indented" src="pix/noid2.png" alt="n=2 case">
<img class="indented" src="pix/sum2.png" alt="n=2 case">
<p>The graph on the left is the second harmonic's initial phase vs the peak amplitude. Since 0.0
appears to be a minimum (we can show that it is via simultaneous non-linear equations; see peak-phases.scm),
we can solve for the peak at that point using calculus: differentiate
sin(x) + sin(2x) to get cos(x) + 2cos(2x) = 4cos^2(x) + cos(x) -2, a quadratic equation
in cos(x). Let y=cos(x), solve for y: (sqrt(33)-1)/8. Plug that back into the original
equation (x=acos(y) = 0.93592945566133), and get 1.7601725930461. Looking back at the
peak-amplitude graph, it appears that the peak varies as approximately 1.76+0.24*abs(sin(initial-phase)).
If we graph the peak location, we see that it is moving (nearly) linearly with the initial-phase from the
0.9359 business given above to the corresponding peak location when the initial-phase is pi (acos((1-sqrt(33))/8) = 2.20566),
then the two peaks cross, and the other one predominates from pi to 2*pi. So the peak amplitude as
a function of the initial-phase ("phi" below) is (very nearly):
</p>
<pre class="indented">
(let ((a (acos (/ (- (sqrt 33) 1) 8)))
(b (acos (/ (- 1 (sqrt 33)) 8))))
(let ((ax (+ b (* (- phi pi) (/ (- a b) pi)))) ; same for peak 2 (the peak when phi is pi..2pi)
(bx (let ((ap (- (* 2 pi) a)) ; start location of peak 1 (the peak when phi is 0..pi)
(bp (- (* 2 pi) b))) ; end location of peak 1
(+ ap (* phi (/ (- bp ap) pi)))))) ; the 2 peaks move in opposite directions
(max (abs (+ (sin ax) (sin (+ (* 2 ax) phi)))) ; plug in the 2 locations and
(abs (+ (sin bx) (sin (+ (* 2 bx) phi))))))) ; return the max
</pre>
<!--
(with-full-sound (:clipped #f :channels 2 :statistics #t :output "n2a.snd")
(let ((size 10000))
(let ((i 0)
(incr (/ (* 2 pi) size)))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(let ((pk 0.0)
(loc 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n size))
(let ((val (+ (sin x)
(sin (+ (* 2 x) phi1)))))
(if (> (abs val) pk)
(begin
(set! pk (abs val))
(set! loc x)))))
(outa i pk)
(let* ((a 9.359294556613259736065597353788460035329E-1)
(b 2.205663197928467264856083647900656880662E0)
(ap (- (* 2 pi) a))
(bp (- (* 2 pi) b))
(ax (+ b (* (- phi1 pi) (/ (- a b) pi))))
(bx (+ ap (* phi1 (/ (- bp ap) pi)))))
(outb i (max (abs (+ (sin ax) (sin (+ (* 2 ax) phi1))))
(abs (+ (sin bx) (sin (+ (* 2 bx) phi1)))))))
(set! i (+ i 1)))))))
-->
<p>
We can reduce the peak difference below .00000002 by using:
</p>
<pre class="indented">
(let ((waver (+ (* .002565 (sin (* 2 phi)))
(* .0003645 (sin (* 4 phi)))
(* .0001 (sin (* 6 phi)))
(* .00004 (sin (* 8 phi)))
(* .00002 (sin (* 10 phi)))
(* .00001 (sin (* 12 phi)))
(* .0000035 (sin (* 14 phi))))))
(let ((ax (- (+ b (* (- phi pi) (/ (- a b) pi))) waver))
(bx (- (+ ap (* phi (/ (- bp ap) pi))) waver)))
...))
</pre>
<p>
Similarly sin(x)+sin(3x) differentiated is cos(x)+3cos(3x) = 12cos^3(x)-8cos(x). cos(x)=0
is a minimum of the original, but the other case is acos(sqrt(2/3)) = 0.61547970867039,
and plugging that into the original gives 1.539600717839. If we vary the sin(3x) term's
initial phase, we get approximately 1.5396 + 0.4604 * sin(initial-phase).
As before, the location of the peak varies nearly linearly with the initial-phase, the end point
now being acos(-(sqrt(2/3))):
</p>
<pre class="indented">
(let* ((a (acos (sqrt 2/3)))
(b (acos (- (sqrt 2/3))))
(ax (let ((ap (- (* 2 pi) a)) ; start loc peak 1
(bp (- (* 2 pi) b))) ; end loc
(+ ap (* phi (/ (- bp ap) 2 pi))))) ; peak 1
(bx (- ax pi))) ; peak 2 (the two interleave)
(max (abs (+ (sin ax) (sin (+ (* 3 ax) phi)))) ; plug in our 2 peak locations
(abs (+ (sin bx) (sin (+ (* 3 bx) phi)))))) ; and return the max
</pre>
<!--
(with-full-sound (:clipped #f :channels 2 :statistics #t :output "n2b.snd")
(let ((size 10000))
(let ((i 0)
(incr (/ (* 2 pi) size)))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(let ((pk 0.0)
(loc 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n size))
(let ((val (+ (sin x)
(sin (+ (* 3 x) phi1)))))
(if (> (abs val) pk)
(begin
(set! pk (abs val))
(set! loc x)))))
(outa i pk)
(let* ((a 6.154797086703873410674645891239936878517E-1) ; acos(sqrt(2/3))
(b 2.526112944919405897395178794155509196341E0) ; acos(-sqrt(2/3))
(ap (- (* 2 pi) a)) ; start loc peak 1
(bp (- (* 2 pi) b)) ; end loc
(ax (+ ap (* phi1 (/ (- bp ap) (* 2 pi))))) ; peak 1
(bx (- ax pi))) ; peak 2 (the two interleave)
(outb i (max (abs (+ (sin ax) (sin (+ (* 3 ax) phi1))))
(abs (+ (sin bx) (sin (+ (* 3 bx) phi1)))))))
(set! i (+ i 1)))))))
-->
<p>
sin(x)+sin(5x+a) becomes a quadratic in cos^2(x), so we can find the peak location as a function
of the initial-phase:
</p>
<pre class="indented">
(let* ((a0 (* pi 1/2))
(a1 (acos (sqrt (/ (- 25 (sqrt 145)) 40))))
(ax (+ a0 (/ (* (- a1 a0) phi) pi)))
(bx (+ pi ax))
(cx (- a0 (/ (* (- a1 a0) (- (* 2 pi) phi)) pi)))
(dx (+ cx pi)))
(max (abs (+ (sin ax) (sin (+ (* 5 ax) phi))))
(abs (+ (sin bx) (sin (+ (* 5 bx) phi))))
(abs (+ (sin cx) (sin (+ (* 5 cx) phi))))
(abs (+ (sin dx) (sin (+ (* 5 dx) phi))))))
</pre>
<!--
(with-full-sound (:clipped #f :channels 3 :statistics #t :output "n2e.snd")
(let ((size 10000))
(let ((i 0)
(incr (/ (* 2 pi) size)))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(let ((pk 0.0)
(loc 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n size))
(let ((val (+ (sin x)
(sin (+ (* 5 x) phi1)))))
(if (> (abs val) pk)
(begin
(set! pk (abs val))
(set! loc x)))))
(outa i pk)
(let* ((a0 (* pi 1/2))
(a1 (acos (sqrt (/ (- 25 (sqrt 145)) 40))))
(ax (+ a0 (/ (* (- a1 a0) phi1) pi)))
(bx (+ pi ax))
(cx (- a0 (/ (* (- a1 a0) (- (* 2 pi) phi1)) pi)))
(dx (+ cx pi)))
(outb i (max (abs (+ (sin ax) (sin (+ (* 5 ax) phi1))))
(abs (+ (sin bx) (sin (+ (* 5 bx) phi1))))
(abs (+ (sin cx) (sin (+ (* 5 cx) phi1))))
(abs (+ (sin dx) (sin (+ (* 5 dx) phi1)))))))
(outc i loc)
(set! i (+ i 1)))))))
-->
<p>but now we have four peaks to track. The minimum peak is at initial-phase of pi,
and is 1.81571610422.
sin(x)+sin(4x+a) is much messier to handle in this manner when a=0 because it ends up in a quartic equation in cos(x).
A glance at the derivative, cos(x)+4*cos(4x+a), shows there is a 0 at (x=0, a=acos(-1/4)),
(x=pi, a=acos(1/4)), (x=pi/2, a=pi/2) and so on, but these points do not seem to be at maxima of the original.
A brute force search finds that the minimum peak (which is at initial-phase of 0) is at 1.940859829001 and is 1.9282082241513.
We could also use poly-roots in poly.scm:
</p>
<pre class="indented">
> (map (lambda (y)
(+ (sin y) (sin (* 4 y))))
(map acos (poly-roots (float-vector 4 1 -32 0 32)))) ; 4 + cos(x) - 32cos^2(x) + 32cos^4(x)
(... 1.928208224151313892413267491649096952858E0 ...)
</pre>
<p>
I think in the sin(x)+sin(nx+a) case there's a minimum at a=pi, except when n=4k+3,
and the peak itself (at either pi/2 or 3pi/2) approaches 2 as n increases.
sin-nx-peak in numerics.scm searches for this peak, and for reasonable "n"
it can be compared to the equivalent search using poly-roots in poly.scm:
</p>
<pre class="indented">
> (sin-nx-peak 6)
(1.966832009581999989057660894590273760791E0 ...)
(map (lambda (y)
(+ (sin y) (sin (* 6 y))))
(map acos (poly-roots (float-vector -6 1 108 0 -288 0 192)))) ; n*Tn + cos(x)
(1.966832009581999989057661205729776550611E0 ...)
</pre>
<p>
Another case that is not too hard involves a sum of
n sines all at 0 initial phase. This can be expressed as:
</p>
<img class="indented" src="pix/sceq1.png" alt="sum of sines">
<p>which is the nsin generator in clm. Since the waveform is a two-sided
pulse with the first local maximum at the peak, we can easily search for that peak as n increases.
We find that it is approaching (3*pi)/(4*n), and if we plug that into the original equation,
we get that the peak amplitude approaches 8*n*(sin^2(3*pi/8))/(3*pi), about 0.7245 * n
(using the right hand expression above, set x to (3*pi)/(4*n), let n be large,
so (n+1)/n approaches 1 and sin(y) is close to y if it is very small).
A sum of n odd harmonics behaves similarly (the peak comes half as far from the zero crossing,
but has the same max). A sum of n sines of alternating sign also has the same peak amp,
but now the peak is at pi-(3*pi)/(4*n).
Those are the easy cases. The next case involves 3 harmonics,
where we vary the second and third harmonic's initial phase, looking for the minimum peak amplitude.
One view of this terrain has the second harmonic's initial phase on the Y axis, the third's on the X axis,
and the color for the height of the corresponding peak:
</p>
<!--
(define (deriv n x)
(+ (- (/ (* (cos (/ x 2))
(sin (/ (* n x) 2))
(sin (/ (* (+ n 1) x) 2)))
(* 2 (sin (/ x 2)) (sin (/ x 2)))))
(/ (* n
(cos (/ (* n x) 2))
(sin (/ (* (+ n 1) x) 2)))
(* 2 (sin (/ x 2))))
(/ (* (+ n 1)
(sin (/ (* n x) 2))
(cos (/ (* (+ n 1) x) 2)))
(* 2 (sin (/ x 2))))))
which is hard to nail down; the zero crossing is 3pi/4n, I think, but numerically this is not anywhere near 0!
:(deriv 10000 (- (/ (* 3 pi) 40000) .00001))
2230252.363045
:(deriv 10000 (+ (/ (* 3 pi) 40000) .00001))
-3641295.807378
:(deriv 10000 (+ (/ (* 3 pi) 40000) 0.0))
-742517.21842268
which is also the case in gmp
The curve of the derivative looks very much like the two-sided sine pulse coming from n/2? down, crossing near 3pi/4n
lim n->inf sum k=1 to n kcos(3kpi/4n) = 0
at n = 1e9, the actual peak is at (- x 2.507212094348349975027e-11)
i.e.
:(let* ((n 1e9) (x (/ (* 3 pi) (* 4 n)))) (deriv n (- x 2.507212094348349975027e-11)))
3.725127687918788793358833288937859151702E-6
or using
(define (peak-at n)
(let* ((x (/ (* 3 pi) (* 4 n)))
(range (* x .8))
(err 1e-20))
(do ()
((< (abs (deriv n x)) err)
(list (- x (/ (* 3 pi) (* 4 n)))
(deriv n x)))
(let ((lo (deriv n (- x range)))
(hi (deriv n (+ x range))))
(if (< (abs lo) (abs hi))
(set! x (- x (/ range 10)))
(set! x (+ x (/ range 10))))
(set! range (* range .9))))))
or:
2: -2.421677894348464908163819163773325479774E-1 -2.542109530109137315348541607895395692012E-21
3: -1.181070918729755631206093082385937638842E-1 -3.493089933018897636165472895997622659429E-21
4: -7.043276098568086392007563576860101749568E-2 -4.800338790899243746899352912973818251532E-21
5: -4.707669254042527294644510729991788644279E-2 3.462251514314290744891714859502503645785E-21
6: -3.387015497518456023533786854922157878053E-2 -5.550551819638322580161104253852648704675E-21
7: -2.565623507080912890636745657363494539749E-2 5.667521137336683171337058660707235960645E-21
8: -2.018765171370880262166473632066821173556E-2 -2.60075875807278930669457906973394842712E-21
9: -1.635581204680970730391053813339506919918E-2 -2.49691060642061379906356071454917335827E-21
10: -1.356168411128330953565403940042769994662E-2 3.806266181586793878107841906576959486354E-21
11: -1.145811507171758934905894436740180168887E-2 -3.500075183808578156580231318788510376355E-21
12: -9.83243017119212501337362936727640738345E-3 1.01480660438814124456364140502400386379E-22
13: -8.548312956055249881979809501119340017916E-3 -7.239313585107067341837994688198940392904E-21
14: -7.515046477014091277001818997621777552805E-3 -4.077646144271174537876436960403702130689E-21
15: -6.670315400525027347449871935335883744278E-3 -2.405976623505729548206548219351450204594E-22
16: -5.97013703538091639991154748789103345287E-3 -1.045882818863667721861763771430143995709E-21
17: -5.382730445871958442467339348911179502178E-3 3.993689578581470072273709565896866011558E-21
18: -4.88465508788404790507044492948019033614E-3 5.907366932923666851660865434938467677364E-21
19: -4.4583061453239883124546788791877625504E-3 9.452118583104181906394835659535495032207E-21
1e2: -3.666449064510999452172534004805209932E-4 -6.7133569632029478217918235054413664011649197E-21
1e3: -2.623704523377842468822594954231187534E-5 -4.9923846428498028980296129156343442708035258E-21
1e4: -2.518866953580949081116055241339673507E-6 -3.7781433570837640130110185268814176373422622E-21
1e5: -2.508377532616470973577582856419671127E-7 4.5623432062101773657294017611973375042290476E-21
1e6: -2.507328533847142227258073649062622639E-8 -4.6914838629061987833884085483344193742264034E-21
1e7: -2.507223633403447489575620917160615658E-9 5.2291911761872083246687386421454377310046409E-22
1e8: -2.507213143353410364121109699301712442E-10 8.2234860381608642958612200025313809610775802E-21
1e9: -2.507212094348349975025739950520586963E-11 -4.7782070016528057029294375412260845056787478E-21
1e10: -2.50721198944784336935067073338431120E-12 6.9107383981769940658781617913229048114198940E-21
1e11: -2.50721197895779270311550845619211172E-13 1.6127270311176948101129176357022786397177201E-21
1e12: -2.50721197790878763643531567488505006E-14 -1.455476537343183418317173409749413112473485E-21
-->
<table>
<tr><td>
<table>
<tr><td>
<img class="indented" src="pix/n3a1.png" alt="3 harmonics in 3D">
</td></tr><tr><td class="center">3 harmonics</td></tr></table>
</td><td>
<table>
<tr><td>
<img class="indented" src="pix/n3a2.png" alt="4 harmonics in 3D">
</td></tr><tr><td class="center">4 harmonics</td></tr></table>
</td></tr></table>
<!--
(with-sound (:clipped #f :channels 1 :statistics #t :output "n3.snd")
(let ((i 0)
(incr (/ (* 2 pi) 1000)))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j 1000))
(do ((phi2 0.0 (+ phi2 incr))
(k 0 (+ k 1)))
((= k 1000))
(let ((pk 0.0)
(tpk 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n 1000))
(let ((val (+ (sin x)
(sin (+ (* 2 x) phi1))
(sin (+ (* 3 x) phi2)))))
(if (> (abs val) pk)
(begin
(set! pk (abs val))
(set! tpk val)))))
(outa i tpk)
(set! i (+ i 1)))))))
(with-sound (:clipped #f :channels 8 :statistics #t :output "n4.snd")
(let* ((size 200)
(incr (/ (* 2 pi) size))
(i 0))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(do ((phi2 0.0 (+ phi2 incr))
(k 0 (+ k 1)))
((= k size))
(do ((phi3 0.0 (+ phi3 (/ pi 4))) ; 8 strips through the 3-D landscape
(m 0 (+ m 1)))
((= m 8))
(let ((pk 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n size))
(let ((val (+ (sin x)
(sin (+ (* 2 x) phi1))
(sin (+ (* 3 x) phi2))
(sin (+ (* 4 x) phi3)))))
(if (> (abs val) pk)
(set! pk (abs val)))))
(out-any i pk m)))
(set! i (+ i 1))))))
(define (gad4)
(do ((i 0 (+ i 1)))
((= i 8))
(map-channel (lambda (y) (/ (- (abs y) 2) 2)) 0 (framples) 0 i))
(set! *selected-graph-color* (make-color 1 1 1))
(set! *wavo-trace* 200)
(set! *wavo-hop* 1)
(set! *spectro-x-angle* 0)
(set! *spectro-y-angle* 0)
(set! *spectro-z-angle* 0)
(set! *spectro-x-scale* 0.9)
(set! *spectro-y-scale* 0.9)
(set! *spectro-z-scale* 1.0)
(set! *time-graph-type* graph-as-wavogram))
-->
<p>
I tilted the graph slightly to try to show how the colors match the peaks.
If we set the second component's phase to (a+pi)/2 where "a" is the third one's initial phase,
we travel along the minimum going diagonally through the middle of the graph (I think the
graph got truncated slightly: the top should match the bottom).
The graph on the right is
an attempt to show the 4-dimensional 4-harmonic case by stacking 3-D slices.
I forgot to "invert" the colors, so red in the n=4 case matches a minimum (blue in the n=3 case);
I should redo these graphs!
A different way to view these graphs that
can be applied to any number
of dimensions (until we run out of disk space and patience), is to move through the possibilities
in much the way you'd count to 100; before each 10's digit increments, you'd count diligently
through all the 1's. Similarly, in the next set of graphs, we go from 0 to 2pi completely
on one component before incrementing the next lower component. So, we get the second component
moving slowly from 0 to 2pi, and, in the n=3 case, at each step it takes, it waits until the
third component has gone from 0 to 2pi. This way we get all possible initial phases graphed
in a normal 2D picture. Here is the n=3 case. The top level looks a bit like the n=2 case, but
zooming in shows more complexity (each graph on the right is the selected portion of the one
on its left). (The complexity in this case is mostly due to the slice-at-a-time approach).
</p>
<img class="indented" src="pix/noid3.png" alt="n=3 case">
<p>We're trying to pinpoint the minima (there appear to be 4 black areas in the 3D graph,
corresponding (I hope!) to the four minima in the second graph).
A multiprecision search finds these values:
</p>
<pre class="indented">
1.9798054823226 #(0.0 0.58972511242747172044431636095396243035 0.3166675693251937984129540382127743214)
1.9798054823226 #(0.0 1.58972511242745917492413809668505564332 0.3166675693251493894919690319511573761)
1.9798054823222 #(0.0 0.41027488757208596670267297668033279478 1.68333243067326587816268101960304193198)
1.9798054823222 #(0.0 1.41027488757208596670267297668033279478 1.68333243067326587816268101960304193198)
</pre>
<p>which shows that the minima are essentially at (23/39 19/60), (16/39 101/60), (1 + 23/39, 19/60), and (1 + 16/39, 101/60),
all numbers multiplied by pi of course. (Our labor was mostly wasted; once we find one such point, the symmetries of the
sinusoids hand us the other three for free. See find-other-mins in peak-phases.scm).
</p>
<!--
(set! (srate 2) (round (/ 1000000 (* 2 pi))))
(set! *axis-label-font* "9x15")
(define (window-bounds losamp hisamp snd chn)
(set! (left-sample snd chn) losamp)
(set! (x-zoom-slider snd chn) (exact->inexact (/ (- hisamp losamp) (framples snd chn)))))
(window-bounds 283820 310346 1 0)
(set! (x-axis-label 0 0) "2's phase")
(set! (y-zoom-slider 1 0) (y-zoom-slider 0 0))
(set! (y-zoom-slider 2 0) (y-zoom-slider 0 0))
(set! (selection-member? 0 0) #t)
(set! (selection-position 0 0) 283820)
(set! (selection-framples 0 0) (- 310346 283820))
(set! (selection-member? 1 0) #t)
(set! (selection-position 1 0) 294528)
(set! (selection-framples 1 0) (- 297881 294528))
(set! (x-axis-label 1 0) "2's phase")
-->
<p>Here is n=4 graphed in the same way:
</p>
<img class="indented" src="pix/noid4.png" alt="n=4 case">
<!--
(set! (srate 0) (round (/ 1000000 (* 2 pi))))
(set! (y-zoom-slider 1 0) (y-zoom-slider 0 0))
(set! (x-axis-label 0 0) "2's phase")
(window-bounds (- 436349 12000) (+ 436349 12000) 1 0)
(window-bounds (- 436349 500) (+ 436349 500) 2 0)
(set! (selection-member? 0 0) #t)
(set! (selection-position 0 0) (- 436349 12000))
(set! (selection-framples 0 0) 24000)
(set! (selection-member? 1 0) #t)
(set! (selection-position 1 0)(- 436349 500))
(set! (selection-framples 1 0) 1000)
-->
<p>One of those minima might be the one we found near 2.04.
n=5:
</p>
<img class="indented" src="pix/noid5.png" alt="n=5 case">
<!--
899171, 40000 2000
-->
<p>Here is the corresponding 3-D graph of the 5 harmonic case. It is trying to show 8 4-D slices
through the 5-D landscape, each 4-D case being 8 3-D slices as before (I forgot to invert the colors
here also, so despite appearances, blue is a maximum, and we're looking for the reddest point, the global minimum):
</p>
<img class="indented" src="pix/n5-all.png" alt="all">
<!-- montage -tile 8X1 n51a.png n52a.png n53a.png n54a.png n55a.png n56a.png n57a.png n58a.png n5-all.png -->
<!--
<p>And just for grins, here is the n=6 case:
</p>
<img class="indented" src="pix/n6.png" alt="n=6 case">
-->
<!--
(with-sound (:clipped #f :channels 64 :statistics #t :output "n5a.snd")
(let* ((i 0)
(size 400)
(incr (/ (* 2 pi) size))) ; n5=100 here
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(do ((phi2 0.0 (+ phi2 incr))
(k 0 (+ k 1)))
((= k size))
(do ((phi3 0.0 (+ phi3 (/ pi 4)))
(m 0 (+ m 1)))
((= m 8))
(do ((phi4 0.0 (+ phi4 (/ pi 4)))
(p 0 (+ p 1)))
((= p 8))
(let ((pk 0.0)
(tpk 0.0))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n 1000))
(let ((val (+ (sin x)
(sin (+ (* 2 x) phi1))
(sin (+ (* 3 x) phi2))
(sin (+ (* 4 x) phi3))
(sin (+ (* 5 x) phi4)))))
(if (> (abs val) pk)
(begin
(set! pk (abs val))
(set! tpk val)))))
(out-any i tpk (+ (* 8 m) p)))))
(set! i (+ i 1))))))
(define (gad5)
(do ((i 0 (+ i 1))) ((= i 64)) (map-channel (lambda (y) (/ (- (abs y) 2.3) (- 5.0 2.3))) 0 (framples) 0 i))
(set! *wavo-trace* 400)
(set! *wavo-hop* 1)
(set! *spectro-x-angle* 10)
(set! *spectro-y-angle* 0)
(set! *spectro-x-scale* 0.75)
(set! *spectro-y-scale* 0.9)
(set! *spectro-z-scale* 0.9)
(set! *time-graph-type* graph-as-wavogram))
(do ((snd 0 (+ snd 1)))
((= snd 8))
(do ((snd1 0 (+ snd1 1)))
((= snd1 8))
(let* ((outfile (format #f "n6-~D-~D.snd" snd snd1))
(size 100)
(incr (/ (* 2 pi) size)))
(with-sound (:clipped #f :channels 8 :statistics #t :output outfile)
(let* ((i 0))
(do ((phi1 0.0 (+ phi1 incr))
(j 0 (+ j 1)))
((= j size))
(do ((phi2 0.0 (+ phi2 incr))
(k 0 (+ k 1)))
((= k size))
(do ((phi3 0.0 (+ phi3 (/ pi 4)))
(m 0 (+ m 1)))
((= m 8))
(let ((pk 0.0)
(phi4 (* snd1 (/ pi 4)))
(phi5 (* snd (/ pi 4))))
(do ((x 0.0 (+ x incr))
(n 0 (+ n 1)))
((= n size))
(let ((val (+ (sin x)
(sin (+ (* 2 x) phi1))
(sin (+ (* 3 x) phi2))
(sin (+ (* 4 x) phi3))
(sin (+ (* 5 x) phi4))
(sin (+ (* 6 x) phi5)))))
(if (> (abs val) pk)
(set! pk (abs val)))))
(out-any i pk m)))
(set! i (+ i 1)))))))))
(define (gad6)
(do ((i 0 (+ i 1))) ((= i 8)) (map-channel (lambda (y) (/ (- (abs y) 2.5) (- 6.0 2.5))) 0 (framples) 0 i))
(set! *selected-graph-color* (make-color 1 1 1))
(set! *wavo-trace* 100)
(set! *wavo-hop* 1)
(set! *spectro-x-angle* 15) ; was 10
(set! *spectro-y-angle* 0)
(set! *spectro-x-scale* 0.9) ; was .75
(set! *spectro-y-scale* 0.9)
(set! *spectro-z-scale* 1.0) ; was .9
(set! *colormap* jet-colormap)
(set! *color-cutoff* 0.001)
(set! *color-scale* 1.0) ; 50%
(set! *time-graph-type* graph-as-wavogram))
-->
<p>n=6 is even more beautiful and complex, but the graph is too large to include here.
