File: cb.scm

package info (click to toggle)
snd 26.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,028 kB
  • sloc: ansic: 291,903; lisp: 260,506; ruby: 71,134; sh: 3,293; fortran: 2,342; csh: 1,067; makefile: 294; cpp: 294; python: 87; xml: 27; javascript: 1
file content (937 lines) | stat: -rw-r--r-- 29,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
(set! (*s7* 'heap-size) 1024000)

(define factor 1)

(define (map-iota proc limit)
  (let loop ((i 0) (result ()))
    (if (< i limit)
        (loop (+ i 1) (cons (proc i) result))
        (reverse result))))

(define (pascal n k)
  (cond ((or (= k 0) (= k n))
         1)
        ((< 0 k n)
         (+ (pascal (- n 1) (- k 1))
            (pascal (- n 1) k)))
        (else
         (error 'bad-indices n k))))

(define (pascal-row n)
  (map-iota (lambda (k) (pascal n k))
            (+ n 1)))

(define (pascal-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 15)))
    (map-iota pascal-row (+ 1 (modulo i 20)))))
;; => ((1)
;;     (1 1)
;;     (1 2 1)
;;     (1 3 3 1)
;;     (1 4 6 4 1)
;;     (1 5 10 10 5 1)
;;     (1 6 15 20 15 6 1)
;;     (1 7 21 35 35 21 7 1)
;;     (1 8 28 56 70 56 28 8 1)
;;     (1 9 36 84 126 126 84 36 9 1))

(pascal-test)

;;;; --------------------------------------------------------------------------------

;; this is not the original version

(define (integer->list num) 
  (let ((sign (negative? num))) 
    (let loop ((n (abs num)) (digits ()))
      (if (< n 10) 
          (if sign 
              (cons '- (cons n digits))
              (cons n digits))
	  (loop (quotient n 10) (cons (remainder n 10) digits))))))

(integer->list 123450)
;; ==> (1 2 3 4 5 0)

(integer->list -123450)
;; ==> (- 1 2 3 4 5 0)

(integer->list 0)
;; ==> (0)

(define (int->list-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 150000)))
    (integer->list i)))

(int->list-test)

;;;; --------------------------------------------------------------------------------

(define combine3
  (letrec ((tails-of
	    (lambda (set)
              (cond ((null? set)
                     ())
		    (else
                     (cons set (tails-of (cdr set)))))))
	   (combinations
	    (lambda (n set rest)
	      (case n
		((0 0.0) ())
		((1) (map list set))
		(else
		 (apply append
			(map (lambda (tail)
			       (map (lambda (sub) (cons (car tail) sub)) (combinations (- n 1) (rest tail) rest)))
			     (tails-of set))))))))
    (lambda (n set rest)
      (combinations n set rest))))

;; create k-combination without repetion
(define (combine n set)
  (combine3 n set cdr))

;; create k-combination with repetition
(define (combine* n set)
  (combine3 n set (lambda (x) x)))

(combine 2 '(a b c))
;; ==> ((a b) (a c) (b c))

(combine* 2 '(a b c))
;; ==>  ((a a) (a b) (a c) (b b) (b c) (c c))

(define (combine-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 30000)))
    (combine 2 '(a b c))
    (combine* 2 '(a b c))))

(combine-test)

;;;; --------------------------------------------------------------------------------

(define (most-frequent xs counters)
  (if (null? xs)
      (let find-max-count ((counters counters)
                           (best #f))
        (if (null? counters)
            (and best (car best))
            (find-max-count (cdr counters)
                            (let* ((counter (car counters))
                                   (count (cdr counter)))
                              (if (and (> count 1)
                                       (or (not best) (> count (cdr best))))
                                  counter
                                  best)))))
      (most-frequent (cdr xs)
                     (let* ((x (car xs))
                            (counter (assoc x counters)))
                       (if (not counter)
                           (cons (cons x 1) counters)
                           (begin
                             (set-cdr! counter (+ (cdr counter) 1))
                             counters))))))

