1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
# strad.rb -- Translation CLM --> Snd-Ruby
#
# Bowed string physical model with stiffness. CLM version adapted
# from the Matlab and C versions courtesy of JOS and Stefania Serafin
# from code revised on 7/14/01
#
# CLM version by Juan Reyes
#
# Translator/Author: Michael Scholz <mi-scholz@users.sourceforge.net>
# Created: Sun Mar 16 02:46:52 CET 2003
# Changed: Wed Nov 17 23:56:56 CET 2010
require "ws"
class DCBlock
def initialize(input = 0.0, output = 0.0)
@dc_input = input
@dc_output = output
end
def dcblock(sample)
@dc_output = sample + (0.99 * @dc_output - @dc_input)
@dc_input = sample
@dc_output
end
def inspect
format("#<%s: input: %1.3f, output: %1.3f>", self.class, @dc_input, @dc_output)
end
end
add_help(:bow, "bow(start = 0, dur = 1, freq = 440, amp = 0.5, *args)
:bufsize 2205 @srate 22050
:fb 0.2 bow force (0.0..1.0)
:vb 0.05 bow velocity (0.0..0.8)
:bp 0.08 bow position (0.0 bridge, 0.5 middle of string, 1.0 nut)
:inharm 0.1 inharmonicity (0.0 harmonic, 1.0 not harmonic)
:ampenv [0, 0, 20, 1, 48, 1, 92, 0, 100, 0]
:degree 45
:dist 0.0025
:reverb 0.005")
def bow(start = 0, dur = 1, freq = 440, amp = 0.5, *args)
bufsize, fb, vb, bp, inharm, ampenv, degree, dist, reverb = nil
optkey(args, binding,
[:bufsize, 2205],
[:fb, 0.2],
[:vb, 0.05],
[:bp, 0.08],
[:inharm, 0.1],
[:ampenv, [0, 0, 20, 1, 48, 1, 92, 0, 100, 0]],
[:degree, 45],
[:dist, 0.0025],
[:reverb, 0.005])
len = seconds2samples(dur)
ampf = make_env(:envelope, ampenv, :scaler, amp, :length, len)
dcblocker = DCBlock.new
vinut = make_vct(bufsize)
vinbridge = make_vct(bufsize)
vinutt = make_vct(bufsize)
vinbridget = make_vct(bufsize)
vib = vin = vibt = vint = 0.0
mus = 0.8 # friction coeff
twavespeedfactor = 5.2
posl = posr = poslt = posrt = indexl = indexr = indexlt = indexrt = 0
indexl_1 = indexr_1 = indexlt_1 = indexrt_1 = indexl_2 = indexr_2 = indexlt_2 = indexrt_2 = 0
updl = updr = updlt = updrt = 0
# biquad coefficients from jos follow
b0b = 0.859210
b1b = -0.704922
b2b = 0.022502
a1b = -0.943639
a2b = 0.120665
b0n = 7.0580050e-001
b1n = -5.3168461e-001
b2n = 1.4579750e-002
a1n = -9.9142489e-001
a2n = 1.8012052e-001
# bridge side, torsional waves
b0bt = 9.9157155e-001
b1bt = -8.2342890e-001
b2bt = 8.8441749e-002
a1bt = -8.3628218e-001
a2bt = 9.2866585e-002
# finger side, torsional waves
b0nt = 4.3721359e-001
b1nt = -2.7034968e-001
b2nt = -5.7147560e-002
a1nt = -1.2158343e+000
a2nt = 3.2555068e-001
# initializations for the filters
xm1bt = xm2bt = xm1nt = xm2nt = ym1bt = ym2bt = ym1nt = ym2nt = xm1b = xm2b = ym1b = ym2b = 0.0
xm1n = xm2n = ym1n = ym2n = ynb = ynbt = ynn = ynnt = ya1nb = ynba1 = y1nb = 0.0
# friedlander friction inits
aa = bb1 = cc1 = delta1 = bb2 = cc2 = delta2 = v = v1 = v2 = rhs = lhs = vtemp = f = 0.0
string_impedance = 0.55
string_impedancet = 1.8
stick = 0
zslope = 1.0 / ((1.0 / (2.0 * string_impedance)) + (1.0 / (2.0 * string_impedancet)))
xnn = xnb = xnnt = xnbt = 0.0
alphar = alphal = alphart = alphalt = 0
l = (mus_srate() / freq) - 2
lt = l / twavespeedfactor