</p>
<pre class="indented">
;;; use mix and with-temp-sound to create a draggable mix object for each component.
(load "peak-phases.scm")
(set! *with-mix-tags* #t) ; drag the tag to change the harmonic's initial phase
(set! *show-mix-waveforms* #f)
(set! *with-inset-graph* #f)
(define (show choice n) ; (show :all 14) for example
(definstrument (sine-wave start dur freq phase) ; make one harmonic
(let* ((beg (seconds->samples start))
(end (+ beg (seconds->samples dur)))
(osc (make-oscil freq phase)))
(do ((i beg (+ i 1)))
((= i end))
(outa i (oscil osc)))))
(if (null? (sounds))
(new-sound))
(let ((phases (cadr (get-best choice n))))
(do ((i 0 (+ i 1)))
((= i n))
(let* ((freq (case choice
((:all) (+ i 1))
((:even) (max (* 2 i) 1))
((:odd) (+ (* 2 i) 1))
((:prime) (primes i))))
(snd (<em class=red>with-temp-sound</em> (:ignore-output #t :clipped #f)
(sine-wave 0 2 (* 10 freq) (* pi (phases i))))))
(let ((mx (car (<em class=red>mix</em> snd 400)))) ; give some space after the axis
(set! (mix-tag-y mx) (+ 10 (* 40 i)))))))
(let ((mx (+ 2.0 (maxamp))))
(set! (y-bounds) (list (- mx) mx)))
(set! (x-bounds) (list 0.0 0.2)))
(hook-push mix-drag-hook ; report the current maxamp as we drag a component
(lambda (hook)
(let ((beg 0)
(end (framples))
(mx 0.0))
(for-each
(lambda (sine)
(set! beg (max beg (mix-position sine)))
(set! end (min end (+ (mix-position sine) (mix-length sine)))))
(caar (mixes)))
(let ((rd (make-sampler beg)))
(do ((i beg (+ i 1)))
((> i end))
(set! mx (max mx (abs (rd))))))
(status-report (format #f "maxamp: ~A" mx)))))
</pre>
<p>It's curious that the "min-peak-amplitude versus n" graphs look continuous; what
happens to the minima as we slowly add the next higher harmonic? In the n=2 case,
each minimum splits in two, then smoothly moves to its next minimum location (where the
third harmonic has amplitude 1.0). Here's a graph of the moving minima,
showing also the resultant peak amplitude:
</p>
<img class="indented" src="pix/phase-paths.png" alt="moving minima">
<img class="indented" src="pix/peak-path.png" alt="moving minima">
<p>In the first graph, each dot is at the phase location of the minimum peak amplitude as the
third harmonic is increased in amplitude by 0.025. The turning points are just before the third harmonic
reaches an amplitude of 0.5. The n=2 minima are at (0, 0), (red and green, with
the green x=2 rather than 0), and (0, 1), (black and blue). Each splits and wanders eventually to
the n=3 global minima at (0.41 1.68), (1.41, 1.68), (1.59, 0.32), and (0.59, 0.32).
Each of the n=2 global minima ends up at 2 of the 4 n=3 global minima! How lucky can we be?
If this worked in general, we could use it to speed up our search by following a minimum of n harmonics as it meanders to a minimum of n+1 harmonics:
</p>
<pre class="indented">
;; this starts at the current min and marches to an n+1 min
(do ((n 3)
(phases (vector 0.0 0.0 1.0)))
(x 0.1 (+ x .1)))
((>= x 1.0))
(let ((p (fpsap x 0 n 1000 0.1 50 #f #t phases))) ; args may change without warning.
(format () ";~A: ~A~%" x p)
(do ((k 0 (+ k 1)))
((= k n))
(set! (phases k) (modulo (p k) 2.0)))))
</pre>
<p>
Since we can restrict our search to 0.1 (maybe less) in each direction (rather than 2.0), we
get a reduction of 20^n in the size of the space we are searching. But, as usual, there's
a problem. The search works for n=2 -> 3 -> 4 -> 5, but going from 5 to 6, I seem to fall into a
non-optimal path.
</p>
<p>
The other short-cut that immediately comes to mind is to look for the zeros of
the derivative, then plug those into the original to get the maxima. But it is just as hard to
find those zeros as to find the peaks of the original. Or we could minimize the length
of the curve. In the 57 harmonics case, for example, the cosine version (peak=57.0) has a length of
485.45, whereas the minimized peak version (peak=7.547) has a length of 909.52.
But this also doesn't save us any time over the original search.
</p>
<!--
(let* ((samples 10000)
(incr (/ (* 2 pi) samples))
(len 0.0)
(last-sum 0.0)
(sum 0.0)
(mx 0.0))
(do ((i 0 (+ i 1))
(x 0.0 (+ x incr)))
((= i samples))
(set! sum 0.0)
(do ((k 1 (+ k 1)))
((= k 58))
(let ((val (sin (+ (* k x) (* pi (phases (- k 1)))))))
(set! sum (+ sum val))))
;(set! len (+ len (abs (- sum last-sum))))
(set! len (+ len (sqrt (+ (* (- sum last-sum) (- sum last-sum)) (* incr incr)))))
(set! last-sum sum)
(if (< mx (abs sum)) (set! mx (abs sum))))
(list len mx))
-->
<p>
So we're resigned to a laborious search. The first thing we need is a fast way to
produce a sum of sinusoids. Up to n=25 or 30, the Chebyshev polynomials are
just as fast as an inverse FFT, but why stop at 30!
Since we'll be doing an inverse FFT for every test case, we need to make
the FFT size as small as possible while
still giving a reasonably accurate peak (say
within 0.001 of the true peak).
According to N Higham in "Accuracy and Stability of Numerical Algorithms",
the FFT is stable and very accurate. He has a graph showing accumulated
numerical errors down in the 10^-15 range! But that is not where the
inverse FFT loses. We get n points back from an n-point FFT, so
effectively we're sampling the resultant waveform at those n points.
This subsampling can easily miss the peak.
Here are the errors for inverse FFT's of various sizes for the
8 and 128 all harmonics case (all initial phases = 0.0,
multiply "mult" by the number of harmonics to get the FFT size):
</p>
<!--
(let ((phases (make-vector 8 0.0))
(correct 6.1442))
(do ((i 2 (* i 2)))
((> i 8192))
(let ((fftval (fft-all 8 i phases)))
(format () "~D: ~A -> ~A~%" i fftval (abs (- fftval correct))))))
-->
<pre class="indented">
8 harmonics 128 harmonics
mult reported peak error reported peak error
2 5.02733 1.11686e0 81.48324 11.62779
4 5.57658 5.67621e-1 81.98630 11.12473
8 6.10774 3.64636e-2 93.08931 0.021721
16 6.10774 3.64636e-2 93.08931 0.021721
32 6.14247 1.72736e-3 93.08931 0.021721
64 6.14247 1.72736e-3 93.08931 0.021721
128 6.14391 2.87163e-4 93.10728 0.003753
256 6.14405 1.50636e-4 93.10980 0.001232
512 6.14420 5.36694e-6 93.11143 0.000391
1024 6.14420 5.36694e-6 93.11143 0.000391
2048 6.14420 1.59697e-6 93.11156 0.000525
4096 6.14420 1.44227e-7 93.11156 0.000525
8192 6.14420 3.60112e-8 93.11156 0.000526
</pre>
<p>
128 seems pretty good. Those are spikey cases. If we try the
best minimum-peak case, the errors are much smaller. Here are graphs of both
the 0.0 phase and minimum phase cases for 8 harmonics:
</p>
<table>
<tr><td>
<img src="pix/8.png" alt="8 case">
</td><td></td><td>
<img class="indented" src="pix/88.png" alt="8 case">
</td></tr></table>
<!--
(let ((phases #(0.000000 0.666709 0.807769 1.605408 0.837217 0.044625 0.144433 1.873342))
(correct 2.7949089))
(do ((i 2 (* i 2)))
((> i 8192))
(let ((fftval (fft-all 8 i phases)))
(format () "~D: ~A -> ~A~%" i fftval (abs (- fftval correct))))))
2: 2.7906633022277 -> 0.0042455977723455
4: 2.7906633022277 -> 0.0042455977723455
8: 2.7906633022277 -> 0.0042455977723455
16: 2.7914621378061 -> 0.0034467621938754
32: 2.794721427123 -> 0.00018747287701526
64: 2.794721427123 -> 0.00018747287701526
128: 2.794721427123 -> 0.00018747287701526
256: 2.7948623970663 -> 4.6502933732206e-05
512: 2.7948904456648 -> 1.8454335195095e-05
1024: 2.7949073674377 -> 1.5325622837459e-06
2048: 2.7949073674377 -> 1.5325622837459e-06
4096: 2.7949089386041 -> 3.8604115459862e-08
8192: 2.7949089386041 -> 3.8604115903951e-08
and for 128:
2: 11.600891830857 -> 8.6119827837905e-06
4: 11.600891830857 -> 8.6119827837905e-06
8: 11.600891830857 -> 8.6119827837905e-06
16: 11.600891830857 -> 8.6119827837905e-06
32: 11.600891830857 -> 8.6119827837905e-06
64: 11.600891830857 -> 8.6119827837905e-06
128: 11.600891830857 -> 8.6119827837905e-06
256: 11.600891830857 -> 8.6119827837905e-06
512: 11.600891830857 -> 8.6119827837905e-06
1024: 11.600891830857 -> 8.6119827837905e-06
2048: 11.600894542871 -> 5.8999694552142e-06
4096: 11.600900716528 -> 2.7368773736214e-07
8192: 11.600900716528 -> 2.7368773736214e-07
(I think this happens because the waveform becomes very flat — there
are lots of peaks that are all about the same size, so we don't need great
accuracy to hit the one peak just right).
Perhaps we could reduce the FFT size once we narrow the search down
to a good candidate, but that seems like asking for trouble.
(let ((dur 2048))
(let ((old (find-sound "test.snd")))
(if (sound? old)
(close-sound old)))
(let ((ns (new-sound "test.snd" :channels 5))
(data (make-float-vector dur)))
(let ((phases (make-vector 8 0.0))
(correct 6.1442))
(set! (y-bounds) (list -6.2 6.2))
(do ((chan 0 (+ chan 1))
(n 4 (* n 4)))
((> n 512))
(let* ((size (expt 2 (ceiling (/ (log (* 8 n)) (log 2)))))
(fft-rl (make-float-vector size))
(fft-im (make-float-vector size))
(pi2 (/ pi 2)))
(do ((m 0 (+ m 1)))
((= m 8))
(let ((phi (+ (* pi (phases m)) pi2))
(bin (+ m 1)))
(set! (fft-rl bin) (cos phi))
(set! (fft-im bin) (sin phi))))
(mus-fft fft-rl fft-im size -1)
(do ((i 0 (+ i 1))
(k 0)
(step (/ dur size))
(step-ctr 0 (+ step-ctr 1)))
((= i dur))
(set! (data i) (fft-rl k))
(if (>= step-ctr step)
(begin
(set! k (+ k 1))
(set! step-ctr (- step-ctr step)))))
(float-vector->channel data 0 dur ns chan)))
(let ((len 8)
(incr (/ (* 2 pi) dur)))
(do ((x 0.0 (+ x incr))
(i 0 (+ i 1)))
((>= i dur))
(let ((val 0.0))
(do ((k 0 (+ k 1))
(j 1 (+ j 1)))
((= k len))
(set! val (+ val (sin (+ (* j x) (* pi (phases k)))))))
(set! (data i) val)))
(float-vector->channel data 0 dur ns 4))
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! (x-axis-label ns 0) "fft size: 32")
(set! (x-axis-label ns 1) "fft size: 128")
(set! (x-axis-label ns 2) "fft size: 512")
(set! (x-axis-label ns 3) "fft size: 2048")
(set! (x-axis-label ns 4) "sum of sines")
)))
-->
<p>Ok, we have a fast way to make test cases. Off we go...
When I started this search more than two years ago, I had no idea what a long and winding
path I was headed down! My initial guess was that I could find minimum peaks close to
the square root of n. This was based on nothing more than the breezy idea that the initial phases give you enough
freedom that you're approaching the behavior of a sum of n random signals.
I thought these minima could not be very hard to find; simply use
a brute force grid. The first such grid used initial phases of 0 and pi, and I
actually ran every possible such case, up to n=45 or so. Since each harmonic can be
positive or negative, this is 2^44 cases to check, which is starting to be a pain.
The results were discouraging; I did not get close to the square root of n.
I also tried smaller grids (down to pi/32) for small n (say n < 8), without
any success.
</p>
<p>Next great idea: try random initial phases. This actually works better than it has
any right to, but again the results are disappointing. You can run random phases until
hell freezes over and only get to n^.6 or slightly less. And the long term trend of
this process can dampen one's optimism. Here's a graph where we've taken 100 stabs
at each case of N harmonics, N from 3 to 2000, using randomly chosen initial phases, and tracked the
minimum, maximum, and average peaks. The graph is logarithmic (that is we show
(log minimum N) and so on):
</p>
<img class="indented" src="pix/averages.png" alt="average peaks from n=3 to 2000">
<!--
(define pi2 (/ pi 2))
(define data-file "test.data")
(set! *print-length* 1000000)
(define (get-fft-size choice n1 mult)
(let ((n (if (eq? choice :all) n1
(if (not (eq? choice :prime)) (* 2 n1)
(vector-ref primes n1)))))
(min (expt 2 21)
(expt 2 (ceiling (/ (log (* n mult)) (log 2)))))))
(define (get-peak choice n cur-phases)
(let* ((fft-mult 128)
(size (get-fft-size choice n fft-mult))
(fft-rl (make-float-vector size))
(fft-im (make-float-vector size))
(nc (if (eq? choice :all) 0
(if (eq? choice :odd) 1
(if (eq? choice :even) 2 3)))))
(fill! fft-rl 0.0)
(fill! fft-im 0.0)
(do ((m 0 (+ m 1)))
((= m n))
(let ((phi (+ (* pi (vector-ref cur-phases m)) pi2))
(bin (if (= nc 0) (+ m 1)
(if (= nc 1) (+ 1 (* m 2))
(if (= nc 2) (max 1 (* m 2))
(vector-ref primes m))))))
(float-vector-set! fft-rl bin (cos phi))
(float-vector-set! fft-im bin (sin phi))))
(float-vector-peak (mus-fft fft-rl fft-im size -1))))
(let ((tries 100)
(file (open-output-file data-file "w")))
(do ((n 2000 (+ n 1)))
((= n 3000))
(let ((phases (make-vector n 0.0))
(sqrt-n (sqrt n)))
(let ((min-peak n)
(max-peak 0.0)
(sum 0.0))
(do ((try 0 (+ try 1)))
((= try tries))
(fill! phases 0.0)
(do ((k 1 (+ k 1)))
((= k n))
(vector-set! phases k (random pi)))
(let ((pk (get-peak :all n phases)))
(if (> pk n)
(format () " ;oops: n: ~D, pk: ~F~%" n pk))
(if (< pk sqrt-n)
(begin
(format file " ;;~D: ~F (~F) from ~A~%" n pk sqrt-n phases)
(format () " ;~D: ~F (~F) from ~A~%" n pk sqrt-n phases)))
(set! sum (+ sum pk))
(if (< pk min-peak)
(set! min-peak pk))
(if (> pk max-peak)
(set! max-peak pk))))
(set! sum (/ sum tries))
(format file "(~D ~,3F ~,3F ~,3F (~,3F ~,3F ~,3F))~%" n (log min-peak n) (log sum n) (log max-peak n) min-peak sum max-peak)
(if (zero? (modulo n 10))
(format () "~A: ~,3F ~,3F ~,3F (~,3F ~,3F ~,3F)~%" n (log min-peak n) (log sum n) (log max-peak n) min-peak sum max-peak))
)))
(close-output-port file))
(if (not (provided? 'snd-ws.scm)) (load "ws.scm"))
(define white (make-color 1 1 1))
;;; turn off clipping
(set! (mus-clipping) #f)
(set! *clm-clipped* #f)
(set! *with-inset-graph* #f)
;;; these hooks may be drawing the graph in the upper right corner, which we don't want for now
(set! (hook-functions after-graph-hook) ())
(set! (hook-functions mouse-click-hook) ())
(set! (hook-functions update-hook) ())
;;; tell Snd not to try to load the data file
(set! (script-arg) (+ 1 (script-arg)))
(let ((ind (find-sound
(with-sound (:channels 3 :sample-type mus-lfloat)
(let ((samp 0))
(call-with-input-file
(list-ref (script-args) 1) ; invocation arg = text file of data ("snd graph-averages.scm peaks.data")
(lambda (file)
(let loop ((data (read file)))
(if (pair? data)
(begin
(out-any samp (list-ref data 1) 0)
(out-any samp (list-ref data 2) 1)
(out-any samp (list-ref data 3) 2)
(set! samp (+ 1 samp))
(loop (read file))))))))))))
(set! (channel-style ind) channels-superimposed)
(set! *selected-graph-color* white)
(set! *graph-color* white)
(do ((chan 0 (+ 1 chan)))
((= chan 3))
(set! (x-axis-style ind chan) x-axis-in-samples)
(set! (x-axis-label ind chan) "N")
(set! (y-bounds ind chan) (list .5 1.0))))
-->
<p>The trend continues upwards as N goes to 100000; it probably approaches 1 in the limit.
But we can always do better than n^.6 by using phases 0.0938*i*i - 0.35*i
where "i" is the harmonic number counting from 0.
This little formula gives results as low as n^.541 (at n=2076), and it is always below n^.6 if n is large enough.
Lots of such formulas get us down to n^.53 or, as n gets larger, .52:
in the all harmonic case, if n=65536,
4.5547029e-05*i*i + 0.640075398*i gives a peak of 309.9, and
-4.697190e-05*i*i + 1.357080536*i peaks at 303.6 (n^.515). If n=131072,
2.09440276*i*i + 1.4462367*i peaks at 438.7 (n^.516).
</p>
<p>
A good quadratic for each n, in the all harmonics case,
is (pi/n)*i*i - i*pi/2.
Except for the pi/n term, the rest just marches through the quadrants in order, so this is the
same as (pi*(((mod(i,4)/2)+(i*i/n)))).
This is similar to the formula suggested by M. Schroeder,
but the addition of the "mod(i,4)/2" term improves its performance. If N=100, for example, Schroeder's
peak is 13.49, whereas the mod peak is 11.90. There are better choices of quadrant than mod(i,4);
if N=14, the mod(i,4) formula gives a peak of 4.89 (Schroeder's formula's peak is 5.1),
but an exhaustive search of all quadrant choices
finds #(0 0 0 1 3 3 0 1 2 3 1 3 2 3) with a peak of 4.28.
Since the search involves approximately 4^n FFTs,
there's not much hope of going above N=20 or thereabouts.
I can't see any pattern in the lists of ideal quadrants.
</p>
<p>
The corresponding even harmonics version is (-pi/n)*(i+1)*(i+1) - (i+1)*pi/2.
These sorts of formulas do better as n increases, but I don't think they reach n^.5. If n=4000000,
the peak is at 2408.9 (n^.512).
A linear equation in "i" here is simply phase offset in the sum of sines formula mentioned
earlier, so given an initial phase of x*i, as x goes from 0 to pi/2, the peak goes from .7245*n to n.
Another good variant is (pi*i*i)/n using cos rather than sin.
</p>
<p>I haven't found any functions that get all the way to the square root. In the next graph,
the y axis is the peak value with n=100, the x axis is the number of tests, and we've
sorted the tests by peak. Each test is centered around a known excellent minimum
peak, and the separate curves are showing the peaks when the initial phases can vary
around that best value by pi/4, then pi/8 etc. It's hard to read at first, but
take the black top curve. This is what you'd get if you randomly sampled a hypercube whose side length is pi/2 centered on that minimum.
Nearly all the values are between 18 (100^.63) and 23 (100^.68).
Each successive curve divides the space we sample by 2 in all 100 dimensions,
so by the time we get to the bottom curve, we've reduced our search space by
a factor of 2^800 (we're down to .006 on a side), and we still don't see the actual minimum
even once in 50000 tries!
Imagine trying to set up a grid to catch this point.
</p>
<img class="indented" src="pix/8way.png" alt="histogram of 100 reduced 8 times">
<p>What to do?
There are a bunch of papers on this subject, but the best I found was:
Horner and Beauchamp, "a genetic algorithm-based method
for synthesis of low peak amplitude signals", J. Acoustic. Soc. Am Vol 99 No 1 Jan 96, online
at ems.music.uiuc.edu/beaucham/papers/JASA.01.96.pdf,
<!--
(In both this paper, and Schroeder's earlier
one, much fuss is made of the RMS value, but that value is independent of the
initial phases, so it is obviously irrelevant).
-->
They report good results using the genetic algorithm, so it tried it.
I started with 2000 randomly chosen initial points and a search radius
of 1.0 (= pi). These are pretty good choices, but after a few months of searching, I reached a point of almost no
returns. I tried variants of the basic algorithm and other search methods, but the results were not very good until
I noticed that in the
graphs of the peaks, the good values are more or less clustered together. So I tried centering
the genetic search on the best phases I had found to that point, then repeating
the search each time from the new best point, slowly reducing the search radius ("simulated annealing" is the jargon for this).
</p>
<pre class="indented">
(define (iterated-peak choice n)
(let ((phases (make-vector n 0.0))
(cur-best n)
(cur-incr 1.0))
(do ((i 1 (+ i 1)))
((= i n))
(set! (phases i) (random 1.0)))
(do ()
((< cur-incr .001))
(let ((vals (<em class=red>fpsap</em> (case choice ((:all) 0) ((:odd) 1) ((:even) 2) (else 3))
n phases 5000 cur-incr)))
(let ((pk (car vals))
(new-phases (cadr vals)))
(let ((down (- cur-best pk)))
(if (< down (/ cur-best 10))
(set! cur-incr (* 0.5 cur-incr))))
(if (< pk cur-best)
(begin
(set! cur-best pk)
(set! phases (float-vector->vector new-phases)))))))
(list cur-best phases)))
</pre>
<p>The "fpsap" function is the genetic algorithm mentioned earlier, written in C.