(unless (= (most-frequent '(1 2 3 4 2 3 4 2 2 2) ()) 2) (format *stderr* "most-frequent not 2\n"))
;; ==> 2

(when (most-frequent '(1 2 3 4 5 6 7) ()) (format *stderr* "most-frequent?\n"))
;; ==> #f

(define (freq-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 50000)))
    (most-frequent '(1 2 3 4 2 3 4 2 2 2) ())
    (most-frequent '(1 2 3 4 5 6 7) ())))

(freq-test)

;;;; --------------------------------------------------------------------------------

(define (string-split char-delimiter? string)
  (define (maybe-add a b parts)
    (if (= a b) parts (cons (substring string a b) parts)))
  (let ((n (string-length string)))
    (let loop ((a 0) (b 0) (parts ()))
      (if (< b n)
          (if (not (char-delimiter? (string-ref string b)))
              (loop a (+ b 1) parts)
              (loop (+ b 1) (+ b 1) (maybe-add a b parts)))
          (reverse (maybe-add a b parts))))))

(string-split char-whitespace? "")
;; ==> ()

(string-split char-whitespace? " \t  ")
;; ==> ()

(string-split char-whitespace? "ab")
;; ==> ("ab")

(string-split char-whitespace? "ab   c  d \t efg ")
;; ==> ("ab" "c" "d" "efg")

(define (split-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 50000)))
    (string-split char-whitespace? " \t  ")
    (string-split char-whitespace? "ab   c  d \t efg ")))

(split-test)

;;;; --------------------------------------------------------------------------------

(define (filter p lst)
  (cond ((not (pair? lst)) lst)
	((not (p (car lst))) (filter p (cdr lst)))
	(else (cons (car lst)
		    (filter p (cdr lst))))))

(define (topological-sort nodes eq)
  (let ((table (map (lambda (n) (cons (car n) 0)) nodes))
	(queue ())
	(result ()))
    
    (define (set-up)
      ;; Compute the number of nodes that each node depends on.
      (for-each
       (lambda (node)
	 (for-each
          (lambda (to)
            (let ((p (assoc to table eq)))
              (if p
                  (set-cdr! p (+ 1 (cdr p)))
                  (set! table (cons (cons to 1) table)))))
          (cdr node)))
       nodes))
    
    (define (traverse)
      (unless (null? queue)
	(let ((nq (car queue)))
          (set! queue (cdr queue))
          (let ((n0 (assoc nq nodes eq)))
            (when n0
              (for-each
               (lambda (to)
		 (let ((p (assoc to table eq)))
                   (when p
                     (let ((cnt (- (cdr p) 1)))
                       (when (zero? cnt)
			 (set! result (cons to result))
			 (set! queue (cons to queue)))
                       (set-cdr! p cnt)))))
               (cdr n0)))
            (traverse)))))

    (set-up)
    (set! queue (map car (filter (lambda (p) (zero? (cdr p))) table)))
    (set! result queue)
    (traverse)
    (let ((rest (filter (lambda (e) (not (zero? (cdr e)))) table)))
      (unless (null? rest)
	(error 'bad-data (list "Graph has circular dependency: ~S" (map car rest)))))
    (reverse result)))

(topological-sort '((shirt tie belt)
                    (tie jacket)
                    (belt jacket)
                    (watch)
                    (pants shoes belt)
                    (undershorts pants shoes)
                    (socks shoes))
                  eqv?)
;; => (socks undershorts watch shirt tie pants belt jacket shoes)

(catch #t
  (lambda ()
    (topological-sort '((shirt watch)
			(watch tie)
			(tie watch))
                      eqv?))
  (lambda (typ info)
    #f))
;; Raises an exception.

(define (topo-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 20000)))
    (topological-sort '((shirt tie belt)
			(tie jacket)
			(belt jacket)
			(watch)
			(pants shoes belt)
			(undershorts pants shoes)
			(socks shoes))
                      eqv?)))