del_right = l * bp
del_left = l * (1 - bp)
del_leftt = lt * (1 - bp)
del_rightt = lt * bp
samp_rperiod = del_right.floor
samp_lperiod = del_left.floor
samp_lperiodt = del_leftt.floor
samp_rperiodt = del_rightt.floor
samp_rperiod = [samp_rperiod, 0].max
samp_rperiod = [samp_rperiod, bufsize - 1].min
samp_lperiod = [samp_lperiod, 0].max
samp_lperiod = [samp_lperiod, bufsize - 1].min
alphar = (del_right - samp_rperiod).to_f
alphal = (del_left - samp_lperiod).to_f
samp_rperiodt = [samp_rperiodt, 0].max
samp_rperiodt = [samp_rperiodt, bufsize - 1].min
samp_lperiodt = [samp_lperiodt, 0].max
samp_lperiodt = [samp_lperiodt, bufsize - 1].min
alphart = (del_rightt - samp_rperiodt).to_f
alphalt = (del_leftt - samp_lperiodt).to_f
posr = (len + posr) % bufsize
posl = (len + posl) % bufsize
posrt = (len + posrt) % bufsize
poslt = (len + poslt) % bufsize
bowfilt = lambda do |inharmon|
# initialize coefficients
ynb = ((b0b * vib + b1b * xm1b + b2b * xm2b) - a1b * ym1b) - a2b * ym2b
xm2b, xm1b = xm1b, vib
ym2b, ym1b = ym1b, ynb
ynn = ((b0n * vin + b1n * xm1n + b2n * xm2n) - a1n * ym1n) - a2n * ym2n
xm2n, xm1n = xm1n, vin
ym2n, ym1n = ym1n, ynn
# filters for torsional waves
ynbt = ((b0bt * vibt + b1bt * xm1bt + b2bt * xm2bt) - a1bt * ym1bt) - a2bt * ym2bt
xm2bt, xm1bt = xm1bt, vibt
ym2bt, ym1bt = ym1bt, ynbt
ynnt = ((b0nt * vint + b1nt * xm1nt + b2nt * xm2nt) - a1nt * ym1nt) - a2nt * ym2nt
xm2nt, xm1nt = xm1nt, vint
ym2nt, ym1nt = ym1nt, ynnt
inharmon = [inharmon, 0.00001].max
inharmon = [inharmon, 0.9999].min
ya1nb = y1nb = -(inharmon * ynb) + ynba1 + inharmon * ya1nb
ynba1 = ynb
y1nb = -y1nb
ynn = -ynn
ynbt = -ynbt
end
friedlander = lambda do |vh|
aa = zslope
bb1 = ((0.2 * zslope + 0.3 * fb) - zslope * vb) - zslope * vh
cc1 = ((0.06 * fb + zslope * vh * vb) - 0.2 * zslope * vh) - 0.3 * vb * fb
delta1 = bb1 * bb1 - 4 * aa * cc1
bb2 = ((-0.2 * zslope - 0.3 * fb) - zslope * vb) - zslope * vh
cc2 = (((0.06 * fb + zslope * vh * vb) + 0.2 * zslope * vh) + 0.3 * vb * fb) + 0.1 * fb
delta2 = bb2 * bb2 - 4 * aa * cc2
if vb.zero? or fb.zero?
v = vh
else
if vh == vb
v, stick = vb, 1
else
if vh > vb
lhs, rhs = 0.0, 1.0
else
rhs, lhs = 0.0, 1.0
end
if rhs == 1.0
if delta1 < 0
v, stick = vb, 1
else
if stick == 1
vtemp = vb
f = 2.0 * zslope * (vtemp - vh)
if f >= (-(mus * fb))
v = vtemp
else
v1 = (-bb1 + sqrt(delta1)) / (2.0 * aa)
v2 = (-bb1 - sqrt(delta1)) / (2.0 * aa)
v = [v1, v2].min
stick = 0
end
else
v1 = (-bb1 + sqrt(delta1)) / (2.0 * aa)
v2 = (-bb1 - sqrt(delta1)) / (2.0 * aa)
v = [v1, v2].min
stick = 0
end
end
elsif lhs == 1.0
if delta2 < 0
v, stick = vb, 1
else
if stick == 1
vtemp = vb
f = zslope * (vtemp - vh)
if f <= (mus * fb) and f > 0
v = vtemp
else
v1 = (-bb2 - sqrt(delta2)) / (2.0 * aa)
v2 = (-bb2 + sqrt(delta2)) / (2.0 * aa)
vtemp = [v1, v2].min
stick = 0
if vtemp > vb
v, stick = vb, 1
else
v = vtemp
f = zslope * (v - vh)
end
end
else
v1 = (-bb2 - sqrt(delta2)) / (2.0 * aa)
v2 = (-bb2 + sqrt(delta2)) / (2.0 * aa)
v = [v1, v2].min
stick = 0
end
end
if v > vb
v, stick = vb, 1
end
end
end
f = zslope * (v - vh)