Here is the GA code used to find the initial-phase polynomials mentioned above:
</p>
<pre class="indented">
(define (piterate choice n) ; (piterate :all 4096)
(let* ((size 1000)
(pop (make-vector size))
(phases (make-vector n 0.0)))
;; initialize our set of choices
(do ((i 0 (+ i 1)))
((= i size))
(let ((f1 (random 1.0)) ; or (- 1.0 (random 2.0)) and also below
(f2 (random 1.0)))
(do ((k 0 (+ k 1)))
((= k n))
(set! (phases k) (modulo (/ (* k (+ (* f2 k) f1)) pi) 2.0)))
(set! (pop i) (list (get-peak choice n phases) f1 f2))))
;; now do the GA search with annealing
(do ((try 0 (+ try 1))
(increment .3 (* increment .98)))
((= try 1000))
(set! pop (sort! pop (lambda (a b) (< (car a) (car b)))))
(format () "~A ~D ~A ~A~%" choice n (pop 0) (log (car (pop 0)) n))
(do ((i 0 (+ i 1))
(j (/ size 2) (+ j 1)))
((= i (/ size 2)))
(let ((f1 (+ (list-ref (pop i) 1) (random increment)))
(f2 (+ (list-ref (pop i) 2) (random increment))))
(do ((k 0 (+ k 1)))
((= k n))
(set! (phases k) (modulo (/ (* k (+ (* f2 k) f1)) pi) 2.0)))
(set! (pop j) (list (get-peak choice n phases) f1 f2)))))))
</pre>
<!--
(if (not (provided? 'snd-rgb.scm)) (load "rgb.scm"))
(define (draw-sqrt-label xg yg exponent) ; 20 3 ".59"
(let* ((snd 0)
(chn 0)
(axinf (axis-info snd chn))
(x (axinf 10))
(y (axinf 13))
(grf-width (- (axinf 12) x))
(grf-height (- (axinf 11) y))
(width 278)
(height 115)
(red (make-color 1 0 0))
(blue (make-color 0 0 1))
(green (make-color 0 1 0))
(black (make-color 0 0 0))
(chocolate (make-color 0.82 0.41 0.12))
)
(set! (foreground-color snd chn) black)
(let ((x1 (+ x xg))
(y1 (+ y yg))
(yoff 20)
(yinit 15)
(ytext -7))
(fill-rectangle x1 y1 width 1 snd chn)
(fill-rectangle x1 (+ y1 height) width 1 snd chn)
(fill-rectangle x1 y1 1 height snd chn)
(fill-rectangle (+ x1 width -1) y1 1 height snd chn)
(set! (foreground-color snd chn) black)
(fill-rectangle (+ x1 10) (+ y1 yinit) 30 3 snd chn)
(set! (foreground-color snd chn) black)
(draw-string "all harmonics" (+ x1 50) (+ y1 yinit ytext) snd chn)
(set! (foreground-color snd chn) red)
(fill-rectangle (+ x1 10) (+ y1 yinit yoff) 30 3 snd chn)
(set! (foreground-color snd chn) black)
(draw-string "odd-numbered harmonics" (+ x1 50) (+ y1 yinit yoff ytext) snd chn)
(set! (foreground-color snd chn) chocolate)
(fill-rectangle (+ x1 10) (+ y1 yinit (* 2 yoff)) 30 3 snd chn)
(set! (foreground-color snd chn) black)
(draw-string "even-numbered harmonics" (+ x1 50) (+ y1 yinit (* 2 yoff) ytext) snd chn)
(set! (foreground-color snd chn) blue)
(fill-rectangle (+ x1 10) (+ y1 yinit (* 3 yoff)) 30 3 snd chn)
(set! (foreground-color snd chn) black)
(draw-string "prime-numbered harmonics" (+ x1 50) (+ y1 yinit (* 3 yoff) ytext) snd chn)
(set! (foreground-color snd chn) green)
(fill-rectangle (+ x1 10) (+ y1 yinit (* 4 yoff)) 30 3 snd chn)
(set! (foreground-color snd chn) black)
(draw-string (format #f "n^~A" exponent) (+ x1 50) (+ y1 yinit (* 4 yoff) ytext) snd chn)
)))
(define* (make-sqrt-png (xp 0.59))
(set! *with-inset-graph* #f)
;; see tmp26...
(with-sound (:channels 5 :clipped #f)
(do ((i 1 (1+ i)))
((> i 128))
(let ((n-min-val (vector-find-if (lambda (val)
(and val
(vector? val)
(= (val 0) i)
(let ((a-val (val 1))
(a-len (length val)))
(do ((k 2 (1+ k)))
((= k a-len))
(if (and (number? (val k))
(< (val k) a-val))
(set! a-val (val k))))
a-val)))
noid-min-peak-phases)))
(let ((odd-min-val (vector-find-if (lambda (val)
(and val
(vector? val)
(= (val 0) i)
(let ((a-val (val 1))
(a-len (length val)))
(do ((k 2 (1+ k)))
((= k a-len))
(if (and (number? (val k))
(< (val k) a-val))
(set! a-val (val k))))
a-val)))
nodd-min-peak-phases)))
(let ((prime-min-val (vector-find-if (lambda (val)
(and val
(vector? val)
(= (val 0) i)
(let ((a-val (val 1))
(a-len (length val)))
(do ((k 2 (1+ k)))
((= k a-len))
(if (and (number? (val k))
(< (val k) a-val))
(set! a-val (val k))))
a-val)))
primoid-min-peak-phases)))
(let ((even-min-val (vector-find-if (lambda (val)
(and val
(vector? val)
(= (val 0) i)
(let ((a-val (val 1))
(a-len (length val)))
(do ((k 2 (1+ k)))
((= k a-len))
(if (and (number? (val k))
(< (val k) a-val))
(set! a-val (val k))))
a-val)))
neven-min-peak-phases)))
(outa i (or n-min-val 0.0))
(outb i (or odd-min-val 0.0))
(outc i (or prime-min-val 0.0))
(outd i (expt (exact->inexact i) xp)) ; or (log pk n)?
(out-any i (or even-min-val 0.0) 4)
))))))
(set! (y-bounds) (list 0 21))
(set! *channel-style* channels-superimposed)
(set! *axis-color* (make-color 0 0 0))
(set! *x-axis-style* x-axis-in-samples)
(do ((i 0 (1+ i)))
((= i 5))
(set! (x-axis-label 0 i) "n"))
(set! *selected-graph-color* (make-color 1 1 1))
(set! *axis-label-font* "9x15")
)
-->
<p>
Here are the results I have so far. In each set, the first number is the number
of harmonics, then the minimum peak amplitude, then (log peak n).
</p>
<div class="simple">
<pre class="indented">
=============================================================================================
all odd even prime
=============================================================================================
20 4.288 0.4860 | 11 3.177 0.4820 | 120 11.314 0.5067 | 24 5.642 0.5444
14 3.612 0.4867 | 9 2.886 0.4824 | 115 11.111 0.5075 | 127 14.038 0.5453
23 4.604 0.4870 | 17 3.926 0.4827 | 88 9.718 0.5079 | 101 12.400 0.5455
11 3.218 0.4874 | 10 3.053 0.4848 | 113 11.042 0.5080 | 102 12.509 0.5463
17 3.980 0.4876 | 19 4.172 0.4851 | 114 11.098 0.5082 | 73 10.425 0.5464
16 3.874 0.4884 | 14 3.598 0.4852 | 111 10.962 0.5084 | 19 4.999 0.5465
24 4.728 0.4888 | 13 3.475 0.4856 | 126 11.703 0.5086 | 106 12.794 0.5466
19 4.218 0.4889 | 18 4.070 0.4856 | 124 11.614 0.5087 | 18 4.855 0.5467
22 4.540 0.4894 | 21 4.399 0.4866 | 122 11.530 0.5089 | 25 5.811 0.5467
21 4.443 0.4898 | 16 3.857 0.4869 | 117 11.296 0.5091 | 110 13.074 0.5469
15 3.768 0.4899 | 20 4.300 0.4869 | 123 11.589 0.5091 | 93 11.931 0.5470
25 4.853 0.4907 | 15 3.738 0.4869 | 128 11.830 0.5092 | 108 12.950 0.5470
13 3.524 0.4911 | 12 3.362 0.4879 | 102 10.539 0.5092 | 109 13.018 0.5470
12 3.389 0.4911 | 22 4.519 0.4880 | 121 11.499 0.5092 | 28 6.191 0.5471
18 4.140 0.4915 | 28 5.089 0.4883 | 127 11.790 0.5093 | 40 7.527 0.5472
10 3.102 0.4917 | 23 4.634 0.4891 | 125 11.697 0.5094 | 95 12.086 0.5472
29 5.241 0.4920 | 25 4.834 0.4895 | 99 10.388 0.5094 | 92 11.878 0.5473
27 5.064 0.4922 | 31 5.419 0.4921 | 100 10.442 0.5094 | 23 5.562 0.5473
28 5.157 0.4923 | 24 4.783 0.4925 | 93 10.066 0.5094 | 126 14.116 0.5474
37 5.918 0.4924 | 33 5.597 0.4925 | 104 10.656 0.5095 | 128 14.240 0.5474
35 5.762 0.4926 | 29 5.257 0.4929 | 94 10.123 0.5095 | 77 10.787 0.5475
26 4.982 0.4929 | 30 5.353 0.4932 | 116 11.278 0.5097 | 22 5.434 0.5476
33 5.608 0.4931 | 27 5.085 0.4935 | 96 10.241 0.5097 | 120 13.757 0.5476
59 7.469 0.4931 | 8 2.791 0.4935 | 105 10.724 0.5098 | 86 11.464 0.5476
32 5.526 0.4932 | 26 4.997 0.4938 | 256 16.896 0.5098 | 17 4.719 0.5476
30 5.361 0.4937 | 37 5.959 0.4943 | 83 9.527 0.5101 | 94 12.040 0.5477
51 6.972 0.4939 | 35 5.801 0.4945 | 103 10.638 0.5101 | 103 12.673 0.5479
31 5.453 0.4939 | 7 2.618 0.4946 | 108 10.902 0.5102 | 122 13.907 0.5479
36 5.872 0.4940 | 32 5.554 0.4947 | 70 8.738 0.5102 | 47 8.247 0.5480
9 2.962 0.4941 | 34 5.726 0.4948 | 109 10.958 0.5103 | 96 12.200 0.5480
8 2.795 0.4942 | 52 7.080 0.4954 | 119 11.463 0.5104 | 30 6.452 0.5481
34 5.715 0.4943 | 50 6.947 0.4955 | 97 10.332 0.5105 | 125 14.110 0.5482
70 8.177 0.4946 | 38 6.071 0.4958 | 106 10.813 0.5105 | 123 13.986 0.5482
39 6.124 0.4946 | 82 8.895 0.4960 | 112 11.128 0.5106 | 115 13.481 0.5482
93 9.413 0.4947 | 48 6.828 0.4962 | 107 10.872 0.5106 | 39 7.452 0.5482
41 6.278 0.4947 | 41 6.322 0.4966 | 118 11.430 0.5107 | 63 9.693 0.5482
82 8.850 0.4948 | 43 6.474 0.4966 | 1024 34.487 0.5108 | 89 11.717 0.5483
81 8.797 0.4948 | 39 6.168 0.4966 | 82 9.497 0.5108 | 119 13.746 0.5484
60 7.589 0.4950 | 72 8.366 0.4967 | 84 9.615 0.5108 | 97 12.294 0.5485
38 6.056 0.4951 | 45 6.625 0.4967 | 85 9.676 0.5109 | 121 13.881 0.5485
69 8.140 0.4952 | 42 6.403 0.4968 | 101 10.574 0.5110 | 87 11.587 0.5486
49 6.872 0.4952 | 74 8.488 0.4969 | 92 10.094 0.5113 | 100 12.508 0.5486
73 8.372 0.4952 | 78 8.715 0.4970 | 110 11.060 0.5113 | 98 12.373 0.5486
58 7.471 0.4953 | 46 6.709 0.4972 | 91 10.043 0.5114 | 113 13.379 0.5486
48 6.804 0.4953 | 105 10.116 0.4972 | 86 9.758 0.5114 | 107 12.988 0.5487
103 9.936 0.4954 | 47 6.785 0.4973 | 95 10.269 0.5115 | 79 11.000 0.5488
64 7.850 0.4955 | 40 6.265 0.4974 | 79 9.357 0.5118 | 51 8.652 0.5488
56 7.349 0.4955 | 89 9.332 0.4976 | 90 10.005 0.5118 | 76 10.773 0.5489
42 6.374 0.4956 | 111 10.417 0.4976 | 87 9.834 0.5118 | 56 9.112 0.5489
63 7.793 0.4956 | 56 7.419 0.4979 | 81 9.484 0.5119 | 114 13.476 0.5492
83 8.935 0.4956 | 36 5.956 0.4979 | 75 9.122 0.5120 | 124 14.115 0.5492
40 6.224 0.4956 | 106 10.198 0.4980 | 71 8.871 0.5121 | 116 13.609 0.5492
85 9.050 0.4958 | 59 7.618 0.4980 | 73 8.999 0.5121 | 104 12.817 0.5492
67 8.044 0.4959 | 57 7.489 0.4980 | 98 10.469 0.5122 | 20 5.183 0.5492
76 8.567 0.4960 | 91 9.457 0.4981 | 77 9.259 0.5124 | 21 5.324 0.5492
92 9.420 0.4960 | 51 7.088 0.4981 | 78 9.328 0.5126 | 117 13.680 0.5493
75 8.512 0.4960 | 80 8.870 0.4981 | 80 9.451 0.5126 | 57 9.217 0.5493
55 7.300 0.4961 | 81 8.926 0.4981 | 61 8.227 0.5126 | 74 10.646 0.5495
53 7.168 0.4961 | 101 9.965 0.4982 | 74 9.090 0.5128 | 111 13.304 0.5495
105 10.064 0.4961 | 119 10.815 0.4982 | 512 24.510 0.5128 | 71 10.407 0.5495
52 7.102 0.4961 | 77 8.707 0.4982 | 72 8.966 0.5129 | 75 10.729 0.5496
104 10.017 0.4962 | 76 8.651 0.4982 | 89 9.997 0.5129 | 29 6.365 0.5496
50 6.966 0.4962 | 62 7.817 0.4982 | 57 7.966 0.5133 | 72 10.497 0.5497
65 7.935 0.4962 | 55 7.364 0.4982 | 68 8.738 0.5137 | 105 12.917 0.5497
71 8.291 0.4962 | 67 8.128 0.4983 | 67 8.681 0.5140 | 80 11.125 0.5498
47 6.757 0.4962 | 110 10.408 0.4984 | 63 8.411 0.5140 | 78 10.979 0.5499
45 6.613 0.4962 | 90 9.422 0.4985 | 76 9.267 0.5141 | 59 9.418 0.5500
100 9.828 0.4962 | 60 7.700 0.4985 | 64 8.488 0.5143 | 38 7.396 0.5501
74 8.468 0.4964 | 86 9.213 0.4985 | 66 8.632 0.5145 | 61 9.597 0.5501
44 6.544 0.4964 | 108 10.325 0.4986 | 65 8.567 0.5146 | 37 7.291 0.5502
57 7.441 0.4964 | 44 6.599 0.4986 | 51 7.569 0.5148 | 33 6.846 0.5502
46 6.691 0.4965 | 88 9.324 0.4986 | 58 8.101 0.5152 | 31 6.616 0.5502
54 7.246 0.4965 | 64 7.957 0.4987 | 69 8.861 0.5153 | 118 13.810 0.5503
84 9.023 0.4965 | 83 9.061 0.4988 | 62 8.387 0.5153 | 41 7.719 0.5503
94 9.544 0.4965 | 68 8.204 0.4988 | 2048 50.887 0.5154 | 27 6.134 0.5503
95 9.595 0.4966 | 71 8.384 0.4988 | 55 7.888 0.5154 | 70 10.362 0.5504
43 6.475 0.4966 | 102 10.046 0.4988 | 53 7.748 0.5157 | 36 7.187 0.5504
87 9.188 0.4966 | 85 9.173 0.4989 | 44 7.039 0.5157 | 16 4.600 0.5504
66 8.012 0.4967 | 114 10.621 0.4989 | 59 8.192 0.5158 | 62 9.697 0.5505
68 8.131 0.4967 | 61 7.775 0.4989 | 56 7.975 0.5158 | 112 13.432 0.5505
88 9.243 0.4967 | 125 11.122 0.4989 | 47 7.290 0.5159 | 66 10.041 0.5506
72 8.368 0.4967 | 70 8.328 0.4989 | 38 6.536 0.5161 | 90 11.912 0.5506
114 10.518 0.4968 | 75 8.621 0.4989 | 54 7.843 0.5163 | 60 9.529 0.5506
77 8.656 0.4969 | 98 9.853 0.4990 | 50 7.547 0.5167 | 54 8.996 0.5507
86 9.145 0.4969 | 63 7.904 0.4990 | 60 8.295 0.5167 | 83 11.400 0.5507
79 8.767 0.4969 | 107 10.296 0.4990 | 48 7.392 0.5168 | 43 7.936 0.5507
91 9.407 0.4969 | 103 10.102 0.4990 | 52 7.705 0.5168 | 88 11.779 0.5508
78 8.713 0.4969 | 118 10.812 0.4990 | 45 7.164 0.5173 | 52 8.817 0.5509
98 9.767 0.4971 | 115 10.674 0.4990 | 40 6.748 0.5176 | 84 11.487 0.5510
80 8.832 0.4971 | 58 7.586 0.4990 | 46 7.274 0.5183 | 91 12.006 0.5510
61 7.718 0.4971 | 128 11.261 0.4990 | 42 6.940 0.5183 | 85 11.571 0.5511
89 9.316 0.4972 | 53 7.253 0.4990 | 39 6.680 0.5184 | 99 12.590 0.5512
101 9.922 0.4972 | 94 9.654 0.4991 | 34 6.223 0.5184 | 45 8.155 0.5513
90 9.369 0.4972 | 69 8.275 0.4991 | 49 7.529 0.5187 | 64 9.905 0.5514
99 9.827 0.4973 | 92 9.553 0.4991 | 43 7.052 0.5193 | 12 3.936 0.5514
97 9.734 0.4974 | 120 10.909 0.4991 | 41 6.880 0.5194 | 34 6.991 0.5515
109 10.316 0.4974 | 113 10.586 0.4991 | 36 6.432 0.5194 | 46 8.260 0.5515
62 7.792 0.4975 | 96 9.759 0.4991 | 37 6.530 0.5197 | 44 8.065 0.5517
112 10.460 0.4975 | 66 8.095 0.4992 | 32 6.061 0.5199 | 42 7.863 0.5517
106 10.180 0.4976 | 73 8.515 0.4992 | 33 6.162 0.5201 | 68 10.262 0.5518
96 9.699 0.4978 | 84 9.133 0.4992 | 29 5.766 0.5203 | 48 8.468 0.5518
102 10.000 0.4979 | 116 10.733 0.4993 | 35 6.362 0.5204 | 32 6.772 0.5519
110 10.385 0.4979 | 100 9.968 0.4993 | 26 5.452 0.5206 | 53 8.948 0.5520
116 10.667 0.4980 | 54 7.328 0.4993 | 31 5.988 0.5212 | 82 11.386 0.5520
115 10.622 0.4980 | 95 9.717 0.4993 | 24 5.253 0.5220 | 81 11.311 0.5520
107 10.251 0.4981 | 121 10.965 0.4993 | 30 5.907 0.5222 | 69 10.358 0.5521
113 10.533 0.4981 | 122 11.011 0.4993 | 23 5.148 0.5226 | 55 9.143 0.5522
128 11.210 0.4981 | 117 10.783 0.4994 | 21 4.920 0.5233 | 50 8.676 0.5523
111 10.443 0.4981 | 65 8.041 0.4994 | 27 5.620 0.5238 | 65 10.031 0.5523
122 10.950 0.4982 | 104 10.169 0.4994 | 28 5.732 0.5240 | 49 8.583 0.5524
127 11.176 0.4983 | 79 8.865 0.4994 | 25 5.403 0.5241 | 58 9.425 0.5525
108 10.313 0.4984 | 109 10.414 0.4995 | 22 5.055 0.5242 | 15 4.466 0.5526
117 10.740 0.4985 | 49 6.986 0.4995 | 18 4.569 0.5257 | 26 6.056 0.5528
126 11.145 0.4985 | 99 9.928 0.4995 | 20 4.839 0.5264 | 35 7.164 0.5538
120 10.878 0.4985 | 97 9.832 0.4996 | 17 4.463 0.5280 | 67 10.266 0.5539
121 10.925 0.4986 | 93 9.629 0.4997 | 16 4.325 0.5282 | 11 3.778 0.5544
118 10.790 0.4986 | 124 11.120 0.4997 | 19 4.741 0.5286 | 9 3.382 0.5546
124 11.060 0.4986 | 87 9.317 0.4998 | 15 4.192 0.5292 | 14 4.324 0.5548
119 10.836 0.4986 | 126 11.217 0.4999 | 14 4.097 0.5344 | 13 4.154 0.5553
123 11.016 0.4986 | 123 11.088 0.4999 | 12 3.787 0.5359 | 10 3.602 0.5565
125 11.105 0.4986 | 127 11.268 0.5000 | 13 3.973 0.5378 | 5 2.477 0.5635
7 2.639 0.4988 | 112 10.582 0.5000 | 11 3.656 0.5406 | 4 2.192 0.5662
256 15.997 0.5000 | 256 16.243 0.5027 | 10 3.559 0.5513 | 8 3.263 0.5687
512 23.194 0.5040 | 3 1.739 0.5035 | 8 3.198 0.5590 | 256 23.955 0.5728
1024 33.039 0.5046 | 512 23.517 0.5062 | 9 3.454 0.5641 | 7 3.062 0.5750
2048 48.913 0.5102 | 1024 33.732 0.5076 | 7 3.047 0.5726 | 6 2.805 0.5757
4 2.039 0.5139 | 2048 48.227 0.5083 | 6 2.837 0.5820 | 512 38.603 0.5856
6 2.549 0.5223 | 4 2.045 0.5161 | 5 2.605 0.5948 | 2048 95.904 0.5985
5 2.343 0.5292 | 6 2.523 0.5164 | 3 2.021 0.6406 | 1024 65.349 0.6030
3 1.980 0.6217 | 5 2.307 0.5195 | 4 2.431 0.6406 | 3 1.980 0.6217
2 1.760 0.8156 | 2 1.539 0.6220 | 2 1.760 0.8157 | 2 1.760 0.8156
</pre>
</div>
<!-- from gad125.scm -->
<p>
Here is a graph of the peaks (as of February, 2015), followed by a graph of
the exponent vs n (n^y = peak amp).
</p>
<img class="indented" src="pix/sqrt.png" alt="sqrt n">
<img class="indented" src="pix/sqrt1.png" alt="n^y">
<!-- from tmp26.scm -->
<p>The "even" cases are not independent of the "all" cases; each even-harmonics case can be at worst 1.0 above
the corresponding (n-1) all-harmonics case (shift the current "all" choices right to multiply each by 2, then set the new fundamental
phase to 0.0). If you then search around this set of phases, you'll find very good values. Using Snd's fpsap (a version
of the genetic algorithm):
</p>
<pre class="indented">
(let ((all (cadr (get-best :all (- n 1)))) ; get the best all-harmonic phases for n - 1
(new-phases (make-vector n 0.0))) ; place in new phase vector shifted up
(do ((k 0 (+ k 1)))
((= k (- n 1)))
(set! (new-phases (+ k 1)) (all k)))
(set! (new-phases 0) 0.0)
(fpsap 2 n new-phases)) ; search that vicinity for a good set (2 = even harmonics)
</pre>
<p>Here is the time domain view of one of the n=5 cases when the minimum peak phases are chosen; the sum of the 5 components is in black.