(topo-test)

;;;; --------------------------------------------------------------------------------

(define iota
  (let ((+documentation+ "(iota n (start 0) (incr 1)) returns a list counting from start for n:\n\
    (iota 3) -> '(0 1 2)"))
    (lambda* (n (start 0) (incr 1))
      (if (or (not (integer? n))
	      (< n 0))
	  (error 'wrong-type-arg "iota length ~A should be a non-negative integer" n))
      (let ((lst (make-list n)))
	(do ((p lst (cdr p))
	     (i start (+ i incr)))
	    ((null? p) lst)
	  (set! (car p) i))))))

(define (group-by f lst)
  (if (null? lst) ()
      (let ((first (car lst)))
        (let loop ((lst (cdr lst))
                   (key (f first))
                   (group (list first))
                   (groups ()))
          (if (null? lst)
              (reverse (cons (reverse group) groups))
              (let ((newkey (f (car lst))))
                (if (equal? key newkey)
                    (loop (cdr lst) key
                          (cons (car lst) group)
                          groups)
                    (loop (cdr lst) newkey
                          (list (car lst))
                          (cons (reverse group) groups)))))))))

(group-by even? (iota 10))
;; ==> ((0) (1) (2) (3) (4) (5) (6) (7) (8) (9))

(group-by odd? '(1 3 5 2 1 6 4 1 7))
;; ==> ((1 3 5) (2) (1) (6 4) (1 7))

(group-by string-length '("aa" "bb" "ccc" "dddd" "eeee" "ffff" "g" "h"))
;; ==> (("aa" "bb") ("ccc") ("dddd" "eeee" "ffff") ("g" "h"))

(group-by (lambda (i) (quotient i 3)) (iota 20))
;; ==> ((0 1 2) (3 4 5) (6 7 8) (9 10 11) (12 13 14) (15 16 17) (18 19))

(define (group-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 20000)))
    (group-by odd? '(1 3 5 2 1 6 4 1 7))
    (group-by string-length '("aa" "bb" "ccc" "dddd" "eeee" "ffff" "g" "h"))
    (group-by (lambda (i) (quotient i 3)) (iota 20))))

(group-test)

;;;; --------------------------------------------------------------------------------

(define (string-join1 lst delimiter)
  (if (null? lst) ""
      (let loop ((result (car lst)) (lst (cdr lst)))
        (if (null? lst)
            result
            (loop (string-append result delimiter (car lst))
                  (cdr lst))))))

(define (string-join2 lst delimiter)
  (if (null? lst) ""
      (call-with-output-string
       (lambda (out)
         (write-string (car lst) out)
         (for-each (lambda (item)
                     (write-string delimiter out)
                     (write-string item out))
                   (cdr lst))
         (get-output-string out)))))

(string-join1 '("foo" "bar" "baz") ":")
;; ==> "foo:bar:baz"

(string-join2 '("foo" "bar" "baz") ":")

(define (join-test)
  (do ((i 0 (+ i 1)))
      ((= i (* factor 200000)))
    (string-join1 '("foo" "bar" "baz") ":")
    (string-join2 '("foo" "bar" "baz") ":")))

(join-test)

;;; ================================================================================

(define dft ; K Dybvig I think (I forgot to write down the source)
  (let ()
    (define (w-powers n)
      (let ((delta (/ (* 0-2.0i pi) n)))
	(let f ((n n) (x 0.0))
          (if (= n 0)
              ()
              (cons (exp x) (f (- n 2) (+ x delta)))))))
    (define (evens w)
      (if (null? w)
          ()
          (cons (car w) (evens (cddr w)))))
    (define (interlace x y)
      (if (null? x)
          ()
          (cons (car x) (cons (car y) (interlace (cdr x) (cdr y))))))
    (define (split ls)
      (let split ((fast ls) (slow ls))
	(if (null? fast)
            (values () slow)
            ((lambda (front back)
               (values (cons (car slow) front) back))
             (split (cddr fast) (cdr slow))))))
    (define (butterfly x w)
      ((lambda (front back)
	 (values
          (map + front back)
          (map * (map - front back) w)))
       (split x)))
    (define (rfft x w)
      (if (null? (cddr x))
	  (let ((x0 (car x)) (x1 (cadr x)))
            (list (+ x0 x1) (- x0 x1)))
	  ((lambda (front back)
             (let ((w (evens w)))
               (interlace (rfft front w) (rfft back w))))
	   (butterfly x w))))
    (lambda (x)
      (rfft x (w-powers (length x))))))