xnn = y1nb + (f / (2.0 * string_impedance))
xnb = ynn + (f / (2.0 * string_impedance))
end
end
i = 0
run_instrument(start, dur, :distance, dist, :reverb_amount, reverb, :degree, degree) do
indexl = ((i + posl + bufsize) - samp_lperiod) % bufsize
indexr = ((i + posr + bufsize) - samp_rperiod) % bufsize
indexlt = ((i + poslt + bufsize) - samp_lperiodt) % bufsize
indexrt = ((i + posrt + bufsize) - samp_rperiodt) % bufsize
indexl_1 = (((i + posl + bufsize) - samp_lperiod) - 1) % bufsize
indexr_1 = (((i + posr + bufsize) - samp_rperiod) - 1) % bufsize
indexlt_1 = (((i + poslt + bufsize) - samp_lperiodt) - 1) % bufsize
indexrt_1 = (((i + posrt + bufsize) - samp_rperiodt) - 1) % bufsize
indexl_2 = (((i + posl + bufsize) - samp_lperiod) - 2) % bufsize
indexr_2 = (((i + posr + bufsize) - samp_rperiod) - 2) % bufsize
indexlt_2 = (((i + poslt + bufsize) - samp_lperiodt) - 2) % bufsize
indexrt_2 = (((i + posrt + bufsize) - samp_rperiodt) - 2) % bufsize
# fractional delay lines
vib = ((vinbridge[indexl_2] * (alphal - 1) * (alphal - 2)) / 2.0) +
(vinbridge[indexl_1] * -alphal * (alphal - 2)) +
((vinbridge[indexl] * alphal * (alphal - 1)) / 2.0)
vin = ((vinut[indexr_2] * (alphar - 1) * (alphar - 2)) / 2.0) +
(vinut[indexr_1] * -alphar * (alphar - 2)) +
((vinut[indexr] * alphar * (alphar - 1)) / 2.0)
vibt = ((vinbridget[indexlt_2] * (alphalt - 1) * (alphalt - 2)) / 2.0) +
(vinbridget[indexlt_1] * -alphalt * (alphalt - 2)) +
((vinbridget[indexlt] * alphalt * (alphalt - 1)) / 2.0)
vint = ((vinutt[indexrt_2] * (alphart - 1) * (alphart - 2)) / 2.0) +
(vinutt[indexrt_1] * -alphart * (alphart - 2)) +
((vinutt[indexrt] * alphart * (alphart - 1)) / 2.0)
# biquad filters
bowfilt.call(inharm)
vh1 = ynn + y1nb + ynnt + ynbt
# now solve set of simultaneous equations for v and f
friedlander.call(vh1)
f = zslope * (v - vh1)
xnnt = ynbt + (f / (2.0 * string_impedancet))
xnbt = ynnt + (f / (2.0 * string_impedancet))
updl = (i + posl + bufsize) % bufsize
updr = (i + posr + bufsize) % bufsize
updlt = (i + poslt + bufsize) % bufsize
updrt = (i + posrt + bufsize) % bufsize
vinbridge[updl] = xnb
vinut[updr] = xnn
vinbridget[updlt] = xnbt
vinutt[updrt] = xnnt
out_val = env(ampf) * dcblocker.dcblock(xnb)
lhs = rhs = 0.0
i += 1
out_val
end
end
=begin
with_sound(:channels, 2) do bow(0, 3, 400, 0.5, :vb, 0.15, :fb, 0.1, :inharm, 0.25) end
with_sound(:channels, 2) do bow(0, 2, 440, 0.5, :fb, 0.25) end
with_sound(:channels, 2) do bow(0, 4, 600, 0.8) end
with_sound(:channels, 2) do bow(0, 6, 147, 2, :fb, 0.035, :vb, 0.1) end
with_sound(:channels, 2) do bow(0, 3, 1100, 0.5, :vb, 0.45, :fb, 0.9, :inharm, 0.3) end
with_sound(:channels, 2) do bow(0, 3, 1500, 0.5, :vb, 0.25, :fb, 0.9, :inharm, 0.3) end
with_sound(:channels, 2) do bow(0, 3, 1525, 0.5, :vb, 0.25, :fb, 0.9, :inharm, 0.3) end
with_sound(:channels, 2, :reverb, :jc_reverb_rb) do bow(0, 1, 400, 0.5, :reverb, 0.0051) end
with_sound(:channels, 2, :reverb, :jc_reverb_rb) do
bow(0, 3, 366, 0.5, :degree, 0)
bow(0, 3, 422, 0.5, :degree, 90)
bow(4, 6, 147, 2, :fb, 0.035, :vb, 0.1, :reverb, 0.051)
end
=end
# strad.rb ends here
|