</p>
<img class="indented" src="pix/sum5.png" alt="n=5 case">
<p>The next graph compares the 100 harmonic minimum peak case in blue with the
case where all the initial phases are 0.0 in black:
</p>
<img class="indented" src="pix/100twice.png" alt="100 harmonics">
<p>And a few others:
</p>
<table>
<tr>
<td><img class="indented" src="pix/all57.png" alt="57 harmonics"></td>
<td><img class="indented" src="pix/odd57.png" alt="57 odd harmonics"></td>
</tr></table>
<img class="indented" src="pix/all99.png" alt="99 harmonics">
<!-- all57:
(define phases #(0.000000 0.402544 0.873914 0.824224 1.710182 0.183023 0.378574 0.128782 1.816255 1.249608 1.030253 1.030831 0.184699 0.677473 1.528003 1.262679 1.840809 0.082787 1.487290 1.579585 0.150833 0.308197 0.183834 1.435443 0.452047 0.800416 1.697556 1.103318 1.169502 1.438166 1.765331 0.875181 1.049248 1.321068 0.824424 0.599899 1.694664 0.504547 1.583285 1.657047 0.940116 1.788668 1.529808 0.367904 1.371253 0.572088 1.370961 1.371348 0.244247 1.592370 0.135712 0.911345 0.228778 1.543468 1.190091 1.504171 1.491159))
(define (make-all-57)
(set! *with-inset-graph* #f)
(let* ((samples 1000)
(incr (/ (* 2 pi) samples)))
(with-sound (:channels 1 :clipped #f)
(do ((i 0 (+ i 1))
(x 0.0 (+ x incr)))
((= i samples))
(let ((sum 0.0))
(do ((k 1 (+ k 1)))
((= k 58))
(let ((val (sin (+ (* k x) (* pi (phases (- k 1)))))))
(set! sum (+ sum val))))
(outa i sum)))))
(set! (y-bounds) (list -8.0 8.0))
(set! *channel-style* channels-superimposed)
(set! *axis-color* (make-color 0 0 0))
(set! *x-axis-style* x-axis-in-samples)
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! *axis-label-font* "9x15")
(set! (x-axis-label) "57 harmonics with peak at 7.546")
)
(define odd-phases #(0.000000 -0.095905 1.360419 0.638244 0.752436 0.060307 1.680434 0.892474 1.556627 1.342822 1.202039 0.989766 0.747386 1.502768 1.484789 1.280575 -0.299617 0.648918 1.386594 0.570314 0.971680 0.602106 1.411224 0.349887 1.776881 0.686211 -0.138570 0.102115 0.187653 1.480790 0.475407 0.080540 0.078971 0.288194 0.529704 0.929207 1.248880 1.402125 0.332857 1.263541 0.757496 0.254501 0.084949 1.308375 0.041441 0.288389 1.222780 0.362725 1.537117 1.518618 0.267187 0.845609 0.722902 0.451852 0.582589 0.839423 1.817054))
(define (make-odd-57)
(set! *with-inset-graph* #f)
(let* ((samples 1000)
(incr (/ (* 2 pi) samples)))
(with-sound (:channels 1 :clipped #f)
(do ((i 0 (+ i 1))
(x 0.0 (+ x incr)))
((= i samples))
(let ((sum 0.0))
(do ((k 1 (+ k 1))
(j 1 (+ j 2)))
((= k 58))
(let ((val (sin (+ (* j x) (* pi (odd-phases (- k 1)))))))
(set! sum (+ sum val))))
(outa i sum)))))
(set! (y-bounds) (list -8.0 8.0))
(set! *channel-style* channels-superimposed)
(set! *axis-color* (make-color 0 0 0))
(set! *x-axis-style* x-axis-in-samples)
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! *axis-label-font* "9x15")
(set! (x-axis-label) "57 odd harmonics with peak at 7.564")
)
(define all-99 #(0.000000 0.597494 1.146001 -0.056648 1.705293 0.247794 1.067079 1.589758 1.638162 1.207186 0.711609 0.710553 -0.195687 0.350442 0.679684 1.653746 -0.460484 -0.156879 1.629420 1.730071 1.077540 0.075860 0.435827 1.574017 0.450715 1.581154 -0.027175 1.502323 1.501097 0.855975 1.269118 1.563924 1.244477 0.428054 1.250656 0.668151 0.672807 0.481658 1.215020 0.229865 0.052263 -0.265466 0.722697 0.484686 1.525745 -0.088395 1.682325 1.764438 0.384531 0.550629 -0.009864 1.443840 0.844832 1.132436 -0.107693 0.137994 0.009887 1.832991 0.076907 0.020473 0.102198 0.283702 1.246352 0.965046 0.026752 1.471014 0.126851 0.144964 0.731028 -0.335345 0.712331 0.471273 1.705158 0.467571 1.388009 0.875431 0.986268 1.669037 0.667955 0.887678 1.688981 -0.459336 1.461469 1.135012 0.449583 0.176052 1.407825 1.801166 0.208742 1.880027 0.895566 1.761286 1.021896 0.520239 1.466186 0.733284 1.188215 1.584263 1.296521))
(define (make-all-99)
(set! *with-inset-graph* #f)
(let* ((samples 1200)
(incr (/ (* 2 pi) samples)))
(with-sound (:channels 1 :clipped #f)
(do ((i 0 (+ i 1))
(x 0.0 (+ x incr)))
((= i samples))
(let ((sum 0.0))
(do ((k 1 (+ k 1)))
((= k 100))
(let ((val (sin (+ (* k x) (* pi (all-99 (- k 1)))))))
(set! sum (+ sum val))))
(outa i sum)))))
(set! (y-bounds) (list -10.0 10.0))
(set! *channel-style* channels-superimposed)
(set! *axis-color* (make-color 0 0 0))
(set! *x-axis-style* x-axis-in-samples)
(set! *selected-graph-color* (make-color 1 1 1))
(set! *selected-data-color* (make-color 0 0 0))
(set! *axis-label-font* "9x15")
(set! (x-axis-label) "99 harmonics with peak at 9.9431")
)
-->
<p>
As N increases, the minimum peak amplitude waveform can approach
white noise (in sound as well as appearance); here is a small portion of one period when n=65536 (the prescaling peak was 704):
</p>
<img class="indented" src="pix/s65536.png" alt="65536 harmonics">
<p>but the waveforms generated from the initial-phase polynomials look more regular (this is with n=64):
</p>
<img class="indented" src="pix/s64pi.png" alt="64 harmonics using pi/n formula">
<!--
(define (try n a b)
(let ((gens (make-vector n #f))
(sr (if (< n 1000) 44100 (* n 128))))
(with-sound (:statistics #t :srate sr)
(do ((i 0 (+ i 1)))
((= i n))
(set! (gens i) (make-oscil (+ 1 (* i 1))
(+ (* a i i) (* b i)))))
(do ((i 0 (+ i 1)))
((= i sr))
(let ((sum 0.0))
(do ((k 0 (+ k 1)))
((= k n))
(set! sum (+ sum (oscil (gens k)))))
(outa i (* 1.0 sum)))))
(list (log (maxamp) n) (* 1.0 (/ (maxamp-position) sr)))))
(try 100 (+ pi (/ pi 100)) (/ pi -2.0))
same settings as above but
(set! (x-axis-label) "n=64, initial-phase: (pi+pi/64)*i*i - pi*i/2")
-->
<!-- this moves from cosines to the minimum amp phases:
(let ((93-phases #(0.000000 0.102641 0.679230 0.798388 0.598526 0.445036 1.682481 1.416478 1.010866 0.838753 0.518866 0.185140 -0.260801 1.643327 1.645133 1.587871 1.510095 1.367190 1.252764 1.075109 0.997402 1.226792 1.097666 1.109286 1.266675 1.142806 1.396415 1.366757 1.323435 -0.151657 0.110933 0.254314 0.125232 0.426419 0.874355 1.227943 1.386454 1.437438 0.183960 0.673205 0.896736 1.317085 1.421345 0.557215 0.650544 0.979705 1.599286 -0.027664 0.967924 1.389243 -0.027060 0.800953 1.098758 1.686133 0.493843 1.257456 0.105617 0.800125 0.006765 0.139250 1.353019 -0.059007 1.198209 0.066444 0.431719 1.470864 0.547882 1.294688 0.757592 1.690943 0.714913 1.735237 0.542409 1.804533 0.779629 -0.296056 1.090213 0.178123 1.832019 1.000948 -0.131923 1.161644 0.360890 0.065736 1.232224 0.792139 0.176636 1.688866 1.432871 0.734257 0.042563 1.592538 0.764029)))
(let ((freq 30.0)
(dur 3.0)
(n 93))
(with-sound ()
(let ((samps (floor (* dur 44100))))
(do ((i 0 (+ i 1)))
((= i n))
(let ((off (/ (* pi (- 0.5 (93-phases i))) (* dur 44100)))
(h (hz->radians (* freq (+ i 1)))))
(do ((k 0 (+ k 1))
(phase (* pi 0.5) (+ phase h off)))
((= k samps))
(outa k (* .01 (sin phase))))))))))
or much faster and using 1024:
(let ((freq 15.0)
(dur 5.0)
(n 1024))
(with-sound ()
(let ((samps (floor (* dur 44100)))
(1/n (/ 1.0 n))
(freqs (make-float-vector n))
(phases (make-float-vector n (* pi 0.5))))
(do ((i 0 (+ i 1)))
((= i n))
(let ((off (/ (* pi (- 0.5 (1024-phases i))) (* dur 44100)))
(h (hz->radians (* freq (+ i 1)))))
(set! (freqs i) (+ h off))))
(let ((ob (make-oscil-bank freqs phases)))
(do ((k 0 (+ k 1)))
((= k samps))
(outa k (* 1/n (oscil-bank ob))))))))
but that is dominated by the "fm-sweep" effect.
(let ((98-phases #(0.000000 -0.183194 0.674802 1.163820 -0.147489 1.666302 0.367236 0.494059 0.191339 0.714980 1.719816 0.382307 1.017937 0.548019 0.342322 1.541035 0.966484 0.936993 -0.115147 1.638513 1.644277 0.036575 1.852586 1.211701 1.300475 1.231282 0.026079 0.393108 1.208123 1.645585 -0.152499 0.274978 1.281084 1.674451 1.147440 0.906901 1.137155 1.467770 0.851985 0.437992 0.762219 -0.417594 1.884062 1.725160 -0.230688 0.764342 0.565472 0.612443 0.222826 -0.016453 1.527577 -0.045196 0.585089 0.031829 0.486579 0.557276 -0.040985 1.257633 1.345950 0.061737 0.281650 -0.231535 0.620583 0.504202 0.817304 -0.010580 0.584809 1.234045 0.840674 1.222939 0.685333 1.651765 0.299738 1.890117 0.740013 0.044764 1.547307 0.169892 1.452239 0.352220 0.122254 1.524772 1.183705 0.507801 1.419950 0.851259 0.008092 1.483245 0.608598 0.212267 0.545906 0.255277 1.784889 0.270552 1.164997 -0.083981 0.200818 1.204088)))
(let ((freq 10.0)
(dur 5.0)
(n 98))
(with-sound ()
(let ((samps (floor (* dur 44100)))
(1/n (/ 1.0 n))
(freqs (make-float-vector n))
(phases (make-float-vector n (* pi 0.5))))
(do ((i 0 (+ i 1)))
((= i n))
(let ((off (/ (* pi (- 0.5 (98-phases i))) (* dur 44100)))
(h (hz->radians (* freq (+ i 1)))))
(set! (freqs i) (+ h off))))
(let ((ob (make-oscil-bank freqs phases)))
(do ((i 0 (+ i 1))) ; get rid of the distracting initial click
((= i 1000))
(oscil-bank ob))
(do ((k 0 (+ k 1)))
((= k samps))
(outa k (* 1/n (oscil-bank ob)))))))))
-->
<!-- FILE: piano -->
<div class="header" id="pianodoc">piano</div>
<!-- main-index |pianodoc:piano model -->
<p>This instrument is a translation of CLM's piano.ins, a piano physical model by Scott van Duyne; see
Julius O. Smith and Scott A. Van Duyne, "Commuted piano synthesis," in Proc. Int. Computer Music Conf., Banff, Canada, September 1995, pp. 335 - 342.
To paraphrase, the model includes multiple coupled strings, a nonlinear hammer, and an arbitrarily large soundboard and enclosure.
The actual instrument name is 'p':
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(do ((i 0 (+ i 1))) ((= i 7))
(p (* i .5) :duration .5 ; generate a sequence of 1/2 second tones
:keyNum (+ 24 (* 12 i)) ; jump by octaves
:strike-velocity .5 ; 0 to 1, 0 is softest played note, 1 is loud note
:amp .4 ; overall volume level
:DryPedalResonanceFactor .25))) ; 0 no open string resonance
; 1.0 is about full resonance of dampers raised
; can be greater than 1.0
</pre>
<p>"p" has lots of parameters, and I really don't know what they do. The interested reader should
goof around with them.
</p>
<pre class="indented">
<em class=emdef>p</em> (start
(duration 1.0)
(keyNum 60.0) ; middleC=60: can use fractional part to detune
(strike-velocity 0.5) ; corresponding normalized velocities (range: 0.0--1.0)
(pedal-down #f) ; set to t for sustain pedal down...pedal-down-times not yet impl.
(release-time-margin 0.75) ; extra compute time allowed beyond duration
(amp .5) ; amp scale of noise inputs...
(detuningFactor 1.0)
(detuningFactor-table ())
(stiffnessFactor 1.0)
(stiffnessFactor-table ())
(pedalPresenceFactor .3)
(longitudinalMode 10.5)
(StrikePositionInvFac -0.9)
(singleStringDecayRateFactor 1.0)
;; parameter tables indexed by keyNum
;; you can override the loudPole-table by directly setting :loudPole to a value
loudPole (loudPole-table default-loudPole-table)
softPole (softPole-table default-softPole-table)
loudGain (loudGain-table default-loudGain-table)
softGain (softGain-table default-softGain-table)
strikePosition (strikePosition-table default-strikePosition-table)
detuning2 (detuning2-table default-detuning2-table)
detuning3 (detuning3-table default-detuning3-table)
stiffnessCoefficient (stiffnessCoefficient-table default-stiffnessCoefficient-table)
singleStringDecayRate (singleStringDecayRate-table default-singleStringDecayRate-table)
singleStringZero (singleStringZero-table default-singleStringZero-table)
singleStringPole (singleStringPole-table default-singleStringPole-table)
releaseLoopGain (releaseLoopGain-table default-releaseLoopGain-table)
DryTapFiltCoeft60 (DryTapFiltCoeft60-table default-DryTapFiltCoeft60-table)
DryTapFiltCoefTarget (DryTapFiltCoefTarget-table default-DryTapFiltCoefTarget-table)
DryTapFiltCoefCurrent (DryTapFiltCoefCurrent-table default-DryTapFiltCoefCurrent-table)
DryTapAmpt60 (DryTapAmpt60-table default-DryTapAmpt60-table)
sustainPedalLevel (sustainPedalLevel-table default-sustainPedalLevel-table)
pedalResonancePole (pedalResonancePole-table default-pedalResonancePole-table)
pedalEnvelopet60 (pedalEnvelopet60-table default-pedalEnvelopet60-table)
soundboardCutofft60 (soundboardCutofft60-table default-soundboardCutofft60-table)
DryPedalResonanceFactor (DryPedalResonanceFactor-table default-DryPedalResonanceFactor-table)
unaCordaGain (unaCordaGain-table default-unaCordaGain-table))
</pre>
<p>Here is another example; there are a couple other examples at the end of piano.scm:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(do ((i 0 (+ i 1))) ((= i 8))
(p (* i .5) :duration .5 :keyNum (+ 24 (* 12 i)) :strike-velocity .5 :amp .4 :DryPedalResonanceFactor .25
:detuningFactor-table '(24 5 36 7.0 48 7.5 60 12.0 72 20 84 30 96 100 108 300)
; scales the above detuning values so 1.0 is nominal detuning,
; 0.0 is exactly in tune, > 1.0 is out of tune
:stiffnessFactor-table '(21 1.5 24 1.5 36 1.5 48 1.5 60 1.4 72 1.3 84 1.2 96 1.0 108 1.0))))
; 0.0 to 1.0 is less stiff, 1.0 to 2.0 is more stiff
</pre>
<p>In Ruby:
</p>
<pre class="indented">
include Piano
with_sound(:clm, false, :channels, 1) do
7.times do |i|
p(i * 0.5,
:duration, 0.5,
:keyNum, 24 + 12.0 * i,
:strike_velocity, 0.5,
:amp, 0.4,
:dryPedalResonanceFactor, 0.25)
end
end
</pre>
<div class="seealso">
see also: <a href="#stereoflute">flute</a> <a href="#maracadoc">maraca</a> <a href="#pluck">pluck</a> <a href="#prc95doc">prc95</a> <a href="#singerdoc">singer</a> <a href="#straddoc">strad</a>
</div>
<!-- FILE: play -->
<div class="header" id="playdoc">play</div>
<p>This file has a variety of "real-time" audio output examples. It is almost entirely obsolete.
</p>
<!-- play-with-amps -->
<pre class="indented">
<em class=emdef>play-with-amps</em> snd :rest amps
</pre>
<p>play-with-amps plays the sound 'snd' with each channel scaled by the corresponding
amp: (play-with-amps 0 1.0 0.5) plays sound 0's
channel 1 at full amplitude, and
channel 2 at half amplitude.
</p>
<div class="spacer"></div>
<!-- play-often -->
<pre class="indented">
<em class=def id="playoften">play-often</em> n
<em class=def id="playuntilcg">play-until-c-g</em>
<em class=def id="playregionforever">play-region-forever</em> reg
</pre>
<p>play-often plays the selected sound 'n' times.
play-until-c-g plays the selected sound until you interrupt it via C-g.
Similarly, play-region-forever plays region 'reg' until you interrupt it with C-g.
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\p 0
(lambda (n)
"play often"
(play-often (max 1 n))))
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> #\r 0
(lambda (n)
"play region forever"
(play-region-forever n)))
</pre>
<p>Now C-u 31 p plays the current sound 31 times; C-u 3 r plays region 3 until we type C-g.
</p>
<div class="spacer"></div>
<!-- play-sines -->
<pre class="indented">
<em class=def id="playsine">play-sine</em> freq amp
<em class=def id="playsines">play-sines</em> freqs-and-amps
</pre>
<p>play-sine plays a one-second sine wave at the given frequency and amplitude: (play-sine 440 .1).
play-sines produces a spectrum given a list of lists of frequency and amplitude:
</p>
<pre class="indented">
(play-sines '((425 .05) (450 .01) (470 .01) (546 .02) (667 .01) (789 .034) (910 .032)))
</pre>
<div class="spacer"></div>
<!-- start-dac -->
<pre class="indented">
<em class=def id="startdac">start-dac</em>
<em class=emdef>stop-dac</em>
</pre>
<p>start-dac opens the DAC ready for sound output, and stop-dac closes it.
</p>
<div class="spacer"></div>
<!-- FILE: poly -->
<div class="header" id="polydoc">poly</div>
<p>This file contains various functions related to the CLM polynomial function. A polynomial here
is a vector (for complex coefficients) holding the polynomial coefficients from lowest
to highest (i.e. the constant is (v 0), x+2 is (float-vector 2 1), etc).
</p>
<!-- main-index |polydoc:polynomial operations -->
<pre class="indented">
<em class=emdef>poly+</em> p1 p2 ; new poly = p1 + p2
<em class=emdef>poly*</em> p1 p2 ; new poly = p1 * p2
<em class=emdef>poly/</em> p1 p2 ; (list quotient-poly remainder-poly) = p1 / p2
<em class=emdef>poly-derivative</em> p1 ; new poly = Dp1
<em class=emdef>poly-reduce</em> p1 ; new poly = p1 without high zeros
<em class=emdef>poly-gcd</em> p1 p2 ; new poly = gcd(p1, p2)
<em class=emdef>poly-roots</em> p1 ; list of roots of p1
<em class=emdef>poly-resultant</em> p1 p2 ; resultant of p1 and p2
<em class=emdef>poly-discriminant</em> p1 ; discriminant of p1
</pre>
<p>
poly+ adds two polynomials, and poly* multiplies two polynomials.
poly/ divides two polynomials, with a few restrictions, and returns
a list containing the quotient and remainder polynomials. poly-derivative
returns the derivative of a polynomial. In all these cases, the resultant
polynomials may have extra high-degree entries whose coefficients are zero.
To remove these pointless coefficients, use poly-reduce.
The last functions are
just for fun.
</p>
<p>You can treat a sound as a set of polynomial coefficients; then, for example,
convolution the infinitely slow way is poly*:
</p>
<pre class="indented">
(float-vector->channel (poly* (channel->float-vector 0 (<a class=quiet href="extsnd.html#framples">framples</a>)) (float-vector 2.0))) ; no, this is not serious
</pre>
<div class="seealso">
see also: <a href="sndclm.html#polynomial">polynomial</a>
</div>
<!-- FILE: prc95 -->
<div class="header" id="prc95doc">prc95</div>
<!-- INDEX prc95doc:Physical Models -->
<p>prc95.scm is a translation to Snd of Perry Cook's (1995) physical modelling toolkit; prc-toolkit95.lisp
in CLM. One starting point for physical modelling is Smith, "Music Applications of Digital Waveguides", CCRMA, Stan-M-39, 1987,
or Julius's <A HREF="http://ccrma.stanford.edu/~jos/">home</A> page, or
any of several classic papers also by Julius Smith. Perry's own version of this code can be
found in <A HREF="http://ccrma.stanford.edu/CCRMA/Software/STK/">STK</A>.
The example instruments are:
</p>
<pre class="indented">
<em class=emdef>plucky</em> beg dur freq amplitude maxa ; plucked string
<em class=emdef>bow</em> beg dur frq amplitude maxa ; bowed string
<em class=emdef>brass</em> beg dur freq amplitude maxa
<em class=emdef>clarinet</em> beg dur freq amplitude maxa
<em class=emdef>flute</em> beg dur freq amplitude maxa
(<a class=quiet href="#wsdoc">with-sound</a> ()
(plucky 0 .3 440 .2 1.0)
(bow .5 .3 220 .2 1.0)
(brass 1 .3 440 .2 1.0)
(clarinet 1.5 .3 440 .2 1.0)
(flute 2 .3 440 .2 1.0))
</pre>
<div class="seealso">
see also:
maraca: <a href="#maracadoc">maraca.scm, maraca.rb</a>
piano: <a href="#pianodoc">piano.scm, piano.rb</a>
singer: <a href="#singerdoc">singer.scm, singer.rb</a>
bowed string: <a href="#straddoc">strad.scm, strad.rb</a>
flute: <a href="#clminsdoc">clm-ins.scm</a>
string: <a href="#vibratinguniformcircularstring">vibrating-string</a>
plucked string: pluck in clm-ins.scm
</div>
<!-- FILE: pvoc -->
<div class="header" id="pvocdoc">pvoc</div>
<p>
This is the same as the CLM <a href="sndclm.html#phase-vocoder">phase-vocoder</a> generator, but implemented in Scheme. If you're interested
in how the thing works, I think the Scheme version is easiest to understand; the Common Lisp version
is in mus.lisp, and the C version is in clm.c.
</p>
<pre class="indented">
<em class=emdef>make-pvocoder</em> fftsize overlap interp analyze edit synthesize
<em class=emdef>pvocoder</em> gen input
<em class=emdef>pvoc</em> (fftsize 512) (overlap 4) (time 1.0) (pitch 1.0) (gate 0.0) (hoffset 0.0) (snd 0) (chn 0)
</pre>
<p>The 'analyze', 'edit', and 'synthesize' arguments to make-pvocoder are
functions that are applied as needed during pvocoder processing; similarly, the 'input'
argument to pvocoder can be a function.
</p>
<pre class="indented">
(begin
(<a class=quiet href="extsnd.html#opensound">open-sound</a> "oboe.snd")
(let ((pv (<em class=red>make-pvocoder</em> 256 4 64))
(rd (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0)))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (y) (<em class=red>pvocoder</em> pv rd)))))
</pre>
<p>
pvoc.scm also contains a few examples of using the CLM phase-vocoder generator:
</p>
<pre class="indented">
(define test-pv-4
(lambda (gate)
(let ((pv (<a class=quiet href="sndclm.html#make-phase-vocoder">make-phase-vocoder</a>
(let ((reader (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0)))
(lambda (dir)
(reader)))
512 4 128 1.0
#f ;no change to analysis
(lambda (v)
(do ((N (length v))
(i 0 (+ i 1)))
((= i N) #t)
(if (< ((phase-vocoder-amp-increments v) i) gate)
(set! ((phase-vocoder-amp-increments v) i) 0.0))))
#f))) ;no change to synthesis
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (val)
(<a class=quiet href="sndclm.html#phase-vocoder">phase-vocoder</a> pv))))))
</pre>
<p>This sets up a phase-vocoder generator whose edit function is squelching soft partials.
In this case, the input function is reading the currently selected channel.