(display (dft (make-list 8 1.0))) (newline)
(define (f)
  (let ((L (make-list 1024 0.0)))
    (do ((i 0 (+ i 1)))
	((= i 200))
      (set! (L i) 1.0)
      (dft L))))
(f)

;;; --------------------------------------------------------------------------------
;;; char-type tests for the eof-object first, since the eof-object
;;; may not be a valid argument to char-alphabetic? or char-numeric?
;;; It returns the eof-object, the symbol letter, the symbol digit,
;;; or the argument itself if it is not a letter or digit.
(define char-type
  (lambda (c)
    (cond
     ((eof-object? c) c)
     ((char-alphabetic? c) 'letter)
     ((char-numeric? c) 'digit)
     (else c))))

;;; If the next character on p is a letter, get-word reads a word
;;; from p and returns it in a string.  If the character is not a
;;; letter, get-word returns the character (on eof, the eof-object).
(define get-word
  (lambda (p)
    (let ((c (read-char p)))
      (if (eq? (char-type c) 'letter)
          (list->string
           (let loop ((c c))
             (cons c
                   (if (memq (char-type (peek-char p)) '(letter digit))
                       (loop (read-char p))
                       ()))))
          c))))

;;; Trees are represented as vectors with four fields: word, left,
;;; right, and counter.  Only one field, word, is initialized by an
;;; argument to the constructor procedure make-tree.  The remaining
;;; fields are explicitly initialized and changed by subsequent
;;; operations.  Most Scheme systems provide structure definition
;;; facilities that automate creation of structure manipulation
;;; procedures, but we simply define the procedures by hand here.
(define-expansion (make-tree word) `(vector ,word () () 1))
(define-expansion (tree-word tree) `(vector-ref ,tree 0))
(define-expansion (tree-left tree) `(vector-ref ,tree 1))
(define-expansion (set-tree-left! tree new-left) `(vector-set! ,tree 1 ,new-left))
(define-expansion (tree-right tree) `(vector-ref ,tree 2))
(define-expansion (set-tree-right! tree new-right) `(vector-set! ,tree 2 ,new-right))
(define-expansion (tree-counter tree) `(vector-ref ,tree 3))
(define-expansion (set-tree-counter! tree new-counter) `(vector-set! ,tree 3 ,new-counter))

;;; If the word already exists in the tree, tree increments its
;;; counter.  Otherwise, a new tree node is created and put into the
;;; tree.  In any case, the new or modified tree is returned.
(define tree
  (lambda (node word)
    (cond
     ((null? node) (make-tree word))
     ((string=? word (tree-word node))
      (set-tree-counter! node (+ (tree-counter node) 1))
      node)
     ((string<? word (tree-word node))
      (set-tree-left! node (tree (tree-left node) word))
      node)
     (else
      (set-tree-right! node (tree (tree-right node) word))
      node))))

;;; tree-print prints the tree in "in-order," i.e., left subtree,
;;; then node, then right subtree.  For each word, the counter and the
;;; word are printed on a single line.
(define tree-print
  (lambda (node p)
    (unless (null? node)
      (tree-print (tree-left node) p)
      (format p "~S ~A~%" (tree-counter node) (tree-word node))
      (tree-print (tree-right node) p))))

;;; frequency is the driver routine.  It opens the files, reads the
;;; words, and enters them into the tree.  When the input port
;;; reaches end-of-file, it prints the tree and closes the ports.
(define frequency
  (lambda (infn outfn)
    (let ((ip (open-input-file infn))
          (op (open-output-file outfn)))
      (let loop ((root ()))
        (let ((w (get-word ip)))
          (cond
           ((eof-object? w) (tree-print root op))
           ((string? w) (loop (tree root w)))
           (else (loop root)))))
      (close-input-port ip)
      (close-output-port op))))

(frequency "lint.scm" "dybtest")