</p>
<p>
pvoc is yet another (unoptimized) phase-vocoder;
it applies the phase-vocoder
to the current sound; 'pitch' specifies the pitch transposition ratio,
'time' specifies the time dilation ratio,
'gate' specifies a resynthesis gate in dB (partials with amplitudes lower than
the gate value will not be synthesized), 'hoffset' is a pitch offset in Hz.
</p>
<pre class="indented">
(pvoc :time 2.0)
</pre>
<div class="seealso">
see also: <a href="sndclm.html#phase-vocoder">phase-vocoder</a> <a href="#pins">pins</a>
</div>
<!-- FILE: rgb -->
<div class="header" id="rgbdoc">rgb</div>
<p>rgb.scm (rgb.rb) is a translation of the standard X11 color names into Snd
color objects.
</p>
<pre class="indented">
(define snow (<a class=quiet href="extsnd.html#makecolor">make-color</a> 1.00 0.98 0.98))
</pre>
<p>is taken from the line</p>
<pre class="indented">
255 250 250 snow
</pre>
<p>/usr/lib/X11/rgb.txt. The choice of a float between 0.0 and 1.0 (rather
than an integer between 0 and 255) mimics PostScript;
as video hardware has improved over the years, there's
less and less need for these elaborate color names, and less
reason (except perhaps psychophysical) to limit these numbers to bytes.
There is one gotcha in this file — X11 defines a color named "tan"
which is already used by Scheme, so (at the suggestion of Dave Phillips)
this color is named "tawny" in rgb.scm. rgb.scm exports only *rgb* which
is an environment holding all the color names and values.
</p>
<!-- FILE: rubber -->
<div class="header" id="rubberdoc">rubber</div>
<pre class="indented">
<em class=def id="rubbersound">rubber-sound</em> stretch-factor snd chn
</pre>
<p>
rubber-sound tries to stretch or contract a sound (in time); it scans the sound
looking for stable (periodic) sections, then either deletes periods or interpolates new ones
to shorten or lengthen the sound. It still needs a lot of robustification.
The algorithm is 1) remove all frequencies below 16 Hz, 2) resample the file to be
ten times longer (interpolating samples), 3) make a list of upward zero crossings,
4) using autocorrelation decide where the next fundamental zero crossing probably
is and see how much difference there is between the current period and the next,
5) check intermediate crossing weights and if the autocorrelation weight is not
the smallest, throw away this crossing, 6) sort the remaining crossings by least weight,
7) interpolate or delete periods until the sound has been sufficiently lengthened or
shortened.
rubber-sound is incredibly slow, and almost never works. The idea seems good however...
<!-- ((((((( --><!-- this matches the preceding open parens for make-index.scm's benefit -->
</p>
<div class="seealso">
see also: <a href="#clmexpsrc">clm-expsrc</a> <a href="#expsrc">expsrc</a> <a href="#pvocdoc">pvoc</a> <a href="#ssbbank">ssb-bank</a>
</div>
<!-- FILE: s7test -->
<div class="header" id="s7testdoc">s7test</div>
<p>s7test.scm is a regression test for s7. Any additional tests are most welcome!
</p>
<!-- FILE: selection -->
<div class="header" id="selectiondoc">selection</div>
<!-- filter-selection-and-smooth -->
<pre class="indented">
<em class=def id="filterselectionandsmooth">filter-selection-and-smooth</em> ramp-dur flt order
</pre>
<p>filter-selection-and-smooth filters the current selection with flt, then mixes it back into the original using
ramp-dur to set how long the cross-fade ramps are.
</p>
<pre class="indented">
(filter-selection-and-smooth .01 (float-vector .25 .5 .5 .5 .25))
</pre>
<div class="spacer"></div>
<!-- make-selection -->
<pre class="indented">
<em class=def id="makeselection">make-selection</em> beg end snd chn
</pre>
<p>make-selection makes a selection, like <a href="extsnd.html#makeregion">make-region</a> but without creating
a region. make-selection follows snd's sync field, and applies to all snd's channels if chn is not specified. end defaults
to end of channel, beg defaults to 0, and snd defaults to the currently selected sound.
</p>
<pre class="indented">
(make-selection 1000 2000)
</pre>
<div class="spacer"></div>
<!-- replace-with-selection -->
<pre class="indented">
<em class=def id="replacewithselection">replace-with-selection</em>
</pre>
<p>replace-with-selection replaces any data at the cursor with the
current selection.
</p>
<div class="spacer"></div>
<!-- selection-members -->
<pre class="indented">
<em class=def id="selectionmembers">selection-members</em>
</pre>
<p>selection-members returns a list of lists of '(snd chn) indicating the channels participating in the current selection.
It is the selection-oriented version of <a href="#allchans">all-chans</a>.
</p>
<div class="spacer"></div>
<!-- swap-selection-channels -->
<pre class="indented">
<em class=def id="swapselectionchannels">swap-selection-channels</em>
</pre>
<p>swap-selection-channels swaps the current selection's channels.
</p>
<div class="spacer"></div>
<!-- with-temporary-selection -->
<pre class="indented">
<em class=def id="withtemporaryselection">with-temporary-selection</em> thunk beg dur snd chn
</pre>
<p>with-temporary selection saves the current selection placement, makes a new selection
of the data from sample 'beg' to beg + dur in the given channel, calls 'thunk', then
restores the previous selection (if any). It returns whatever 'thunk' returned.
</p>
<!-- FILE: singer -->
<div class="header" id="singerdoc">singer</div>
<!-- main-index |singerdoc:singer -->
<!-- main-index |singerdoc:voice physical model -->
<p>singer.scm is an implementation of Perry Cook's
physical model of the vocal tract as described in:
</p>
<pre class="indented">
Cook, Perry R. "Synthesis of the Singing Voice Using a Physically Parameterized Model of the Human Vocal Tract"
Published in the Proceedings of the International Computer Music Conference, Ohio 1989
and as Stanford University Department of Music Technical Report Stan-M-57, August 1989.
---- "Identification of Control Parameters in an Articulatory Vocal Tract Model, with Applications
to the Synthesis of Singing," Ph.D. Thesis, Stanford University Department of Music Technical Report
Stan-M-68, December 1990.
---- "SPASM, a Real-time Vocal Tract Physical Model Controller; and Singer, the Companion Software
Synthesis System", Computer Music Journal, vol 17 no 1 Spring 1993.
</pre>
<p>
singer.scm is a translation of Perry's singer.c.
I think that Perry's code assumes a sampling rate of 22050; you'll need to fix up lots of
lengths in the code to run at 44100.
The singer instrument looks deceptively simple:
</p>
<pre class="indented">
<em class=emdef>singer</em> beg amp data
</pre>
<p>
but all the complexity is hidden in the 'data' parameter.
'data' is a list of lists; each imbedded list has the form: '(dur shape glot pitch glotamp noiseamps vibramt).
The 'shape' and 'glot' entries are themselves lists; I think the 'glot'
list describes the glottal pulse. I wish I could fully explain all these lists, but
I translated this code a very long time ago, and can't remember any details. You'll
have to read the code, or perhaps find something in Perry's publications.
In any case, here's an example:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(singer 0 .1 (list (list .4 ehh.shp test.glt 523.0 .8 0.0 .01)
(list .6 oo.shp test.glt 523.0 .7 .1 .01))))
</pre>
<p>
The *.shp and *.glt data is defined at the end of singer.scm. For example:
</p>
<pre class="indented">
(define test.glt (list 10 .65 .65))
(define ee.shp (list 8 1.02 1.637 1.67 1.558 0.952 0.501 0.681 0.675 0.9 -0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0))
</pre>
<p>
A more complex example is singer's attempt to say "requiem":
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(singer 0 .1 (list (list .05 ehh.shp test.glt 523.0 0.8 0.0 .01)
(list .15 ehh.shp test.glt 523.0 0.8 0.0 .01)
(list .05 kkk.shp test.glt 523.0 0.0 0.0 .01)
(list .05 kkk.shp test.glt 523.0 0.0 0.0 .01)
(list .02 kk+.shp test.glt 523.0 0.0 1.0 .01)
(list .08 kk+.shp test.glt 523.0 0.0 0.2 .01)
(list .05 ooo.shp test.glt 523.0 0.8 0.0 .01)
(list .15 ooo.shp test.glt 523.0 0.8 0.0 .01)
(list .05 eee.shp test.glt 523.0 0.8 0.0 .01)
(list .15 eee.shp test.glt 523.0 0.8 0.0 .01)
(list .05 ehh.shp test.glt 523.0 0.8 0.0 .01)
(list .15 ehh.shp test.glt 523.0 0.8 0.0 .01)
(list .05 mmm.shp test.glt 523.0 0.8 0.0 .01)
(list .15 mmm.shp test.glt 523.0 0.8 0.0 .01)
(list .10 mmm.shp test.glt 523.0 0.0 0.0 .01))))
</pre>
<div class="seealso">
see also: <a href="#fofins">fofins</a> <a href="#reson">reson</a> <a href="#pqwvox">pqw-vox</a> <a href="#fmvox">vox</a>
</div>
<!-- FILE: snd15 -->
<div class="header" id="sndolddoc">snd15</div>
<p>This file contains several procedures
that were removed from or renamed in earlier versions of Snd (in Ruby, look in extensions.rb).
</p>
<!-- FILE: snddiff -->
<div class="header" id="snddiffdoc">snddiff</div>
<p>The snddiff function tries to detect how one sound differs from another.
</p>
<!-- snddiff -->
<pre class="indented"><a class=def>snddiff</a> snd0 chn0 snd1 chn1
</pre>
<p>This could use about a lifetime's work, but it does find some differences:
</p>
<pre class="indented">
;; start with two identical sounds:
> (map short-file-name (sounds))
("oboe.snd" "oboe.snd")
> (snddiff 0 0 1 0)
no-difference
;; snddiff can find individual sample differences:
> (set! (sample 1000 0 0) 0.5)
0.5
> (snddiff 0 0 1 0)
(differences ((1000 0.5 0.0328369140625)))
;; and scaling changes (we reverted the previous change):
> (scale-channel 2.0)
2.0
> (snddiff 0 0 1 0)
(scale 2.0)
;; and some initial delays:
> (pad-channel 0 200 0 0)
0
> (snddiff 0 0 1 0)
(lag 200 no-difference 0.0 #f #f #f)
</pre>
<!-- FILE: snd-gl -->
<div class="header" id="sndgldoc">snd-gl</div>
<p>snd-gl.scm has examples of using <A HREF="http://www.mesa3d.org/">OpenGL</A>. To try out these functions, build Snd
with GL: configure --with-gl. You can tell if your current Snd has OpenGL loaded by checking the
*features* list for 'gl: (provided? 'gl).
</p>
<!-- complexify -->
<pre class="indented">
<em class=def id="complexify">complexify</em>
</pre>
<p>complexify displays FFT data in the complex plane; each bin is
rotated so that they all stack along the x axis, with
a line drawn from the x axis to the current real/imaginary
point (as (z, y)), so as you move (slowly) through a
file, you'll see the phase info as well as the magnitude —
the vectors whirl around in each slice of the complex
plane. Use the View:Orientation dialog to change the
viewing angle. To move one sample at a time through a sound,
you could bind the arrow keys:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> "Left" 0 (lambda ()
(set! (<a class=quiet href="extsnd.html#leftsample">left-sample</a>) (max 0 (- (<a class=quiet href="extsnd.html#leftsample">left-sample</a>) 1)))
<a class=quiet>keyboard-no-action</a>))
(<a class=quiet href="extsnd.html#bindkey">bind-key</a> "Right" 0 (lambda ()
(set! (<a class=quiet href="extsnd.html#leftsample">left-sample</a>) (min (<a class=quiet href="extsnd.html#framples">framples</a>) (+ 1 (<a class=quiet href="extsnd.html#leftsample">left-sample</a>))))
<a class=quiet>keyboard-no-action</a>))
</pre>
<div class="spacer"></div>
<!-- gl-dump-state -->
<pre class="indented">
<em class=emdef>gl-dump-state</em>
</pre>
<p>gl-dump-state displays much of the current GL graphics state.
</p>
<div class="spacer"></div>
<!-- gl-info -->
<pre class="indented">
<em class=emdef>gl-info</em>
</pre>
<p>gl-info prints out information about the current GL system setup.
</p>
<div class="spacer"></div>
<div class="seealso">
see also: <a href="extsnd.html#glspectrogram">glSpectrogram</a> <a href="grfsnd.html#sndandgl">OpenGL</a>
</div>
<!-- INDEX variabledisplay:Debugging (instruments) -->
<!-- main-index |sndmotifdoc:user interface extensions -->
<!-- FILE: snd-motif, snd-xm -->
<div class="header" id="sndmotifdoc">snd-motif, snd-xm</div>
<p>snd-motif.scm has a variety of user-interface extensions that rely on the Motif module (xm.c).
In Ruby, see snd-xm.rb.
</p>
<div class="spacer"></div>
<!-- add-amp-controls -->
<pre class="indented">
<em class=def id="addampcontrols">add-amp-controls</em>
</pre>
<p>add-amp-controls adds amplitude sliders to the control panel
for multichannel sounds so that each channel gets its own amplitude control slider.
To make this the default, add (add-amp-controls) to your initialization file.
Here is a 4-channel control panel after adding the channel-specific amp controls.
</p>
<img class="indented" src="pix/addamps.png" alt="added amp controls">
<div class="spacer"></div>
<!-- add-delete-option -->
<pre class="indented">
<em class=def id="adddeleteoption">add-delete-option</em>
</pre>
<p>add-delete-option adds a "Delete" (file) option to the File menu.
</p>
<div class="spacer"></div>
<!-- add-find-to-listener -->
<pre class="indented">
<em class=emdef>add-find-to-listener</em>
</pre>
<p>add-find-to-listener causes C-s and C-r in the listener to start a separate "Find" dialog.
</p>
<div class="spacer"></div>
<!-- add-mark-pane -->
<pre class="indented">
<em class=def id="addmarkpane">add-mark-pane</em>
</pre>
<p>add-mark-pane adds a pane to each channel giving the current mark locations (sample values).
These can be edited to move the mark, or deleted to delete the mark. (If you add-mark-pane to a channel having marks,
you need to make some change to them to force it to be displayed).
Here's a picture (it also shows <a href="extsnd.html#withsmptelabel">with-smpte-label</a>,
<a href="extsnd.html#withinsetgraph">with-inset-graph</a>, and <a href="#showdiskspace">show-disk-space</a>).
</p>
<img class="noborder" src="pix/markpane.png" alt="mark pane" usemap="#markpanemap">
<map name="markpanemap">
<area shape=rect coords="70,30,150,50" alt="SMPTE label" href="extsnd.html#withsmptelabel">
<area shape=rect coords="240,33,245,120" alt="SMPTE label" href="extsnd.html#addmark">
<area shape=rect coords="337,33,343,120" alt="SMPTE label" href="extsnd.html#addmark">
<area shape=rect coords="539,33,545,120" alt="SMPTE label" href="extsnd.html#addmark">
<area shape=rect coords="570,25,710,45" alt="SMPTE label" href="extsnd.html#withinsetgraph">
<area shape=rect coords="725,25,800,155" alt="SMPTE label" href="#addmarkpane">
<area shape=rect coords="590,155,700,170" alt="SMPTE label" href="#showdiskspace">
</map>
<div class="spacer"></div>
<!-- add-rename-option -->
<pre class="indented">
<em class=emdef>add-rename-option</em>
</pre>
<p>add-rename-option adds a "Rename" (file) option to the File menu.
</p>
<div class="spacer"></div>
<!-- add-text-to-status-area -->
<pre class="indented">
<em class=emdef>add-text-to-status-area</em>
</pre>
<p>add-text-to-status-area puts a text widget in the notebook's status area
(the lower left portion of the main Snd window when using the -notebook invocation switch).
It returns the widget; you can write to it via XmTextFieldSetString.
</p>
<div class="spacer"></div>
<!-- add-tooltip -->
<pre class="indented">
<em class=def id="addtooltip">add-tooltip</em> widget tip
</pre>
<p>add-tooltip adds a tooltip (also known as bubble-help) to a widget. Once added,
set the variable with-tooltips to #f to turn it off.
</p>
<pre class="indented">
(add-tooltip (cadr (<a class=quiet href="extsnd.html#channelwidgets">channel-widgets</a>)) "show the time domain waveform")
</pre>
<div class="spacer"></div>
<!-- disable-control-panel -->
<pre class="indented">
<em class=def id="disablecontrolpanel">disable-control-panel</em> snd
</pre>
<p>disable-control-panel does away with the control panel.
</p>
<div class="spacer"></div>
<!-- display-widget-tree -->
<pre class="indented">
<em class=emdef>display-widget-tree</em> widget
</pre>
<p>display-widget-tree displays the hierarchy of widgets beneath 'widget'.
</p>
<div class="spacer"></div>
<!-- equalize-panes -->
<pre class="indented">
<em class=emdef>equalize-panes</em> snd
</pre>
<p>This equalizes multichannel sound panes (tries to make them the same size),
It is specific to Motif.
If the 'snd' argument is given, only that sound's panes are affected.
</p>
<div class="spacer"></div>
<!-- for-each-child -->
<pre class="indented">
<em class=def id="foreachchild">for-each-child</em> w func
<em class=emdef>find-child</em> w name
</pre>
<p>for-each-child applies 'func' to the widget 'w' and to each widget in the hierarchy of widgets below it.
'func' takes one argument, the child widget. for-each-child is used by find-child which searches
for a widget named 'name' belonging to 'w'.
</p>
<pre class="indented">
(for-each-child
((<a class=quiet href="extsnd.html#soundwidgets">sound-widgets</a>) 2) ; control panel
(lambda (w)
(<a class=quiet href="extsnd.html#sndprint">snd-print</a> (<a class=quiet>format</a> #f "~%~A" (XtName w)))))
</pre>
<div class="spacer"></div>
<!-- install-searcher-with-colors -->
<pre class="indented">
<em class=emdef>install-searcher-with-colors</em> proc
</pre>
<p>install-searcher-with-colors places
our own search procedure into the filter mechanism in the File:Open
dialog. This has been superseded by the <a href="extsnd.html#addfilefilter">file-filter</a> mechanism now built into Snd.
</p>
<pre class="indented">
(install-searcher-with-colors (lambda (file) #t))
</pre>
<div class="spacer"></div>
<!-- keep-file-dialog-open-upon-ok -->
<pre class="indented">
<em class=emdef>keep-file-dialog-open-upon-ok</em>
</pre>
<p>keep-file-dialog-open-upon-ok changes File:Open so that clicking "ok" does not unmanage (dismiss) the dialog.
</p>
<div class="spacer"></div>
<!-- load-font -->
<pre class="indented">
<em class=emdef>load-font</em> font-name
</pre>
<p>
load-font loads a font and returns a handle for it.
</p>
<pre class="indented">
(define new-font (<em class=red>load-font</em> "-*-helvetica-bold-r-*-*-14-*-*-*-*-*-*-*"))
(define* (show-greeting (snd 0) (chn 0)) ; works only in motif currently
;; show a red "hi!" in the helvetica bold font on a gray background
(let ((ls (left-sample snd chn))
(rs (right-sample snd chn)))
(if (and (< ls 1000)
(> rs 1000))
(let ((pos (x->position (/ 1000.0 (srate))))
(old-color (foreground-color)))
(set! (foreground-color) (make-color .75 .75 .75))
(fill-rectangle pos 10 50 20 snd chn time-graph #f #f)
(set! (foreground-color) (make-color 1 0 0))
(if new-font (set! (<em class=red>current-font</em>) new-font))
(draw-string "hi!" (+ pos 5) 12 snd chn time-graph #f)
(set! (foreground-color) old-color)))))
</pre>
<div class="spacer"></div>
<!-- main-index |makedropsite:drop sites -->
<!-- make-channel-drop-site -->
<pre class="indented">
<em class=def id="makedropsite">make-channel-drop-site</em> snd chn
<em class=emdef>set-channel-drop</em> drop snd chn
</pre>
<p>make-channel-drop-site shows how to add a drop site panel to a channel.
set-channel-drop changes the channel's graph's drop function to 'drop', a
function of 3 arguments, the dropped filename (a string) and the current sound and
channel number.
</p>
<div class="spacer"></div>
<!-- make-pixmap -->
<pre class="indented">
<em class=def id="makepixmap">make-pixmap</em> widget strs
</pre>
<p>make-pixmap turns an XPM-style description into pixmap. Briefly an XPM pixmap description
is an array of strings; the first gives the size in pixels of the pixmap, and the number of colors;
the next set give characters followed by the color desired for that character; then comes the
pixmap itself using those characters. The following defines a 16 X 12 arrow using 6 colors:
</p>
<pre class="indented">
(define arrow-strs (list
"16 12 6 1"
" c None s None"
". c gray50"
"X c black"
"o c white"
"O c yellow"
"- c ivory2 s basiccolor"
"--------X---------"
"---------X--------"
"----------X-------"
"-----------X------"
"------------X-----"
"XXXXXXXXXXXXXX----"
"------------X-----"
"-----------X------"
"----------X-------"
"---------X--------"
"--------X---------"
"-------X----------"))
</pre>
<p><code>(make-pixmap (cadr (<a class=quiet href="extsnd.html#mainwidgets">main-widgets</a>)) arrow-strs)</code> then creates the actual pixmap.
The 'widget' argument is needed to give us access to the current colormap and so on.
(cadr (main-widgets)) is just Snd's outer shell, which will do the trick in most cases.
</p>
<div class="spacer"></div>
<!-- make-variable-display -->
<pre class="indented">
<em class=def id="makevariabledisplay">make-variable-display</em> page-name variable-name (type 'text) (range (list 0.0 1.0))
<em class=def id="variabledisplay">variable-display</em> val widget
</pre>
<p>make-variable-display sets up a display point (a dialog) for an arbitrary expression which
is updated via variable-display. The latter returns its argument, so it acts as a sort of
probe, picking out any arbitrary point in an instrument and displaying it as the
instrument is running. Display points can be organized as pages in a notebook
widget:
</p>
<pre class="indented">
(define wid (make-variable-display "do-loop" "i*2" 'text))
(define wid1 (make-variable-display "do-loop" "i" 'text))
(do ((i 0 (+ i 1)))
((= i 10))
(variable-display (* (variable-display i wid1) 2) wid))
</pre>
<p>The 'type' argument to make-variable-display can be one of 'text
'scale, 'graph, 'spectrum, or 'meter.
It determines the kind of widget(s) used to display that variable.
The 'graph and 'spectrum cases create Snd channel displays,
accessible via a sound (and channel 0); these respond to the
various channel-related functions such as <a href="extsnd.html#showtransformpeaks">show-transform-peaks</a>,
although you have to give the sound explicitly:
</p>
<pre class="indented">
(define wid2 (make-variable-display "do-loop" "x" 'spectrum))
(set! (<a class=quiet href="extsnd.html#showtransformpeaks">show-transform-peaks</a> (car wid2)) #t)
</pre>
<p>Each graph or spectrum display is placed in its own pane (this is a desperate
kludge), whereas all the others are ordered vertically in a single pane.
The 'scale choice has an additional argument that gives the range of the
scale as a list (low high):
</p>
<pre class="indented">
(define wid2 (make-variable-display "do-loop" "i*2" 'scale '(-1.0 1.0)))
</pre>
<p>You can watch a generator's state on a sample-by-sample basis by
putting it in a text display:
</p>
<pre class="indented">
(define wid1 (make-variable-display "simp" "beg" 'text))
(define wid2 (make-variable-display "simp" "oscil" 'text))
(define wid3 (make-variable-display "simp" "outa" 'graph))
(<a class=quiet href="#definstrument">definstrument</a> (simp)
(let* ((beg 0)
(dur 1000)
(end (+ beg dur))
(osc (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> 440.0)))
(do ((i beg (+ i 1)))
((= i end))
(variable-display i wid1)
(variable-display
(<a class=quiet href="sndclm.html#oscil">oscil</a> (variable-display osc wid2) 0.0)
wid3))))
(simp)
</pre>
<img class="indented" src="pix/vardpy.png" alt="variable display">
<p>
To clear display state, there's also variable-display-reset.
</p>
<div class="spacer"></div>
<!-- mark-sync-color -->
<pre class="indented">
<em class=def id="marksynccolor">mark-sync-color</em> new-color
</pre>
<p>mark-sync-color uses the <a href="extsnd.html#drawmarkhook">draw-mark-hook</a> to set the color of sync'd marks.
</p>
<div class="spacer"></div>
<!-- menu-option -->
<pre class="indented">
<em class=emdef>menu-option</em> menu-name
</pre>
<p>menu-option returns the widget associated with a given menu item name ("Print" for example).
This is actually a bad idea since the menu names can change without warning.
</p>
<div class="spacer"></div>
<!-- select-file -->
<pre class="indented">
<em class=emdef>select-file</em> func title dir filter help
</pre>
<p>select-file starts a file selection dialog, running 'func' if a file is selected:
</p>
<pre class="indented">
(<a class=quiet href="extsnd.html#addtomenu">add-to-menu</a> 0 "Insert File"
(lambda ()
(<em class=red>select-file</em>
<a class=quiet href="extsnd.html#insertsound">insert-sound</a>
"Insert File" "." "*" "file will be inserted at cursor")))
</pre>
<div class="spacer"></div>
<!-- show-all-atoms -->
<pre class="indented">
<em class=emdef>show-all-atoms</em>
</pre>
<p>show-all-atoms displays all current X atom names (there are several hundred of these atoms normally).
</p>
<div class="spacer"></div>
<!-- show-disk-space -->
<pre class="indented">
<em class=def id="showdiskspace">show-disk-space</em>
</pre>
<p>show-disk-space adds a label in the
status area which shows the current amount of disk space available
on the partition of the associated sound. There's a picture of it in action above (add-mark-pane).
</p>
<div class="spacer"></div>
<!-- show-sounds-in-directory -->
<pre class="indented">
<em class=def id="makesoundbox">make-sound-box</em> name parent select-func peak-func sounds args
<em class=emdef>show-sounds-in-directory</em> (dir ".")
</pre>
<p>make-sound-box makes a container of sound file icons, each icon
containing a little sketch of the waveform, the length of the
file, and the filename. What happens when an icon is selected
is up to 'select-func'. However, if you drag (via
button 2) the icon to the menubar, that sound is opened,
and if you drag it to a channel graph, it is mixed at the
mouse location in that channel.
'select-func' called when sound icon is selected; it is passed the sound file's name.
'peak-func' (if any) tells the soundbox code where to find any associated peak env files.
'sounds' is list of sound file names.
'args' is list of resource settings for each icon.
</p>
<pre class="indented">
(make-sound-box "sounds"
((<a class=quiet href="extsnd.html#mainwidgets">main-widgets</a>) 3)
<a class=quiet href="extsnd.html#sndprint">snd-print</a>
*peak-env-dir*
(list "oboe.snd" "pistol.snd" "cardinal.snd" "storm.snd")
())
</pre>
<p>show-sounds-in-directory calls make-sound-box, filling it with
any sounds found in the directory passed as its argument (which defaults to
the current directory).
</p>
<img class="indented" src="pix/soundbox.png" alt="show-sounds-in-directory">
<div class="spacer"></div>
<!-- snd-clock-icon -->
<pre class="indented">
<em class=emdef>snd-clock-icon</em> snd hour
</pre>
<p>snd-clock-icon replaces Snd's hourglass with a (very primitive) clock.
</p>
<div class="spacer"></div>
<!-- upon-save-yourself -->
<pre class="indented">
<em class=def id="uponsaveyourself">upon-save-yourself</em> thunk
</pre>
<p>upon-save-yourself causes 'thunk' (a function of no arguments) to be called if the window
manager sends a SAVE_YOURSELF message.
</p>
<div class="spacer"></div>
<!-- upon-take-focus -->
<pre class="indented">
<em class=emdef>upon-take-focus</em> thunk
</pre>
<p>upon-take-focus causes 'thunk' (a function of no arguments) to be called
whenever Snd receives focus from the window manager.
</p>
<div class="spacer"></div>
<!-- with-minmax-button -->
<pre class="indented">
<em class=emdef>with-minmax-button</em>
</pre>
<p>with-minmax-button adds an open/close button to each sound's pane. To activate it:
</p>
<pre class="indented">
(hook-push <a class=quiet href="extsnd.html#afteropenhook">after-open-hook</a> with-minmax-button)
</pre>
<div class="spacer"></div>
<!-- zync -->
<pre class="indented">
<em class=emdef>unzync</em>
<em class=emdef>zync</em>
</pre>
<p>The pair zync and unzync cause the
y-axis zoom sliders of a multichannel file to move together (zync) or separately (unzync, the default).
</p>
<div class="seealso">
see also: <a href="grfsnd.html#sndwithmotif">motif</a> <a href="extsnd.html#snddialogs">dialogs</a> <a href="extsnd.html#graphics">graphics</a> <a href="#menusdoc">menus</a> <a href="#enveddoc">enved</a>
</div>
<!-- FILE: snd-test -->
<div class="header" id="sndtestdoc">snd-test</div>
<p>
snd-test.scm and snd-test.rb are test suites for Snd. The simplest use is:
</p>
<pre class="indented">
snd -l snd-test
</pre>
<p>
which will run all the tests, assuming you have the various sound files it is expecting to find.
You can run a particular test with:
</p>
<pre class="indented">
snd -l snd-test 23
</pre>
<p>which runs test 23.
snd-test is primarily useful to non-developers as a source of
a huge number of examples.
</p>
<!-- FILE: sndwarp -->
<div class="header" id="sndwarpdoc">sndwarp</div>
<p>
This is a translation from CLM of Bret Battey's sndwarp instrument, itself based on Richard Karpen's sndwarp csound generator.
It is similar to <a href="#expsrc">expsrc</a>.
</p>
<pre class="indented">
<em class=def id="sndwarp">sndwarp</em> beg dur file
(amp 1.0)
(amp-env '(0 1 100 1)) ; amplitude envelope
(stretch 1.0) ; time stretch — 2.0 -> twice as long
(srate 1.0) ; src — 0.5 -> octave down
(inputbeg 0.0) ; source file start point
(wsize 0.1) ; size of windows in seconds
(randw 0.02) ; randomness of wsize
(overlaps 15) ; window overlaps per sec
(time-ptr #f) ; #f=stretch mode, #t=time-ptr mode
(scale-time-ptr #f) ; #f=absolute, #t=rescale
(zero-start-time-ptr #f); #t=start at 0
(window-offset #f) ; #f=spread windows evenly
(loc 0.5) ; stereo loc, 0=left, 1=right
(rev 0.1) ; reverb amount
(srcwidth 5) ; src interpolation width
</pre>
<p>
Many of the parameters can also be envelopes. The source has commentary
which I'll slightly paraphrase here for convenience.
'time-ptr' is a flag that determines whether stretching or time-pointer mode
is to be used in interpreting the 'stretch' parameter.
In stretch mode, the value of 'stretch' scales the time
of the sound. For example, a value of 2 will stretch the sound
In time-ptr mode, the value(s) of 'stretch' are <a href="sndclm.html#readin">readin</a> pointers
into the soundfile. For example, to read through a file
backwards from 2 seconds at half speed, use a
stretch envelope such as '(0 2 1 0) with a 4 second note duration.
'scale-time-ptr' is a
flag that determines whether the time-ptr envelope is
interpreted in absolute seconds or rescaled to fit the
duration of the input sound file.
'zero-start-time-ptr' is a flag that determines (in time-ptr mode) whether
the first section of the windows start at
time-ptr = 0.
'window-offset' is a flag that determines how the windows are offset
in time.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (sndwarp 0 1 "oboe.snd"))
(<a class=quiet href="#wsdoc">with-sound</a> () (sndwarp 0 4 "oboe.snd" :stretch 2.0 :srate 0.5))
</pre>
<div class="seealso">
see also: <a href="#clmexpsrc">clm-expsrc</a> <a href="#expsrc">expsrc</a> <a href="#pvocdoc">pvoc</a> <a href="#rubberdoc">rubber</a> <a href="#ssbbank">ssb-bank</a>
</div>
<!-- FILE: spectr -->
<div class="header" id="spectrdoc">spectr</div>
<p>The spectr files were translated by Michael Scholz from CLM's spectr.clm. They contain a large
set of instrument steady-state spectra, gathered many years ago (before 1976) by James A Moorer.
The variable names are taken from the file names used by JAM, but by the time I got around to
rescuing the data from mouldering magtapes, he had long since moved on, so I don't actually
know what instrument some of the labels refer to. The data is in the form of a bunch of lists,
each given a name:
</p>
<pre class="indented">
(define trp-gs5 '( 1.02 .0114 2.02 .0346 3.02 .0045 4.04 .0013 5.06 .0002))
</pre>
<p>
which (I think) refers to a trumpet playing the note gs5. The first number is the harmonic,
the second its amplitude, the third the next harmonic, then its amplitude, and so on.
These spectra can be used directly in the instrument <a href="#spectra">spectra</a> in clm-ins.scm.
spectr.scm exports only *spectr* which is an environment that holds the spectral names and values.
</p>
<div class="seealso">
see also: <a href="#twotab">two-tab</a>
</div>
<!-- FILE: stochastic -->
<div class="header" id="stochasticdoc">stochastic</div>
<p>stochastic is Bill Sack's implementation of Xenakis' Dynamic Stochastic Synthesis as heard in his GENDY3, S.709, Legende d'Eer, etc.
</p>
<pre class="indented">
<em class=emdef>stochastic</em> start dur
(amp .9) ; overall amplitude
(bits 16) ; resolution of the wave's amplitude dimension
(xmin 1) ; minimum number of samples between time breakpoints, must be >= 1
(xmax 20) ; maximum number of samples between time breakpoints
(xwig 0) ; amplitude applied to random walk function in time dimension
(xstep 1) ; quantization of freedom in time dimension, in samples, minimum: 1
(ywig 0) ; amplitude applied to random walk function in amplitude dimension, as %amp
(xfb 0) ; FIR filter
(init-array '((10 0) (10 1) (10 0) (10 -.7) (10 0) (10 .5)
(10 0) (10 -.3) (10 0) (10 .2) (10 0) (10 -.1)))
; initial x and y breakpoints for wave,
; x values must be integers >= 1, y values between -1.0 and 1.0
</pre>
<p>stochastic.ins in the CLM tarball has an elaborate Common Music-based example.
Here is one that is much simpler, but very loud:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> () (stochastic 0 10 :xwig .25 :ywig 10.0))
</pre>
<!-- FILE: strad -->
<div class="header" id="straddoc">strad</div>
<p>strad.scm is a translation (by Michael Scholz) of CLM's strad.ins (by Juan Reyes).
It implements a physical model of a bowed string with stiffness.
</p>
<!-- FILE: tankrev -->
<div class="header" id="tankrevdoc">tank-rev</div>
<p>
tankrev.scm has Anders Vinjar's implementation of Jon Dattorro's plate reverb.
</p>
<!-- FILE: v and fmv -->
<div class="header" id="vdoc">v and fmv</div>
<!-- main-index |vdoc:fm-violin -->
<p>The fm violin was my favorite instrument while working in the 70's and 80's,
primarily on the Samson box. It was developed in Mus10 (ca 1977) based on ideas of John Chowning.
</p>
<pre class="indented">
<em class=emdef id="fmviolin">fm-violin</em> startime dur frequency amplitude
(fm-index 1.0) ; scales all indices
(amp-env '(0 0 25 1 75 1 100 0)) ; amplitude envelope
(periodic-vibrato-rate 5.0)
(random-vibrato-rate 16.0) ; jitter added to vibrato
(periodic-vibrato-amplitude 0.0025)
(random-vibrato-amplitude 0.005)
(noise-amount 0.0) ; noise added to modulation
(noise-freq 1000.0)
(ind-noise-freq 10.0) ; index envelope jitter
(ind-noise-amount 0.0)
(amp-noise-freq 20.0) ; amplitude envelope jitter
(amp-noise-amount 0.0)
(gliss-env '(0 0 100 0)) ; frequency envelope
(glissando-amount 0.0)
(fm1-env '(0 1 25 .4 75 .6 100 0)) ; 1:1 modulator amp (fm index) env
(fm2-env '(0 1 25 .4 75 .6 100 0)) ; 3:1 mod env
(fm3-env '(0 1 25 .4 75 .6 100 0)) ; 4:1 mod env
(fm1-rat 1.0) ; 1:1 actual mod:carrier freq ratio
(fm2-rat 3.0) ; 3:1 same
(fm3-rat 4.0) ; 4:1 same
(fm1-index #f) ; 1:1 mod local index scaler
(fm2-index #f) ; 3:1 same
(fm3-index #f) ; 4:1 same
(degree 0)
(distance 1.0)
(reverb-amount 0.01)
(base 1.0) ; amp env base (1.0 = line segments)
</pre>
<p>Most of these parameters are for special cases; normally you need only:
</p>
<pre class="indented">
Scheme: (with-sound () (fm-violin 0 1 440 .1))
Ruby: with_sound() do fm_violin_rb(0, 1, 440, .1, [[:fm_index, 2.0]]) end
</pre>
<p>
fm-violin sets up several parallel modulators of one carrier (see <A HREF="fm.html">fm.html</A>
for details, or (ah nostalgia...)
Schottstaedt, "The Simulation of Natural Instrument Tones Using Frequency Modulation with a Complex Modulating Wave", CMJ vol 1 no 4 1977 p46-50).
The modulators
themselves are modulated (vibrato, noise, etc). The FM indices were chosen to try
to mimic violin or cello sounds over a wide range of frequencies.
The various envelope "jitter" parameters set up slow moving random changes in
the associated envelopes; in some case this can produce a much richer sound.
There's no limit on what this instrument can do; nearly all my compositions in the 80's used
it. To hear some of the effects, load fmviolin.clm (it is a CLM notelist, but it is
completely compatible with Snd/Scheme).
</p>
<p>fmv.scm (or v.rb in Ruby) implements the fm-violin as a CLM-style generator, making it possible
to call the violin anywhere a generator could be called; since each call on the fm-violin
function produces the next sample of the given violin, this form of the fm-violin is easy
to call in "real-time" situations. Any other CLM-style instrument could
be rewritten in the same form.
</p>
<pre class="indented">
<em class=emdef>make-fm-violin</em>
frequency amplitude (fm-index 1.0) (amp-env #f)
(periodic-vibrato-rate 5.0) (random-vibrato-rate 16.0)
(periodic-vibrato-amplitude 0.0025) (random-vibrato-amplitude 0.005)
(noise-amount 0.0) (noise-freq 1000.0)
(ind-noise-freq 10.0) (ind-noise-amount 0.0)
(amp-noise-freq 20.0) (amp-noise-amount 0.0) (gliss-env #f)
(fm1-env #f) (fm2-env #f) (fm3-env #f)
(fm1-rat 1.0) (fm2-rat 3.0) (fm3-rat 4.0)
(fm1-index #f) (fm2-index #f) (fm3-index #f) (base 1.0)
<em class=emdef>fm-violin</em> gen
<em class=emdef>fm-violin-ins</em> [same args as original violin in v.scm]
</pre>
<p>fm-violin-ins shows how this generator can be fitted into the original fm-violin code.
The plethora of arguments is an historical artifact;
normally only a few of them are used at a time. There are two examples of calling this generator
in fmv.scm, the simpler one being:
</p>
<pre class="indented">
(define test-v
(lambda (beg dur freq amp amp-env)
(let ((v (<em class=red>make-fm-violin</em>
freq amp
:amp-env (let ((e (<a class=quiet href="sndclm.html#make-env">make-env</a> (or amp-env '(0 0 1 1 2 0))
:scaler amp
:length dur)))
(lambda () (<a class=quiet href="sndclm.html#env">env</a> e)))))
(data (channel->float-vector beg dur)))
(do ((i 0 (+ i 1)))
((= i dur))
(set! (data i) (+ (data i)
(<em class=red>v</em>))))
(<a class=quiet href="extsnd.html#setsamples">set-samples</a> beg dur data))))
</pre>
<p>Here we are setting up an fm-violin generator (via make-fm-violin), then
calling it 'dur' times, mixing its output into the current data (this could
also use mix-float-vector and so on). The generator is called via (v).
As can be seen here, each envelope is treated as a function called on each sample
very much like the "as-needed" input in src or granulate; the envelopes could actually be any
arbitrary function you like (see test-v1 in fmv.scm which uses an oscillator as one of
the fm index envelopes). One complication in some "real-time" situations is that
you don't know in advance how long a note will be; in this case, the envelope
generating functions should have attack and decay ramps, triggered by note-on and
note-off; once the ramp has reached its end point, the end value should be held;
the note itself should be called until it has had time to ramp off.
</p>
<p>
I can't resist including an historical digression.
Here is a Mus10 version of fm-violin (in this code ":=" is used in place of the original SAIL left arrow character,
and so on):
</p>
<pre class="indented">
ARRAY GlissFunc, DecayFunc, AttackFunc, SineWave, AmpFunc(512);
SYNTH(Sinewave); 1,1 999;
SEG(AmpFunc); 0,0 1,25 1,50 0,75 0,100;
SEG(GlissFunc);0,1 1,50, 0,100;
SEG(AttackFunc);0,0 1,100;
SEG(DecayFunc);1,1 .6,5 .3,10 .15,25 .07,50 0,100;
INSTRUMENT VN1;
VARIABLE Reset1,Noise,/NewMag,OtherFreq,/Gliss,Distance,Stereo,
Freq,Amp1,Amp2,Duration,AttackTime,DecayTime,Memory1,
Index1,Index2,Index3,scFreq,DecayLength,Switch1,Switch2,
/Mod1,/Mod2,/Mod3,/Env,/Att,/Vibrato,IMult,/Snd,
/Flutter,VibRate,VibAmp,/Ramp,/Decay,VibSwitch,LogFreq,
GlissLength,Bowing,DecayCall,VibCall,GlissCall,RampCall;
Memory1:=1;
I_ONLY BEGIN
Duration:=P2;
Freq:=P3;
Amp1:=P4;
Amp2:=P5;
OtherFreq:=P6;
IF Freq>=C THEN Freq:=Freq+Freq/100;
IF Freq<C THEN Freq:=Freq-20/Freq;
Switch1:=P14;
Switch2:=1-Switch1;
IMult:=P7-(Switch2/4);
VibSwitch:=P8;
Bowing:=P9;
Distance:=P10;
Stereo:=P11;
Noise:=P12;
GlissLength:=P13;
LogFreq:=ALOG(Freq);
DecayCall:=VibCall:=RampCall:=GlissCall:=20;
IF Amp1=Amp2 THEN RampCall:=SRATE;
IF Freq=OtherFreq THEN GlissCall:=SRATE;
IF VibSwitch=0 THEN VibCall:=SRATE;
IF Switch1=1 THEN DecayCall:=SRATE;
Vibrate:=5.25+RAND*.75;
VibAmp:=.006+RAND*.001;
IF Bowing=0
THEN
IF Memory1>.08
THEN
BEGIN
DecayTime:=.7;
AttackTime:=.2;
END
ELSE
BEGIN
DecayTime:=.7;
AttackTime:=.05;
Noise:=0;
END
ELSE
IF Memory1>.05
THEN
BEGIN
DecayTime:=.05;
AttackTime:=.2;
END
ELSE
BEGIN
DecayTime:=.05;
AttackTime:=.05;
Noise:=0;
END;
Memory1:=DecayTime;
IF AttackTime+DecayTime>=Duration
THEN
BEGIN
AttackTime:=Duration*AttackTime;
DecayTime:=DecayTime*Duration;
IF AttackTime<=.05 THEN AttackTime:=Duration-DecayTime-.01;
END;
ScFreq:=Freq*MAG;
DecayLength:=1000/Freq;
IF Switch1=0 THEN Noise:=.1;
Index1:=7.5*IMult/LogFreq;
Index2:=5/SQRT(Freq);
Index3:=IMult*30*(8.5-LogFreq)/Freq;
END;
Decay:=Switch1+EXPEN[DecayCall](Switch2,MAG*20/DecayLength,DecayFunc);
ENV:=Switch2+LINEN[20](Switch1,AttackTime/20,DecayTime/20,Duration/20,AmpFunc,Reset1:=0);
Ramp:=Amp1+NOSCIL[RampCall](Amp2-Amp1,20*MAG/Duration,AttackFunc);
Gliss:=Freq+EXPEN[GlissCall](OtherFreq-Freq,20*MAG/GlissLength,GlissFunc);
FLutter:=RANDI[VibCall](1,200*Mag);
Vibrato:=NOSCIL[VibCall](ENV,Vibrate*MAG*20,SineWave);
Att:=1-EXPEN[20](1,MAG*640,AttackFunc);
NewMag:=(1+Flutter*.005)*(1+Vibrato*VibAmp)*(1+RANDI(Noise*Att,2000*Mag))*Gliss*Mag;
Mod1:=NOSCIL(Decay*ScFreq*(Att+Index1),NewMag,Sinewave);
Mod2:=NOSCIL(Decay*ScFreq*(Att+Index2),4*NewMag,Sinewave);
Mod3:=NOSCIL(Decay*ScFreq*(Att+Index3),3*NewMag,Sinewave);
Snd:=ZOSCIL(Decay*ENV*Ramp,NewMag+Mod1+Mod2+Mod3,Sinewave);
OUTA:=OUTA+Snd*0.5;
END;
</pre>
<table class="method">
<tr><td>
<img src="pix/early.png" alt="at the park, copyright Patte Wood">
</td><td>
<img src="pix/later.png" alt="at home">
</td></tr>
<tr><td class="center">then</td><td class="center">now</td></tr>
</table>
<p>
This instrument required about 60 seconds of computing on a PDP-10
(a $250,000 minicomputer) for 1 second of sound (our normal sampling
rate was 12800). Since the PDP was massively time-shared, 60 seconds
of computing could involve many minutes of sitting around watching
AI scientists play Space War.
Mus10 was an extension of Music V for the PDP-10 family of computers.
To give a feel for how one worked in those days, here's a brief quote from the Mus10 manual (by Tovar and
Leland Smith, May 1977):
</p>
<pre class="indented">
The following generates 1 second of a 440 Hz sine wave followed by
1/2 sec. of a 660Hz sine wave. The output goes to a file, MUSIC.MSB,
which is written on DSKM.
COMMENT Fill array with sine wave;
ARRAY SINETABLE[511];
FOR I:=0 STEP 1 UNTIL 511 DO SINETABLE[I]:=SIN(2*PI/512);
INSTRUMENT SINE;
COMMENT Generate simple sine wave. P4 = Amplitude, P3 = frequency;
OUTA:=OUTA+OSCIL(P4,P3*MAG,SINETABLE);
END;
COMMENT Now, generate the sound;
PLAY ;
SIMP 0, 1, 440, 1000;
SIMP 1, 1/2, 660, 1000;
FINISH;
</pre>
<p>
The computation involved was considered so burdensome, that the names of
the main users were posted in the AI lab halls, apparently to try to
get us to go away. I was normally the primary user (in terms of computrons) for the entire lab, and I had no intention
of going away.