;;; --------------------------------------------------------------------------------
;;; code from Rosetta scheme examples slightly edited to provide timing tests

;(load "r7rs.scm")
(define (square x) (* x x))

;;; barnsley fern

(define create-fern 
  (let ()
    (define (new-point xn yn)
      (let ((r (random 100.0))) ;(* 100 (random-real))))
	(cond ((< r 1) ; f1
               (list 0 (* 0.16 yn)))
              ((< r 86) ; f2
               (list (+ (* 0.85 xn) (* 0.04 yn))
                     (+ (* -0.04 xn) (* 0.85 yn) 1.6)))
              ((< r 93) ; f3
               (list (- (* 0.2 xn) (* 0.26 yn))
                     (+ (* 0.23 xn) (* 0.22 yn) 1.6)))
              (else ; f4
               (list (+ (* -0.15 xn) (* 0.28 yn))
                     (+ (* 0.26 xn) (* 0.24 yn) 0.44))))))
    (lambda (x y num-points)
      (do ((i 0 (+ i 1))
	   (pts (list (list x y)) (cons (new-point (caar pts) (cadar pts)) pts)))
	  ((= i num-points) pts)))))
    
;; output the fern to an eps file
(define (output-fern-as-eps filename fern)
  (when (file-exists? filename) (delete-file filename))
  (with-output-to-file
      filename
    (lambda ()
      (let* ((width 600)
             (height 800)
             (min-x (apply min (map car fern)))
             (max-x (apply max (map car fern)))
             (min-y (apply min (map cadr fern)))
             (max-y (apply max (map cadr fern)))
             (scale-x (/ (- width 50) (- max-x min-x)))
             (scale-y (/ (- height 50) (- max-y min-y)))
             (scale-points (lambda (point)
                             (list (truncate (+ 20 (* scale-x (- (car point) min-x))))
                                   (truncate (+ 20 (* scale-y (- (cadr point) min-y))))))))
	
        (format () "%!PS-Adobe-3.0 EPSF-3.0\n%%BoundingBox: 0 0 ~D ~D~%" width height)
        ;; add each point in fern as an arc - sets linewidth based on depth in tree
        (for-each (lambda (point)
                    (format () "~D ~D 0.1 0 360 arc\nstroke\n" (car point) (cadr point)))
                  (map scale-points fern))
        (display "\n%%EOF")))))

(do ((i 0 (+ i 1)))
    ((= i 4))
  (output-fern-as-eps "barnsley.eps" (create-fern 0 0 50000)))

;;; --------------------------------------------------------------------------------

;;; circles through 2 points

;; c1 and c2 are pairs (x y), r a positive radius
(define find-circles
  (let ((x-coord car) ; for easier to read coordinate extraction from list
	(y-coord cadr))
    (define (approx= a b) (< (- a b) 0.000001)) ; equal within tolerance
    (define (avg a b) (/ (+ a b) 2))
    (define (distance pt1 pt2)
      (sqrt (+ (square (- (x-coord pt1) (x-coord pt2)))
               (square (- (y-coord pt1) (y-coord pt2))))))
    (define (equal-points? pt1 pt2)
      (and (approx= (x-coord pt1) (x-coord pt2))
           (approx= (y-coord pt1) (y-coord pt2))))
    (define (delete-duplicate pts) ; assume no more than two points in list
      (if (and (= 2 (length pts))
               (equal-points? (car pts) (cadr pts)))
	  (list (car pts)) ; keep the first only
	  pts))
    