In the Samson box world, this (in its initial "chorus" version) was:
</p>
<pre class="indented">
Instrument(Violin);
RECORD_POINTER(seg) nullfunc;
INTEGER ARRAY gens[1:4],indgens[1:6], GensA[1:4],AmpGens[1:2];
! synthesizer addresses;
REAL ARRAY ratsA[1:4],Indrats[1:6],ratsB[1:4],AmpRats[1:2];
! envelope data;
INTEGER ModGens1Sum,i,FuncOffSet,k,GenOutLoc,GenInLoc,ModGens2Sum,x1,x2;
Pars(<(InsName,Beg,Dur,Freq,Amp,Function AmpFunc,Function IndFunc,IndMult,
SkewMult,Nothing,PcRev,No11,No12,No13,Function SkewFunc)>);
! the parameters of this instrument;
Dbugit(Pns); ! debugging aid;
GenOutLoc:=CASE (Pn[1] MOD 4) OF (Outma,Outmb,Outmc,Outmd);
! OUTMA is channel 1, OUTMB channel 2, etc;
if freq>srate/3 then return; ! note too high, so leave it out;
x1:=3; ! modulating frequency checks;
x2:=4; ! (we want them less than srate/2);
If x1*freq>srate/2 Then x1:=1;
If x2*freq>srate/2 then x2:=1;
amp:=Amp/2; ! two carriers, so halve the amplitude;
waiter(Beg); ! wait for the beginning of the note;
indRats[1]:=(x1*Freq*IndMult*((8.5-log(freq))/(3+(freq/1000)))*4/srate) MIN .999;
indRats[2]:=(x2*Freq*IndMult*(1/(freq^.5))*4/srate) MIN .999;
indRats[3]:=(freq*IndMult*(5/log(freq))*4/srate) MIN .999;
indrats[4]:=indrats[1]; indrats[5]:=indrats[2]; indrats[6]:=indrats[3];
ratsA[1]:=x1; ratsA[2]:=x2; ratsA[3]:=1; ratsA[4]:=1;
ratsB[1]:=x1+.002; ratsB[2]:=x2+.003; ratsB[3]:=1.002; ratsB[4]:=1;
! this is the skewing for the chorus effect;
Gens[1]:=Osc(Pns,ModGens1Sum); ! now set up the oscillators;
Gens[2]:=Osc(Pns,ModGens1Sum);
Gens[3]:=Osc(Pns,ModGens1Sum);
Gens[4]:=Osc(Pns,genInLoc,ModGens1Sum); ! carrier 1;
GensA[1]:=Osc(Pns,ModGens2Sum);
GensA[2]:=Osc(Pns,ModGens2Sum);
GensA[3]:=Osc(Pns,ModGens2Sum);
GensA[4]:=Osc(Pns,genInLoc,ModGens2Sum);! carrier 2;
indgens[1]:=gens[1]; indgens[2]:=gens[2]; indgens[3]:=gens[3];
indgens[4]:=gensA[1]; indgens[5]:=gensA[2]; indgens[6]:=gensA[3];
! set up envelope addressing;
ModSig(Pns,GenOutLoc,GenInLoc,1-pcRev); ! send signal to DACs;
ModSig(Pns,RevIn,GenInLoc,pcRev); ! and signal to reverberator;
AmpGens[1]:=Gens[4]; AmpGens[2]:=GensA[4]; AmpRats[1]:=1; AmpRats[2]:=1;
! now add the envelopes;
AddArrEnv(Pns,AmpGens,2,"A",0,Amp/2,AmpFunc,AmpRats);
AddArrEnv(Pns,IndGens,6,"A",0,1,IndFunc,Indrats);
AddArrEnv(Pns,Gens,4,"F",freq,Freq*skewmult,skewfunc,ratsA,
5,.011,.011,nullfunc,6,.017,.017,nullfunc,0,0);
AddArrEnv(Pns,GensA,4,"F",freq,Freq*skewmult,skewfunc,ratsA,
6,.010,.010,nullfunc,5,.017,.017,nullfunc,1,0);
End!Instrument(Pns); ! deallocation;
</pre>
<p>
The Sambox version eventually became incredibly complicated, mainly to
try to handle note list problems in the instrument. The Samson box could
run about 5 or 6 of these in "real-time", similar to a modern-day
500 MHz Pentium running CLM.
The parallel in the Sambox world to the SIMP example above is (this is
taken from SAMBOX.BIL, November 1984):
</p>
<pre class="indented">
Instrument(Simp);
Integer Gen1;
Gen1:=Osc(Pns,OutA,Zero,SineMode,0,0,Pn[3]);
AddEnv(Pns,Gen1,"A",0,Pn[4],Pf[5]);
End_Instrument(Pns);
</pre>
<p>The Common Lisp version of this is:</p>
<pre class="indented">
(<a class=quiet href="#definstrument">definstrument</a> simp (start-time duration frequency amplitude
&optional (amp-env '(0 0 50 1 100 0)))
(multiple-value-bind (beg end) (<a class=quiet href="sndclm.html#timestosamples">times->samples</a> start-time duration)
(let ((s (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(amp (<a class=quiet href="sndclm.html#make-env">make-env</a> amp-env :scaler amplitude :duration duration)))
(run
(loop for i from beg below end do
(<a class=quiet href="sndclm.html#outa">outa</a> i (* (<a class=quiet href="sndclm.html#env">env</a> amp) (<a class=quiet href="sndclm.html#oscil">oscil</a> s))))))))
</pre>
<p>
In Common Lisp, the fm-violin became (fm.html, 1989):
</p>
<pre class="indented">
(<a class=quiet href="#definstrument">definstrument</a> violin (beg end frequency amplitude fm-index)
(let* ((frq-scl (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> frequency))
(maxdev (* frq-scl fm-index))
(index1 (* maxdev (/ 5.0 (log frequency))))
(index2 (* maxdev 3.0 (/ (- 8.5 (log frequency)) (+ 3.0 (/ frequency 1000)))))
(index3 (* maxdev (/ 4.0 (sqrt frequency))))
(carrier (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(fmosc1 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(fmosc2 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* 3 frequency)))
(fmosc3 (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* 4 frequency)))
(ampf (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 25 1 75 1 100 0) :scaler amplitude))
(indf1 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 1 25 .4 75 .6 100 0) :scaler index1))
(indf2 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 1 25 .4 75 .6 100 0) :scaler index2))
(indf3 (<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 1 25 .4 75 .6 100 0) :scaler index3))
(pervib (<a class=quiet href="sndclm.html#make-triangle-wave">make-triangle-wave</a> :frequency 5 :amplitude (* .0025 frq-scl)))
(ranvib (make-randi :frequency 16 :amplitude (* .005 frq-scl)))
(vib 0.0))
(run
(loop for i from beg to end do
(setf vib (+ (<a class=quiet href="sndclm.html#triangle-wave">triangle-wave</a> pervib) (randi ranvib)))
(<a class=quiet href="sndclm.html#outa">outa</a> i (* (<a class=quiet href="sndclm.html#env">env</a> ampf)
(<a class=quiet href="sndclm.html#oscil">oscil</a> carrier
(+ vib
(* (<a class=quiet href="sndclm.html#env">env</a> indf1) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc1 vib))
(* (<a class=quiet href="sndclm.html#env">env</a> indf2) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc2 (* 3.0 vib)))
(* (<a class=quiet href="sndclm.html#env">env</a> indf3) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc3 (* 4.0 vib)))))))))))
</pre>
<p>or in its actual (non-simplified) form:
</p>
<pre class="indented">
(defun bit20 (x) ;Samson box modifier got 20 bit int interpreted as fraction
(if (>= x (expt 2 19)) ;(keep fm-violin compatible with old note lists)
(float (/ (- x (expt 2 20)) (expt 2 19)))
(float (/ x (expt 2 19)))))
(defun make-frobber-function (beg end frobl)
(let ((result (list beg))
(val (bit20 (cadr frobl))))
(loop for x in frobl by #'cddr and
y in (cdr frobl) by #'cddr do
(when (and (>= x beg)
(<= x end))
(push val result)
(push x result)
(setf val (bit20 y))))
(push val result)
(push end result)
(push val result)
(nreverse result)))
(<a class=quiet href="#definstrument">definstrument</a> fm-violin
(startime dur frequency amplitude &key
(fm-index 1.0)
(amp-env '(0 0 25 1 75 1 100 0))
(periodic-vibrato-rate 5.0)
(random-vibrato-rate 16.0)
(periodic-vibrato-amplitude 0.0025)
(random-vibrato-amplitude 0.005)
(noise-amount 0.0) (noise-freq 1000.0)
(ind-noise-freq 10.0) (ind-noise-amount 0.0)
(amp-noise-freq 20.0) (amp-noise-amount 0.0)
(gliss-env '(0 0 100 0)) (glissando-amount 0.0)
(fm1-env '(0 1 25 .4 75 .6 100 0))
(fm2-env '(0 1 25 .4 75 .6 100 0))
(fm3-env '(0 1 25 .4 75 .6 100 0))
(fm1-rat 1.0) (fm2-rat 3.0) (fm3-rat 4.0)
(fm1-index nil) (fm2-index nil) (fm3-index nil)
(base nil) (frobber nil)
(reverb-amount 0.01)
(index-type :violin)
(degree nil) (distance 1.0) (degrees nil)
(no-waveshaping nil) (denoise nil)
(denoise-dur .1) (denoise-amp .005)
&allow-other-keys)
(if (> (abs amplitude) 1.0)
(setf amplitude (clm-cerror ".1?" .1 #'numberp "amplitude = ~A?" amplitude)))
(if (<= (abs frequency) 1.0)
(setf frequency (clm-cerror "440.0?" 440.0 #'numberp "frequency = ~A?" frequency)))
(let* ((beg (floor (* startime *srate*)))
(end (+ beg (floor (* dur *srate*))))
(frq-scl (<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> frequency))
(modulate (not (zerop fm-index)))
(maxdev (* frq-scl fm-index))
(vln (not (eq index-type :cello)))
(logfreq (log frequency))
(sqrtfreq (sqrt frequency))
(index1 (or fm1-index (min pi (* maxdev (/ (if vln 5.0 7.5) logfreq)))))
(index2 (or fm2-index (min pi (* maxdev 3.0 (if vln
(/ (- 8.5 logfreq) (+ 3.0 (* frequency .001)))
(/ 15.0 sqrtfreq))))))
(index3 (or fm3-index (min pi (* maxdev (/ (if vln 4.0 8.0) sqrtfreq)))))
(easy-case (and (not no-waveshaping)
(zerop noise-amount)
(eq fm1-env fm2-env)
(eq fm1-env fm3-env)
(zerop (- fm1-rat (floor fm1-rat)))
(zerop (- fm2-rat (floor fm2-rat)))
(zerop (- fm3-rat (floor fm3-rat)))
(zerop (nth-value 1 (floor fm2-rat fm1-rat)))
(zerop (nth-value 1 (floor fm3-rat fm1-rat)))))
(coeffs (and easy-case modulate
(partials->polynomial
(list fm1-rat index1
(floor fm2-rat fm1-rat) index2
(floor fm3-rat fm1-rat) index3))))
;; that is, we're doing the polynomial evaluation using fm1osc running at fm1-rat * frequency
;; so everything in the polynomial table should be in terms of harmonics of fm1-rat
(norm (or (and easy-case modulate 1.0) index1))
(carrier (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> frequency))
(fmosc1 (and modulate (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* fm1-rat frequency))))
(fmosc2 (and modulate (or easy-case (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* fm2-rat frequency)))))
(fmosc3 (and modulate (or easy-case (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> (* fm3-rat frequency)))))
(ampf (<a class=quiet href="sndclm.html#make-env">make-env</a>
(if denoise
(reduce-amplitude-quantization-noise amp-env dur amplitude denoise-dur denoise-amp)
amp-env)
amplitude :base base :duration dur))
(indf1 (and modulate (<a class=quiet href="sndclm.html#make-env">make-env</a> fm1-env norm :duration dur)))
(indf2 (and modulate (or easy-case (<a class=quiet href="sndclm.html#make-env">make-env</a> fm2-env index2 :duration dur))))
(indf3 (and modulate (or easy-case (<a class=quiet href="sndclm.html#make-env">make-env</a> fm3-env index3 :duration dur))))
(frqf (<a class=quiet href="sndclm.html#make-env">make-env</a> gliss-env (* glissando-amount frq-scl) :duration dur))
(pervib (<a class=quiet href="sndclm.html#make-triangle-wave">make-triangle-wave</a> periodic-vibrato-rate (* periodic-vibrato-amplitude frq-scl)))
(ranvib (<a class=quiet href="sndclm.html#make-rand-interp">make-rand-interp</a> random-vibrato-rate (* random-vibrato-amplitude frq-scl)))
(fm-noi (if (and (/= 0.0 noise-amount)
(null frobber))
(<a class=quiet href="sndclm.html#make-rand">make-rand</a> noise-freq (* pi noise-amount))))
(ind-noi (if (and (/= 0.0 ind-noise-amount) (/= 0.0 ind-noise-freq))
(<a class=quiet href="sndclm.html#make-rand-interp">make-rand-interp</a> ind-noise-freq ind-noise-amount)))
(amp-noi (if (and (/= 0.0 amp-noise-amount) (/= 0.0 amp-noise-freq))
(<a class=quiet href="sndclm.html#make-rand-interp">make-rand-interp</a> amp-noise-freq amp-noise-amount)))
(frb-env (if (and (/= 0.0 noise-amount) frobber)
(<a class=quiet href="sndclm.html#make-env">make-env</a> (make-frobber-function startime (+ startime dur) frobber) :duration dur
:base 0 :scaler (* two-pi noise-amount))))
(vib 0.0)
(modulation 0.0)
(loc (<a class=quiet href="sndclm.html#make-locsig">make-locsig</a> :degree (or degree degrees (random 90.0))
:reverb reverb-amount :distance distance))
(fuzz 0.0)
(ind-fuzz 1.0)
(amp-fuzz 1.0))
(run
(loop for i from beg to end do
(if (/= 0.0 noise-amount)
(if (null frobber)
(setf fuzz (<a class=quiet href="sndclm.html#rand">rand</a> fm-noi))
(setf fuzz (<a class=quiet href="sndclm.html#env">env</a> frb-env))))
(setf vib (+ (<a class=quiet href="sndclm.html#env">env</a> frqf) (<a class=quiet href="sndclm.html#triangle-wave">triangle-wave</a> pervib) (<a class=quiet href="sndclm.html#rand-interp">rand_interp</a> ranvib)))
(if ind-noi (setf ind-fuzz (+ 1.0 (<a class=quiet href="sndclm.html#rand-interp">rand-interp</a> ind-noi))))
(if amp-noi (setf amp-fuzz (+ 1.0 (<a class=quiet href="sndclm.html#rand-interp">rand-interp</a> amp-noi))))
(if modulate
(if easy-case
(setf modulation
(* (<a class=quiet href="sndclm.html#env">env</a> indf1)
(<a class=quiet href="sndclm.html#polynomial">polynomial</a> coeffs (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc1 vib)))) ;(* vib fm1-rat)??
(setf modulation
(+ (* (<a class=quiet href="sndclm.html#env">env</a> indf1) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc1 (+ (* fm1-rat vib) fuzz)))
(* (<a class=quiet href="sndclm.html#env">env</a> indf2) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc2 (+ (* fm2-rat vib) fuzz)))
(* (<a class=quiet href="sndclm.html#env">env</a> indf3) (<a class=quiet href="sndclm.html#oscil">oscil</a> fmosc3 (+ (* fm3-rat vib) fuzz)))))))
(<a class=quiet href="sndclm.html#locsig">locsig</a> loc i
(* (<a class=quiet href="sndclm.html#env">env</a> ampf) amp-fuzz
(<a class=quiet href="sndclm.html#oscil">oscil</a> carrier (+ vib (* ind-fuzz modulation)))))))))
</pre>
<p>which is very similar to the Scheme version (v.scm).
And I just found this out on the net; I'm no csound expert, so I merely quote what I find:
</p>
<pre class="indented">
;ORC
; edited by R. Pinkston, modified for use with MIDI2CS by R. Borrmann
;
;==========================================================================;
; Schottstaedt FM String Instrument from Dodge ;
; ;
;p4 = amp p5 = pch p6 = rise p7 = dec p8 = vibdel p9 = vibwth p10 = vibrte ;
;==========================================================================;
; sr = 44100
; kr = 4410
; ksmps = 10
; nchnls = 1
;
; instr 1
par
p_maxamplitude 32000
p_cps
endpar
iamp = p4
irise = .2 ;p6
idec = .2 ;p7
ivibdel = .75 ;p8
ivibwth = .03 ;p9
ivibrte = 5.5 ;p10
ifc = p5
ifm1 = ifc
ifm2 = ifc*3
ifm3 = ifc*4
indx1 = 7.5/log(ifc) ;range from ca 2 to 1
indx2 = 15/sqrt(ifc) ;range from ca 2.6 to .5
indx3 = 1.25/sqrt(ifc) ;range from ca .2 to .038
kvib init 0
timout 0,ivibdel,transient ;delays vibrato for p8 seconds
kvbctl linen 1,.5,p3-ivibdel,.1 ;vibrato control envelope
krnd randi .0075,15 ;random deviation in vib width
kvib oscili kvbctl*ivibwth+krnd,ivibrte*kvbctl,1 ;vibrato generator
transient:
timout .2,p3,continue ;execute for .2 secs only
ktrans linseg 1,.2,0,1,0 ;transient envelope
anoise randi ktrans,.2*ifc ;noise...
attack oscil anoise,2000,1 ;...centered around 2kHz
continue:
amod1 oscili ifm1*(indx1+ktrans),ifm1,1
amod2 oscili ifm2*(indx2+ktrans),ifm2,1
amod3 oscili ifm3*(indx3+ktrans),ifm3,1
asig oscili iamp,(ifc+amod1+amod2+amod3)*(1+kvib),1
asig linen asig+attack,irise,p3,idec
; out asig
;
; endin
aright = asig
aleft = asig
</pre>
<p>There's a C/CLM version of this instrument in <a href="sndlib.html">sndlib.html</a>. The body of the fm-violin
in C/CLM is:
</p>
<pre class="indented">
if (noise_amount != 0.0) fuzz = mus_rand(fmnoi,0.0);
if (frqf) vib = mus_env(frqf); else vib = 0.0;
vib += mus_triangle_wave(pervib, 0.0) +
mus_rand_interp(ranvib, 0.0);
if (easy_case)
modulation = mus_env(indf1) *
mus_polynomial(coeffs, mus_oscil(fmosc1, vib, 0.0), npartials);
else
modulation = mus_env(indf1) * mus_oscil(fmosc1, (fuzz + fm1_rat * vib), 0.0) +
mus_env(indf2) * mus_oscil(fmosc2, (fuzz + fm2_rat * vib), 0.0) +
mus_env(indf3) * mus_oscil(fmosc3, (fuzz + fm3_rat * vib), 0.0);
mus_locsig(loc, i, mus_env(ampf) *
mus_oscil(carrier, vib + indfuzz * modulation, 0.0));
</pre>
<p>And here is the Ruby version, written by Michael Scholz (see examp.rb):</p>
<pre class="indented">
#
# fm_violin([start=0.0[, dur=1.0[, freq=440.0[, amp=0.3[, *args]]]]])
#
def fm_violin(start = 0.0, dur = 1.0, freq = 440.0, amp = 0.3, *args)
include Math; # PI
usage = "fm_violin([start=0.0[, dur=1.0[, freq=440.0[, amp=0.3[, *args]]]]])
[:fm_index, 1.0]
[:amp_env, [0, 0, 25, 1, 75, 1, 100, 0]]
[:periodic_vibrato_rate, 5.0]
[:random_vibrato_rate, 16.0]
[:periodic_vibrato_amp, 0.0025]
[:random_vibrato_amp, 0.005]
[:noise_amount, 0.0]
[:noise_freq, 1000.0]
[:ind_noise_freq, 10.0]
[:ind_noise_amount, 0.0]
[:amp_noise_freq, 20.0]
[:amp_noise_amount, 0.0]
[:gliss_env, [0, 0, 100, 0]]
[:gliss_amount, 0.0]
[:fm1_env, [0, 1, 25, 0.4, 75, 0.6, 100, 0]]
[:fm2_env, [0, 1, 25, 0.4, 75, 0.6, 100, 0]]
[:fm3_env, [0, 1, 25, 0.4, 75, 0.6, 100, 0]]
[:fm1_rat, 1.0]
[:fm2_rat, 3.0]
[:fm3_rat, 4.0]
[:fm1_index, false]
[:fm2_index, false]
[:fm3_index, false]
[:base, 1.0]
[:reverb_amount, 0.01]
[:index_type, :violin]
[:degree, false]
[:distance, 1.0]
[:degrees, false]
Ruby: fm_violin(0, 1, 440, .1, [[:fm_index, 2.0]])
Scheme: (fm-violin 0 1 440 .1 :fm-index 2.0)\n\n";
fm_index = (args.assoc(:fm_index)[1] rescue 1.0);
amp_env = (args.assoc(:amp_env)[1] rescue [0, 0, 25, 1, 75, 1, 100, 0]);
periodic_vibrato_rate = (args.assoc(:periodic_vibrato_rate)[1] rescue 5.0);
random_vibrato_rate = (args.assoc(:random_vibrato_rate)[1] rescue 16.0);
periodic_vibrato_amp = (args.assoc(:periodic_vibrato_amp)[1] rescue 0.0025);
random_vibrato_amp = (args.assoc(:random_vibrato_amp)[1] rescue 0.005);
noise_amount = (args.assoc(:noise_amount)[1] rescue 0.0);
noise_freq = (args.assoc(:noise_freq)[1] rescue 1000.0);
ind_noise_freq = (args.assoc(:ind_noise_freq)[1] rescue 10.0);
ind_noise_amount = (args.assoc(:ind_noise_amount)[1] rescue 0.0);
amp_noise_freq = (args.assoc(:amp_noise_freq)[1] rescue 20.0);
amp_noise_amount = (args.assoc(:amp_noise_amount)[1] rescue 0.0);
gliss_env = (args.assoc(:gliss_env)[1] rescue [0, 0, 100, 0]);
gliss_amount = (args.assoc(:gliss_amount)[1] rescue 0.0);
fm1_env = (args.assoc(:fm1_env)[1] rescue [0, 1, 25, 0.4, 75, 0.6, 100, 0]);
fm2_env = (args.assoc(:fm2_env)[1] rescue [0, 1, 25, 0.4, 75, 0.6, 100, 0]);
fm3_env = (args.assoc(:fm3_env)[1] rescue [0, 1, 25, 0.4, 75, 0.6, 100, 0]);
fm1_rat = (args.assoc(:fm1_rat)[1] rescue 1.0);
fm2_rat = (args.assoc(:fm2_rat)[1] rescue 3.0);
fm3_rat = (args.assoc(:fm3_rat)[1] rescue 4.0);
fm1_index = (args.assoc(:fm1_index)[1] rescue false);
fm2_index = (args.assoc(:fm2_index)[1] rescue false);
fm3_index = (args.assoc(:fm3_index)[1] rescue false);
base = (args.assoc(:base)[1] rescue 1.0);
reverb_amount = (args.assoc(:reverb_amount)[1] rescue 0.01);
index_type = (args.assoc(:index_type)[1] rescue :violin);
degree = (args.assoc(:degree)[1] rescue false);
distance = (args.assoc(:distance)[1] rescue 1.0);
degrees = (args.assoc(:degrees)[1] rescue false);
srate = (srate() rescue $rbm_srate);
chans = (channels() rescue $rbm_channels);
beg = (srate * start).round;
len = (srate * dur).round;
frq_scl = hz2radians(freq);
modulate = fm_index.nonzero?;
maxdev = frq_scl * fm_index;
vln = (not (index_type == :cello))
logfreq = log(freq);
sqrtfreq = sqrt(freq);
index1 = (fm1_index or [PI, maxdev * (vln ? 5.0 : 7.5) / logfreq].min);
index2 = (fm2_index or [PI, maxdev * 3.0 *
(vln ? ((8.5 - logfreq) / (3.0 + freq * 0.001)) : (15.0 / sqrtfreq))].min);
index3 = (fm3_index or [PI, maxdev * (vln ? 4.0 : 8.0) / sqrtfreq].min);
easy_case = (noise_amount.zero? and
(fm1_env == fm2_env) and
(fm1_env == fm3_env) and
(fm1_rat - fm1_rat.floor).zero? and
(fm2_rat - fm2_rat.floor).zero? and
(fm3_rat - fm3_rat.floor).zero?);
coeffs = (easy_case and modulate and
partials2polynomial([fm1_rat, index1,
(fm2_rat / fm1_rat).floor, index2,
(fm3_rat / fm1_rat).floor, index3]));
norm = ((easy_case and modulate and 1.0) or index1);
carrier = make_oscil(freq);
fmosc1 = (modulate and make_oscil(fm1_rat * freq));
fmosc2 = (modulate and (easy_case or make_oscil(fm2_rat * freq)));
fmosc3 = (modulate and (easy_case or make_oscil(fm3_rat * freq)));
ampf = make_env(amp_env, amp, dur, 0.0, base);
indf1 = (modulate and make_env(fm1_env, norm, dur));
indf2 = (modulate and (easy_case or make_env(fm2_env, index2, dur)));
indf3 = (modulate and (easy_case or make_env(fm3_env, index3, dur)));
frqf = make_env(gliss_env, gliss_amount * frq_scl, dur);
pervib = make_triangle_wave(periodic_vibrato_rate, periodic_vibrato_amp * frq_scl);
ranvib = make_rand_interp(random_vibrato_rate, random_vibrato_amp * frq_scl);
fm_noi = (noise_amount.nonzero? and make_rand(noise_freq, PI * noise_amount));
ind_noi = ((ind_noise_amount.nonzero? and ind_noise_freq.nonzero?) and
make_rand_interp(ind_noise_freq, ind_noise_amount));
amp_noi = ((amp_noise_amount.nonzero? and amp_noise_freq.nonzero?) and
make_rand_interp(amp_noise_freq, amp_noise_amount));
vib = 0.0;
modulation = 0.0;
# make_locsig(degree=0.0, distance=1.0, reverb=0.0, output, revout, chans=1, type=Mus_linear)
# Ruby's rand() is shadowed by CLM's rand(), that's why mus_random().abs.
loc = make_locsig((degree or degrees or mus_random(90.0).abs),
distance, reverb_amount, false, false, chans);
fuzz = 0.0;
ind_fuzz = 1.0;
amp_fuzz = 1.0;
out_data = make_vct(len);
vct_map!(out_data,
lambda { | |
fuzz = rand(fm_noi) if noise_amount.nonzero?;
vib = env(frqf) + triangle_wave(pervib) + rand_interp(ranvib);
ind_fuzz = 1.0 + rand_interp(ind_noi) if ind_noi;
amp_fuzz = 1.0 + rand_interp(amp_noi) if amp_noi;
if(modulate)
if(easy_case)
modulation = env(indf1) * polynomial(coeffs, oscil(fmosc1, vib));
else
modulation = env(indf1) * oscil(fmosc1, fm1_rat * vib + fuzz) +
env(indf2) * oscil(fmosc2, fm2_rat * vib + fuzz) +
env(indf3) * oscil(fmosc3, fm3_rat * vib + fuzz);
end
end
env(ampf) * amp_fuzz * oscil(carrier, vib + ind_fuzz * modulation);
});
if(chans == 2)
mix_vct(vct_scale!(vct_copy(out_data), locsig_ref(loc, 1)), beg, $rbm_snd, 1, false);
mix_vct(vct_scale!(out_data, locsig_ref(loc, 0)), beg, $rbm_snd, 0, false);
else
mix_vct(out_data, beg, $rbm_snd, 0, false);
end
rescue
die(usage + "fm_violin()");
end
</pre>
<!-- FILE: ws -->
<div class="header" id="wsdoc">ws</div>
<p>
with-sound provides a way to package up a bunch of instrument calls into a new
sound file, and open that file in Snd when the computation is complete.