    (lambda (c1 c2 r)					;
      (let ((d (distance c1 c2)))
	(cond ((equal-points? c1 c2) ; coincident points
               (if (> r 0)
		   'infinite   ; r > 0
		   (list c1))) ; else r = 0
              ((or (< (* 2 r) d)    ; circle cannot reach both points, as too far apart
		   (approx= r 0.0)) ; r = 0, no circles, as points differ
               ())
              (else ; find up to two circles meeting c1 and c2
               (let* ((mid-pt (list (avg (x-coord c1) (x-coord c2))
                                    (avg (y-coord c1) (y-coord c2))))
                      (offset (sqrt (- (square r) 
                                       (square (* 0.5 d)))))
                      (delta-cx (/ (- (x-coord c1) (x-coord c2)) d))
                      (delta-cy (/ (- (y-coord c1) (y-coord c2)) d)))
		 (delete-duplicate
		  (list (list (- (x-coord mid-pt) (* offset delta-cx))
                              (+ (y-coord mid-pt) (* offset delta-cy)))
			(list (+ (x-coord mid-pt) (* offset delta-cx))
                              (- (y-coord mid-pt) (* offset delta-cy))))))))))))

(define (test-circles)
  (let ((c1 '((0.1234 0.9876) (0.0000 2.0000) (0.1234 0.9876) (0.1234 0.9876) (0.1234 0.9876)))
	(c2 '((0.8765 0.2345) (0.0000 0.0000) (0.1234 0.9876) (0.8765 0.2345) (0.1234 0.9876)))
	(r '(2.0 1.0 2.0 0.5 0.0)))
    (do ((i 0 (+ i 1)))
	((= i 10000))
      (for-each find-circles c1 c2 r))))

(test-circles)

;;; --------------------------------------------------------------------------------

;;; compare strings
(define-constant (compare-strings fn strs)
  (or (null? strs)                             ; returns #t on empty list
      (null? (cdr strs))                       ; returns #t on list of size 1
      (do ((fst strs (cdr fst))
           (snd (cdr strs) (cdr snd)))
          ((or (null? snd)
               (not (fn (car fst) (car snd))))
           (null? snd)))))                       ; returns #t if the snd list is empty, meaning all comparisons are exhausted

(define (test-compare)
  (let ((strings (list "AA AA AA AA" "AA ACB BB CC"))) 
    (do ((i 0 (+ i 1)))
	((= i 100000))
      (compare-strings string=? strings) ; test for all equal
      (compare-strings string<? strings)))) ; test for in ascending order

(test-compare)

;;; --------------------------------------------------------------------------------

;;; ordered words unixdict.txt

(define (test-words)
  (do ((i 0 (+ i 1)))
      ((= i 4))
    (let ((port (open-input-file "~/cl/unixdict.txt")))
      (let loop ((char (read-char port)) (word ()) (result '(())))
	(case char
	  ((#<eof>)
	   (reverse (map (lambda (word) (apply string word)) result)))
	  ((#\newline)
	   (loop (read-char port) ()
		 (let ((best-length (length (car result))) (word-length (length word)))
		   (cond
		    ((or (< word-length best-length) (not (apply char>=? word))) result)
		    ((> word-length best-length) (list (reverse word)))
		    (else (cons (reverse word) result))))))
	  (else (loop (read-char port) (cons char word) result)))))))

(test-words)

;;; --------------------------------------------------------------------------------

;;; same fringe

; binary tree helpers from "Structure and Interpretation of Computer Programs" 2.3.3
(define entry car)
(define left-branch cadr)
(define right-branch caddr)
;;; -- unused: (define (make-tree entry left right) (list entry left right))

; returns a list of leftmost nodes from each level of the tree
(define (descend tree ls)
  (if (null? (left-branch tree))
      (cons tree ls)
      (descend (left-branch tree) (cons tree ls))))

; updates the list to contain leftmost nodes from each remaining level
(define (ascend ls)
  (if (null? (right-branch (car ls))) 
      (if (null? (cdr ls)) () (cdr ls))
      (let ((ls (cons (right-branch (car ls)) (cdr ls))))
        (if (null? (left-branch (car ls)))
            ls
            (descend (left-branch (car ls)) ls)))))

; loops thru each list until the end (true) or nodes are unequal (false)
(define (same-fringe? t1 t2)
  (let next ((l1 (descend t1 ()))
	     (l2 (descend t2 ())))
    (cond
     ((and (null? l1) (null? l2)) #t)
     ((or (null? l1)
	  (null? l2)
	  (not (eq? (entry (car l1)) (entry (car l2))))) #f)
     (else (next (ascend l1) (ascend l2))))))

;;;Output:
;;; > (same-fringe? (list 1 () (list 2 () (list 3 () ()))) (list 3 (list 2 (list 1 () ()) ()) ()))
;;; #t

(define (fringe)
  (do ((i 0 (+ i 1)))
      ((= i 30000))
    (same-fringe? (list 1 () (list 2 () (list 3 () ()))) (list 3 (list 2 (list 1 () ()) ()) ()))))

(fringe)

;;; --------------------------------------------------------------------------------

;;; vector products

(define (dot-product A B)
  (apply + (map * A B)))
#|
  ;; slower! (int_optimize)
  (let ((len (min (length A) (length B)))
	(sum 0))
    (do ((i 0 (+ i 1)))
	((= i len) sum)
      (set! sum (+ sum (* (int-vector-ref A i) (int-vector-ref B i)))))))
|#

(define (cross-product A B)
  (let* ((len (vector-length A))
	 (xp (make-int-vector len)))
    (let loop ((n 0))
      (int-vector-set! xp n (- (* (int-vector-ref A (modulo (+ n 1) len))
				  (int-vector-ref B (modulo (+ n 2) len)))
			       (* (int-vector-ref A (modulo (+ n 2) len))
				  (int-vector-ref B (modulo (+ n 1) len)))))
      (if (= len (+ n 1))
	  xp
	  (loop (+ n 1))))))

(define (scalar-triple-product A B C)
  (dot-product A (cross-product B C)))

(define (vector-triple-product A B C)
  (cross-product A (cross-product B C)))


(define A #i(3 4 5))
(define B #i(4 3 5))
(define C #i(-5 -12 -13))

(define (test-product)
  (do ((i 0 (+ i 1)))
      ((= i 10000))
    (dot-product A B)
    (cross-product A B)
    (scalar-triple-product A B C)
    (vector-triple-product A B C)))

(test-product)

;;; --------------------------------------------------------------------------------

;;; gnome sort

(define (gnome-sort-compar in-order input-list)
  (let gnome ((p (list (car input-list)))
              (n (cdr input-list)))
    (if (null? n) ; no more flowerpots?
        p ; we're done
        (let ((prev-pot (car p))
              (next-pot (car n)))
          (if (in-order next-pot prev-pot)
					; if the pots are in order, step forwards.
					; otherwise, exchange the two pots, and step backwards.
              (gnome (cons next-pot p) ; Prev list grows
                     (cdr n)) ; Next list shorter by one
              (if (null? (cdr p)) ; are we at the beginning?
                  (gnome                    ; if so, we can't step back
                   (list next-pot)          ; simply exchange the pots without
                   (cons prev-pot (cdr n))) ; changing lengths of lists
                  (gnome
                   (cdr p) ; Prev list shorter by one
                   (cons next-pot (cons prev-pot (cdr n))))))))))

;;; (gnome-sort-compar <= '(98 36 2 78 5 81 32 90 73 21 94 28 53 25 10 99))
;;; (2 5 10 21 25 28 32 36 53 73 78 81 90 94 98 99)

;;; (display (gnome-sort-compar <= '(98 36 2 78 5 81 32 90 73 21 94 28 53 25 10 99))) (newline)

(define (test-gnome)
  (do ((i 0 (+ i 1)))
      ((= i 5000))
    (gnome-sort-compar <= '(98 36 2 78 5 81 32 90 73 21 94 28 53 25 10 99))))

(test-gnome)

;;; --------------------------------------------------------------------------------

;;; heapsort

(define (swap! v i j)                   ; swap two elements of a vector
  (let ((temp (vector-ref v i)))
    (vector-set! v i (vector-ref v j))
    (vector-set! v j temp)))

(define (sift-down! v start end)        ; sift element at node start into place
  (let ((child (+ (* start 2) 1)))
    (cond
     ((> child end) 'done) ; start has no children
     (else
					; if child has a sibling node whose value is greater ...
      (if (and (<= (+ child 1) end)
               (< (vector-ref v child) (vector-ref v (+ child 1))))
					; ... then we'll look at the sibling instead
           (set! child (+ child 1)))
      (if (< (vector-ref v start) (vector-ref v child))
          (begin
            (swap! v start child)
            (sift-down! v child end))
          'done)))))