To hear (and see) the fm-violin, for example, we first load with-sound and the instrument:
</p>
<table><tr><td>
<div class="scheme">
<pre class="indented">
;; Scheme:
(load "ws.scm")
(load "v.scm")
</pre>
</div>
</td>
<td>
<div class="ruby">
<pre class="indented">
# Ruby:
load("ws.rb")
load("v.rb")
</pre>
</div>
</td>
<td>
<div class="forth">
<pre class="indented">
\ Forth:
"clm.fs" file-eval
"clm-ins.fs" file-eval
</pre>
</div>
</td></tr></table>
<p>Then call with-sound, accepting the default sound file settings, with one fm-violin note at A4 (440 Hz):
</p>
<table><tr><td>
<div class="scheme">
<pre class="indented">
(with-sound ()
(fm-violin 0 1 440 .1))
</pre>
</div></td>
<td>
<div class="ruby">
<pre class="indented">
with_sound() do
fm_violin_rb(0, 1, 440, 0.1)
end
</pre>
</div></td>
<td>
<div class="forth">
<pre class="indented">
0 1 440 0.1 ' fm-violin with-sound
</pre>
</div>
</td>
</tr></table>
<p>The body of with-sound can hold any number of notes, or any arbitrary code. For example, say
we want to hear an arpeggio from the fm-violin:
</p>
<pre class="indented">
(with-sound ()
(do ((i 0 (+ i 1)))
((= i 4)) ; 4 notes in all
(fm-violin (* i 0.25) ; notes 1/4 secs apart
0.25 ; each note 1/4 sec long
(* 220.0 (+ i 1)); go up by 220 Hz on each note
.1))) ; all notes .1 amp
</pre>
<p>
with-sound opens an output object, either a sound file, or a vector: (*output*), and
optionally a reverb output object: *reverb*. Each instrument uses <a href="sndclm.html#out-any">out-any</a> to add its sounds to the
*output* results. with-sound next sets up a variety of variables describing the current
output, and establishes an environment where various problems can be handled nicely (in Scheme,
a dynamic-wind with various debugging hooks). Then the with-sound body is evaluated, presumably
producing sound. Once evaluated, the outputs are closed, and if reverb is requested, the reverberator
is run. Once complete, with-sound prints out statistics (if :statistics is #t), scales the result (if :scale-to),
and plays it (if :play is #t). Then, if the output is a sound file (and :to-snd is #t), with-sound opens it in Snd, first closing any previous sound with
the same name (this makes it easier to call with-sound over and over while trying out some patch).
with-sound returns its :output argument.
</p>
<pre class="indented">
<em class=def id="withsound">with-sound</em>
(output *clm-file-name*) ; output file name ("test.snd")
(channels *clm-channels*) ; channels in output (1)
(srate *clm-srate*) ; output sampling rate (44100)
(sample-type *clm-sample-type*) ; output sample data type (mus-bfloat or mus-lshort)
(header-type *clm-header-type*) ; output header type (mus-next or mus-aifc)
(comment #f) ; any comment to store in the header (a string)
(verbose *clm-verbose*) ; if #t, print out some info
(reverb *clm-reverb*) ; reverb instrument (jc-reverb)
(reverb-data *clm-reverb-data*) ; arguments passed to the reverb
(reverb-channels *clm-reverb-channels*); chans in the reverb intermediate file
(revfile *clm-reverb-file-name*) ; reverb intermediate output file name ("test.rev")
(continue-old-file #f) ; if #t, continue a previous computation
(statistics *clm-statistics*) ; if #t, print info at end of with-sound (compile time, maxamps)
(scaled-by #f) ; is a number, scale output by that amp
(scaled-to #f) ; if a number, scale the output to peak at that amp
(play *clm-play*) ; if #t, play the sound automatically
(to-snd *to-snd*) ; if #t, open the output file in Snd
</pre>
<p>The with-sound syntax may look sightly odd; we include the arguments in the first list, then
everything after that is evaluated as a note list.
</p>
<pre class="indented">
(with-sound (:srate 44100 :channels 2 :output "test.snd")
(fm-violin 0 1 440 .1)
(fm-violin 1 1 660 .1))
</pre>
<p>produces a sound file with two fm-violin notes; the sound file is named "test.snd", is stero, and has a sampling rate of 44100.
</p>
<pre class="indented">
(with-sound (:reverb jc-reverb :statistics #t :play #t)
(fm-violin 0 1 440 .1 :reverb-amount .3))
</pre>
<p>produces one fm-violin note, heavily reverberated, and plays it, printing this info:
</p>
<pre class="indented">
> (with-sound (:reverb jc-reverb :statistics #t :play #t)
(fm-violin 0 1 440 .1 :reverb-amount .3))
test.snd:
maxamp: 0.3038
rev max: 0.0300
compute time: 0.030
</pre>
<p>It's often hard to predict how loud a set of notes is going to be, so we can use
"scaled-to" to set its final amplitude:
</p>
<pre class="indented">
(with-sound (:scale-to .5)
(do ((i 0 (+ i 1))) ((= i 10)) (fm-violin 0 i 440.0 (random 1.0))))
</pre>
<p>Here are examples in Ruby and Forth:
</p>
<pre class="indented">
:with_sound(:channels, 2, :play, false, :statistics, true) do
fm_violin_rb(0, 1, 440, 0.1);
fm_violin_rb(1, 1, 660, 0.1);
end
# filename: "test.snd"
# chans: 2, srate: 22050
# length: 2.000 (44100 framples)
# format: big endian short (16 bits) [Sun/Next]
# real: 2.248 (utime 2.240, stime 0.000)
# ratio: 1.12 (uratio 1.12)
# max out: [0.098, 0.024]
#<With_Snd: output: "test.snd", channels: 2, srate: 22050>
</pre>
<p>and in Forth:
</p>
<pre class="indented">
snd> 0.0 1.0 330.0 0.5 ' simp :play #f :channels 2 with-sound
\ filename: test.snd
\ chans: 2, srate: 22050
\ format: little endian float (32 bits) [Sun/Next]
\ length: 1.000 (22050 framples)
\ real: 0.162 (utime 0.267, stime 0.000)
\ ratio: 0.16 (uratio 0.27)
\ maxamp A: 0.500 (near 0.680 secs)
\ maxamp B: 0.000 (near 0.000 secs)
\ comment: Written on Fri Jul 14 07:41:47 PDT 2006 by bil at cat using clm (fth) of 30-Jun-06
</pre>
<p>The default values listed above (*clm-srate* and friends) are set in ws.scm:
</p>
<pre class="indented">
(define *clm-file-name* "test.snd")
(define *clm-srate* *default-output-srate*) ; 44100
(define *clm-channels* *default-output-chans*) ; 1
(define *clm-sample-type* *default-output-sample-type*) ; mus-lfloat
(define *clm-header-type* *default-output-header-type*) ; mus-next
(define *clm-verbose* #f)
(define *clm-play* #f)
(define *clm-statistics* #f)
(define *clm-reverb* #f)
(define *clm-reverb-channels* 1)
(define *clm-reverb-data* ())
(define *clm-reverb-file-name* "test.rev")
(define *clm-table-size* 512)
(define *clm-file-buffer-size* 65536)
(define *clm-locsig-type* mus-interp-linear)
(define *clm-clipped* #t)
(define *clm-array-print-length* *print-length*) ; 12
(define *clm-player* #f)
(define *clm-notehook* #f)
(define *to-snd* #t)
(define *reverb* #f)
(define *output* #f)
(define *clm-delete-reverb* #f)
</pre>
<p>You can set any of these to permanently change with-sound's defaults
</p>
<pre class="indented">
> (set! *clm-file-name* "test.aif")
#<unspecified>
> (set! *clm-srate* 44100)
#<unspecified>
> (set! *clm-channels* 2)
#<unspecified>
> (set! *clm-header-type* mus-aifc)
#<unspecified>
> (set! *clm-sample-type* mus-bfloat)
#<unspecified>
> (with-sound () (fm-violin 0 1 440 .1))test.aif:
"test.aif"
> (srate "test.aif")
44100
> (channels "test.aif")
2
</pre>
<p>
To display the entire sound automatically (independent of <a href="extsnd.html#afteropenhook">after-open-hook</a>),
use with-full-sound:
</p>
<pre class="indented">
(define-macro (with-full-sound args . body)
`(let ((snd (with-sound-helper (lambda () ,@body) ,@args)))
(set! (<a class=quiet href="extsnd.html#xbounds">x-bounds</a> *snd-opened-sound*) (list 0.0 (/ (<a class=quiet href="extsnd.html#framples">framples</a> *snd-opened-sound*) (<a class=quiet href="extsnd.html#srate">srate</a> *snd-opened-sound*))))
snd))
</pre>
<p>Since with-sound returns the new sound's file name, we save that, get the new sound's index (<a href="extsnd.html#sndopenedsound">*snd-opened-sound*</a>),
and set the <a href="extsnd.html#xbounds">x-bounds</a> to display the full sound, then return the file name. You could obviously customize this any way
you like.
To continue adding notes to an existing file, set 'continue-old-file':
</p>
<pre class="indented">
(with-sound (:continue-old-file #t) (fm-violin 0 1 440 .1))
</pre>
<p>The "notehook" argument is a function called each time an instrument is called:
</p>
<pre class="indented">
> (with-sound (:notehook (lambda (name . args)
(snd-print (<a class=quiet>format</a> #f "~%;~A: ~A" name (caddr args)))))
(fm-violin 0 1 440 .1)
(fm-violin 1 1 660 .1))
;fm-violin: 440
;fm-violin: 660
"test.snd"
</pre>
<p id="definstrument">
The arguments passed to the notehook function are the current instrument name (a string) and all its
arguments. definstrument implements the notehook feature.
The "output" argument can be a vector as well as a filename:
</p>
<pre class="indented">
(with-sound (:output (make-float-vector 44100)) (fm-violin 0 1 440 .1))
</pre>
<p>See <a href="#fadedoc">fade.scm</a>, snd-test.scm.
</p>
<div class="innerheader">definstrument</div>
<p>
definstrument
is very much like define*, but with added code to support notehook and (for Common Music) *definstrument-hook*.
It uses old CL-style documentation strings.
An instrument that wants to cooperate fully with with-sound and Common Music has the form:
</p>
<pre class="indented">
(definstrument (ins args)
(let ...
(do ((i start (+ i 1)))
((= i end))
(<a class=quiet href="sndclm.html#outa">outa</a> i ...))))
</pre>
<p>definstrument is an extension of define*, so its arguments are handled as optional keyword arguments:
</p>
<pre class="indented">
(definstrument (simp beg dur (frequency 440.0) (amplitude 0.1))
(let ((os (make-oscil frequency)))
(do ((i 0 (+ i 1))) ((= i dur))
(<a class=quiet href="sndclm.html#outa">outa</a> (+ i beg) (* amplitude (<a class=quiet href="sndclm.html#oscil">oscil</a> os))))))
(<a class=quiet href="#wsdoc">with-sound</a> ()
(simp 0 10000)
(simp 10000 10000 550.0 :amplitude 0.1)
(simp 20000 10000 :amplitude 0.2))
</pre>
<p>You don't have to use definstrument; in the next example we make a Shepard tone
by calling the oscils and whatnot directly in the with-sound body:
</p>
<pre class="indented">
(define (shepard-tone)
(let ((x 0.0)
(incr .000001) ; sets speed of glissandoes
(oscs (make-vector 12)))
(do ((i 0 (+ i 1)))
((= i 12))
(set! (oscs i) (<a class=quiet href="sndclm.html#make-oscil">make-oscil</a> :frequency 0.0)))
(<a class=quiet href="#wsdoc">with-sound</a> (:srate 44100)
(do ((samp 0 (+ 1 samp))
(sum 0.0 0.0))
((= samp 300000))
(do ((i 0 (+ i 1)))
((= i 12))
(let ((loc (+ x (/ i 12.0)))) ; location of current oscil in overall trajectory
(if (> loc 1.0) (set! loc (- loc 1.0)))
(set! sum (+ sum (* (let ((y (- 4.0 (* 8.0 loc))))
(exp (* -0.5 y y))) ; Gaussian normal curve as amplitude envelope
(<a class=quiet href="sndclm.html#oscil">oscil</a> (oscs i)
(<a class=quiet href="sndclm.html#hztoradians">hz->radians</a> (expt 2.0 (+ 2 (* loc 12.0))))))))))
;; (- 1.0 loc) to go down
(set! x (+ x incr))
(<a class=quiet href="sndclm.html#outa">outa</a> samp (* .1 sum))))))
</pre>
<img class="indented" src="pix/shepard.png" alt="shepard tone spectrum" >
<p>There are several other versions of with-sound: with-temp-sound, with-mixed-sound, sound-let, clm-load, and the Common Music
handles, init-with-sound and finish-with-sound.
with-temp-sound and sound-let set up temporary bindings for embedded with-sounds.
</p>
<div class="innerheader">sound-let</div>
<p id="sound-let">sound-let is a form of let* that creates temporary sound files
within with-sound. Its syntax is a combination of let* and with-sound:
with-sound:</p>
<pre class="indented">
(<em class=red>sound-let</em> ((temp-1 () (fm-violin 0 1 440 .1))
(temp-2 () (fm-violin 0 2 660 .1)
(fm-violin .125 .5 880 .1)))
(granulate-sound temp-1 0 2 0 2) ;temp-1's value is the name of the temporary file
(granulate-sound temp-2 1 1 0 2))
</pre>
<p>This creates two temporary files and passes them along to the subsequent calls
on granulate-sound. The first list after the sound file identifier (i.e. after
"temp-1" in the example) is the list of <a href="#wsdoc">with-sound</a> options to be passed
along when creating this temporary file. These default to :output
with a unique name generated internally, and all other variables are taken from
the overall (enclosing) with-sound. The rest of the list is the body of the
associated <a href="#wsdoc">with-sound</a>.
The difference between sound-let and an embedded with-sound is primarily that
sound-let names and later deletes the temporary files it creates, whereas with-sound leaves
its explicitly named output intact (and tries to open it in Snd, which can be confusing in this context).
Here's another example:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(<em class=red>sound-let</em> ((temp-sound () (fm-violin 0 1 440 .1))) ; create temp-sound with an fm-violin note
(pins 0.0 2.0 temp-sound 1.0 :time-scaler 2.0)) ; stretch it with the pins instrument (clm-ins.scm)
(fm-violin 1 1 550 .1)) ; add another fm-violin note
</pre>
<div class="innerheader">with-temp-sound</div>
<p id="withtempsound">with-temp-sound is like sound-let, but does not delete its output file:
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(clm-expsrc 0 2 (<em class=red>with-temp-sound</em> () (fm-violin 0 1 440 .1)) 2.0 1.0 1.0))
</pre>
<p>Here are Ruby examples:
</p>
<pre class="indented">
with_sound() do
clm_mix(with_sound(:output, "hiho.snd") do
fm_violin_rb(0, 1, 440, 0.1)
end.output, :scale, 0.5)
end
with_sound() do
with_mix "s1", %Q{
sound_let(lambda do fm_violin_rb(0, 1, 440, 0.1) end) do |tmp|
clm_mix(tmp)
end
}
end
</pre>
<div class="innerheader">with-mixed-sound</div>
<p id="withmixedsound">with-mixed-sound is a variant of with-sound that creates a
<a href="extsnd.html#sndmixes">"mix"</a> for each note in the notelist. If you move the
mixes around, you can write out the new note list via with-mixed-sound->notelist.
In multichannel files, all the channels associated with a note are sync'd together, so if you drag one,
the others follow. Also, if you click a mix tag, the corresponding note in the notelist is displayed
in the status area.
</p>
<pre class="indented">
(with-mixed-sound ()
(fm-violin 0 .1 440 .1)
(fm-violin 1 .1 660 .1))
(with-mixed-sound (:channels 2)
(fm-violin 0 .1 440 .1 :degree 0)
(fm-violin 1 .1 660 .1 :degree 45))
</pre>
<p>There's also a quick sound file mixer named mus-file-mix:
</p>
<pre class="indented">
<em class=def id="musfilemix">mus-file-mix</em> outfile infile (outloc 0) (framples) (inloc 0) mixer envs
</pre>
<p>This function
mixes 'infile' into 'outfile' starting at 'outloc' in 'outfile' and 'inloc' in 'infile',
mixing 'framples' framples into 'outfile'. 'framples' defaults to the length of 'infile'. If 'mixer',
use it to scale the various channels; if 'envs' (an array of envelope generators), use
it in conjunction with mixer to scale and envelope all the various ins and outs.
'outfile' can also be a <a href="sndclm.html#frampletofile">frample->file</a> generator, and 'infile' can be a
<a href="sndclm.html#filetoframple">file->frample</a> generator.
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> ()
(fm-violin 0 .1 440 .1)
(<a class=quiet href="#musfilemix">mus-file-mix</a> <a class=quiet>*output*</a> "oboe.snd")
(fm-violin .1 .1 660 .1))
</pre>
<div class="innerheader">with-marked-sound</div>
<p id="withmarkedsound">with-marked-sound is yet another version of with-sound that
adds a mark at the start of each note.
</p>
<div class="innerheader">clm-load</div>
<p>clm-load provides a slightly different way to load a notelist. Its first argument is a filename, assumed to
be a text file containing notes (equivalent to the body of with-sound). The rest of the arguments to clm-load are the usual with-sound arguments, if any.
For example, if we have a file named clm-load-test.clm with these contents:
</p>
<pre class="indented">
(fm-violin 0 1 440 .1)
(fm-violin 1 1 660 .1)
</pre>
<p>
then (clm-load "clm-load-test.clm") is the same as (with-sound () (fm-violin 0 1 440 .1) (fm-violin 1 1 660 .1)).
Similarly for, (clm-load "clm-load-test.clm" :srate 44100 :channels 2) and so on.
</p>
<div class="innerheader">init-with-sound</div>
<p>init-with-sound and finish-with-sound
split with-sound into two pieces, primarily for Common Music's benefit.
</p>
<pre class="indented">
(define w (init-with-sound :scaled-to .5))
(fm-violin 0 1 440 .1)
(finish-with-sound w)
</pre>
<p>is equivalent to
</p>
<pre class="indented">
(<a class=quiet href="#wsdoc">with-sound</a> (:scaled-to .5)
(fm-violin 0 1 440 .1))
</pre>
<div class="innerheader">other stuff associated with with-sound</div>
<p id="wssavestate">
The *clm-* variables are saved in the save-state
file by ws-save-state, which may not be a good idea — feedback welcome!
Two more convenience functions are ->frequency and ->sample.
<em class="noem" id="tofrequency">->frequency</em> takes either a number or a common-music pitch symbol ('c4 is middle C),
and returns either the number or the frequency associated with that pitch:
</p>
<pre class="indented">
> (->frequency 'cs5)
554.365261953744
</pre>
<p id="tosample">It's optional second argument can be #t to get integer ratios, rather than
the default equal temperment.
->sample returns a sample number given a time in seconds:
</p>
<pre class="indented">
> (->sample 1.0)
44100
</pre>
<p>mix-notelists takes any number of notelist arguments,
and returns a new notelist with all the input notes sorted by begin time.
</p>
<pre class="indented">
(mix-notelists '((fm-violin 0 1 440 .1)
(fm-violin 1 1 550 .1))
'((bird 0 .1 )
(bird .2 .1)
(bird 1.2 .3)
(bird .5 .5)))
((bird 0 0.1) (fm-violin 0 1 440 0.1) (bird 0.2 0.1) (bird 0.5 0.5) (fm-violin 1 1 550 0.1) (bird 1.2 0.3))
</pre>
<!-- FILE: zip -->
<div class="header" id="zipdoc">zip</div>
<pre class="indented">
<em class=emdef>make-zipper</em> ramp-env frame-size frame-env
<em class=def id="zipper">zipper</em> gen in1 in2
<em class=def id="zipsound">zip-sound</em> beg dur file1 file2 ramp size
</pre>
<p>The zipper generator performs a kind of cross fade, but not one that
tries to be smooth! It marches through the two sounds taking equal short
portions of each, then abutting them while resampling so that as one
takes less overall frame space, the other takes more. The 'frame-size'
argument is the maximum length of each twosome in seconds (for initial array allocation), the 'frame-env'
argument determines the current such length as new frames are needed, and the
'ramp-env' argument determines which of the files gets more space
in the frame (0: all first, 1: all second).
The following function sets up two sounds,
an upward ramp and a downward ramp, then zips them together:
</p>
<pre class="indented">
(define (ramp-test)
(let ((data (make-float-vector 10000)))
(<a class=quiet href="extsnd.html#newsound">new-sound</a> "new-0.snd")
(do ((i 0 (+ i 1))) ((= i 10000))
(set! (data i) (* i .0001)))
(float-vector->channel data 0 10000 0)
(<a class=quiet href="extsnd.html#newsound">new-sound</a> "new-1.snd")
(do ((i 0 (+ i 1))) ((= i 10000))
(set! (data i) (- 1.0 (* i .0001))))
(float-vector->channel data 0 10000 1)
(let ((zp (let ((dur (<a class=quiet href="extsnd.html#framples">framples</a>)))
(<em class=red>make-zipper</em>
(<a class=quiet href="sndclm.html#make-env">make-env</a> '(0 0 1 1) :length dur)
0.05
(<a class=quiet href="sndclm.html#make-env">make-env</a> (list 0 (* (<a class=quiet href="extsnd.html#srate">srate</a>) 0.05)) :length dur))))
(reader0 (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0 0 0))
(reader1 (<a class=quiet href="extsnd.html#makesampler">make-sampler</a> 0 1 0)))
(<a class=quiet href="extsnd.html#mapchannel">map-channel</a> (lambda (val) (<em class=red>zipper</em> zp reader0 reader1))))))
</pre>
<img class="indented" src="pix/zramp.png" alt="zipper ramp output">
<p>Needless to say, this is not intended to be a suave, romantic gesture!
</p>
<p>zip-sound applies the zipper to a pair of sounds:
</p>
<pre class="indented">
(zip-sound 0 1 "fyow.snd" "now.snd" '(0 0 1 1) .05)
(zip-sound 0 3 "mb.snd" "fyow.snd" '(0 0 1.0 0 1.5 1.0 3.0 1.0) .025)
</pre>
<div class="related">
related documentation:
<a href="snd.html">snd.html </a>
<a href="extsnd.html">extsnd.html </a>
<a href="grfsnd.html">grfsnd.html </a>
<a href="sndclm.html">sndclm.html </a>
<a href="sndlib.html">sndlib.html </a>
<a href="fm.html">fm.html </a>
<a href="s7.html">s7.html </a>
<a href="s7-ffi.html">s7-ffi.html </a>
<a href="s7-scm.html">s7-scm.html </a>
<a href="index.html">index.html</a>
</div>
</body>
</html>
|