(define heapify                         ; transform v into a binary max-heap
  (let ()
    (define (iter v len) 
      (do ((start (quotient (- len 2) 2) (- start 1)))
          ((< start 0) 'done)
        (sift-down! v start (- len 1))))
    (lambda (v)
      (iter v (vector-length v)))))

(define heapsort
  (let ()
    (define (iter v end) 
      (do ((v v)
           (end end (- end 1)))
          ((zero? end) 'done) ; why not return v??
        (swap! v 0 end)
        (sift-down! v 0 (- end 1))))
    (lambda (v)
      (heapify v)
      (iter v (- (vector-length v) 1)))))

(let ((v (vector 3 5 7 9 0 8 1 4 2 6)))
  (heapsort v)
  (unless (equal? v (vector 0 1 2 3 4 5 6 7 8 9))
    (format *stderr* "heapsort: ~S~%" v)))

(define (test-heap)
  (do ((i 0 (+ i 1))
       (uriah (vector 3 5 7 9 0 8 1 4 2 6) (vector 3 5 7 9 0 8 1 4 2 6)))
      ((= i 6000))
    (heapsort uriah)))

(test-heap)

;;; --------------------------------------------------------------------------------

;;; sierpinski carpet

(define carpet
  (let ()
    (define (in-carpet? x y)
      (cond ((or (zero? x) (zero? y))
             #t)
            ((= 1 (remainder x 3) (remainder y 3))
             #f)
            (else
             (in-carpet? (quotient x 3) (quotient y 3)))))
    (lambda (n out)
      (do ((i 0 (+ i 1))) ((>= i (expt 3 n)))
	(do ((j 0 (+ j 1))) ((>= j (expt 3 n)))
	  (display (if (in-carpet? i j)
                       #\*
                       #\space)
		   out))
	(newline out)))))

(define (test-carpet)
  (do ((i 0 (+ i 1)))
      ((= i 30))
    (carpet 4 #f)))

(test-carpet)

;;; --------------------------------------------------------------------------------

;;; babbage

(define (digits n)
  (string->list (number->string n)))

(define (starts-with list head)
  (cond ((null? head) #t)
        ((null? list) #f)
        ((equal? (car list) (car head))
	 (starts-with (cdr list) (cdr head)))
	(else #f)))
(define (ends-with list tail)
  (starts-with (reverse list)
               tail))

(define (test-babbage)
  (let ((end (reverse (digits 269696))))
    (do ((i 0 (+ i 1)))
	((= i 5))
      (do ((j 1 (+ j 1)))
	  ((ends-with (digits (* j j)) end) j)))))

(test-babbage)
;; 25264

;;; --------------------------------------------------------------------------------

;;; longest increasing subsequence

(define lis
  (let ()
    (define (bsearch-piles less? x len pile-tops)
      (let aux ((lo 0)
		(hi (- len 1)))
	(if (> lo hi)
	    lo
	    (let ((mid (quotient (+ lo hi) 2)))
	      (if (less? (car (vector-ref pile-tops mid)) x)
		  (aux (+ mid 1) hi)
		  (aux lo (- mid 1)))))))
    (lambda (less? lst)
      (let ((pile-tops (make-vector (length lst))))
	(let aux ((len 0)
		  (lst lst))
	  (if (null? lst)
	      (reverse (vector-ref pile-tops (- len 1)))
	      (let* ((x (car lst))
		     (i (bsearch-piles less? x len pile-tops)))
		(vector-set! pile-tops i (cons x (if (= i 0)
						     ()
						     (vector-ref pile-tops (- i 1)))))
		(aux (if (= i len) (+ len 1) len) (cdr lst)))))))))

(define (test-increase)
  (do ((i 0 (+ i 1)))
      ((= i 5000))
    (lis < '(3 2 6 4 5 1))
    (lis < '(0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15))))

(test-increase)

(exit)