1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
|
/* a samson box emulator */
/* I assume what people really want is a good rendition from their ancient SAM files,
* not an exact replica of the Samson box output. The latter used 12, 14, 20, 24, 28, and 30-bit
* fractional and integer fields, which are a pain to deal with when we would rather use doubles.
*
* gcc sam.c -o sam -lm -O2 -Wall -Wextra
* sam TEST.SAM
* -> TEST.wav ("wav" or "riff" header, quad, little-endian float data at box srate)
*
* to include a read-data file, convert the old SAD file to a raw file of little-endian floats,
* then sam TEST.SAM test.snd
*
* here's the Snd code I use to turn quad into stereo and scale the result to .9:
*
(define* (quad->stereo (snd 0))
"turn a quad sound into a (new) stereo sound by mixing 4->1 and 3->2"
(let ((r0 (make-sampler 0 snd 0))
(r1 (make-sampler 0 snd 1))
(r2 (make-sampler 0 snd 2))
(r3 (make-sampler 0 snd 3)))
(let ((new-snd (new-sound :channels 2
:srate (srate snd)
:size (frames snd)
:header-type (header-type snd)
:sample-type (sample-type snd))))
(map-channel (lambda (y) (+ (next-sample r0) (next-sample r3))) 0 (frames snd) new-snd 0)
(map-channel (lambda (y) (+ (next-sample r1) (next-sample r2))) 0 (frames snd) new-snd 1)
(let* ((mx (apply max (maxamp new-snd #t)))
(scl (/ 0.9 mx)))
(map-channel (lambda (y) (* y scl)) 0 (frames snd) new-snd 0)
(map-channel (lambda (y) (* y scl)) 0 (frames snd) new-snd 1)))))
*
* Thanks to Michael McNabb for bug fixes and enhancements!
* And thanks to Peter Samson for going back to the schematics to answer our questions!
* Thanks also to David Jaffe for onepole and onezero changes!
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include <math.h>
#define TOTAL_SAMPLES -1
/* set TOTAL_SAMPLES to the number of samples you want computed, or -1 to compute all of them */
#define DEFAULT_DESCRIBE_COMMANDS false
#define REPORT_BAD_COMMANDS true
#define FLUSH_BAD_COMMANDS false
#define FLUSH_TRAILING_LINGERS true
#define DAJ_FIXES false /* bugfixes involving onepole (see code for discussion) and onezero */
#define MULTIPLE_SRATES false /* srate change in mid-stream, so close current file, start up the next (from DAJ) */
#if MULTIPLE_SRATES
#warning "Multiple sample rate support enabled"
/* we always generate one bogus "0"-numbered file, due to extra tick command at start of file */
static int fileCounter = 0;
#endif
static bool describe_commands = DEFAULT_DESCRIBE_COMMANDS;
static int start_describing = -1, stop_describing = -1;
static int dump_patch_at = -1;
#define LDB(Cmd, Size, Position) ((Cmd >> Position) & ((1 << Size) - 1))
#define BIT(Cmd, Position) ((Cmd >> Position) & 1)
#define TWOS_12(N) ((N < (1 << 11)) ? N : ((N & 0x7ff) - (1 << 11)))
#define TWOS_20(N) ((N < (1 << 19)) ? N : ((N & 0x7ffff) - (1 << 19)))
#define TWOS_24(N) ((N < (1 << 23)) ? N : ((N & 0x7fffff) - (1 << 23)))
#define TWOS_28(N) ((N < (1 << 27)) ? N : ((N & 0x7ffffff) - (1 << 27)))
#define TWOS_30(N) ((N < (1 << 29)) ? N : ((N & 0x1fffffff) - (1 << 29)))
#define TWOS_12_TO_DOUBLE(N) ((double)TWOS_12(N) / (double)(1 << 11))
#define TWOS_20_TO_DOUBLE(N) ((double)TWOS_20(N) / (double)(1 << 19))
#define DOUBLE_12(N) ((double)N / (double)(1 << 11))
#define DOUBLE_20(N) ((double)N / (double)(1 << 19))
#define DOUBLE_24(N) ((double)N / (double)(1 << 23))
#define DOUBLE_28(N) ((double)N / (double)(1 << 27))
#define DOUBLE_30(N) ((double)N / (double)(1 << 29))
/* mmm -- slightly more accurate to use 1<<12-1, I think */
#define UNSIGNED_12_TO_DOUBLE(N) ((double)N / (double)((1 << 12) - 1))
#define DOUBLE_TO_TWOS_20(X) ((X >= 0.0) ? (int)(X * (1 << 19)) : (int)((X + 1.0) * (1 << 19)))
#if (!defined(M_PI))
#define M_PI 3.14159265358979323846264338327
#define M_PI_2 (M_PI / 2.0)
#endif
typedef struct {
int GO, GJ, GK, GN, GM, GP, GQ, GL, GSUM, GFM, GS, GMODE;
double f_GO, f_GJ, f_GK, f_GM, f_GP, f_GQ, f_GL;
} generator;
typedef struct {
int M0, M1, L0, L1, MIN, MRM, MSUM, MMODE, MMMMM, T, mult_scl_1, mult_scl_0, o_M0, o_M1;
double f_M0, f_M1, f_L0, f_L1, o_f_M0, o_f_M1;
/* by "2nd multiplication" I think Pete means M0 since it follows M1 so AA -> M0 and BB -> M1 */
} modifier;
typedef struct {
int P, Z, Y, X, I; /* "I" = table lookup index received from modifier */
double xd1, xd2; /* mmm - accounts for "extra" hidden delay */
} delay;
#define SUM_MEMORY_SIZE 64
static double gen_outs[SUM_MEMORY_SIZE], gen_ins[SUM_MEMORY_SIZE], mod_outs[SUM_MEMORY_SIZE], mod_ins[SUM_MEMORY_SIZE]; /* "sum memory" */
static double prev_gen_ins[SUM_MEMORY_SIZE], prev_mod_ins[SUM_MEMORY_SIZE]; /* some debugging info */
static double peak_gen_ins[SUM_MEMORY_SIZE], peak_mod_ins[SUM_MEMORY_SIZE];
#define GENERATORS 256
#define MODIFIERS 128
#define DELAYS 32
static generator *gens[GENERATORS];
static modifier *mods[MODIFIERS];
static delay *dlys[DELAYS];
#define DELAY_MEMORY_SIZE 65536
static double delay_memory[DELAY_MEMORY_SIZE];
static float dac_out[4], dac_out_peak[4];
static int tick, pass, DX, processing_ticks, highest_tick_per_pass, samples = 0, srate = 1, total_commands = 0, current_command = 0;
FILE *snd_file = NULL; /* for now just riff/wave quad, but srate depends on tick setting */
FILE *read_data_file = NULL;
static char *filename = NULL; /* mmm - Keep SAM filename around */
static char *output_filename = NULL; /* mmm - And generate matching output file name == <sam name>.wav */
static void start_clean(void)
{
int i;
for (i = 0; i < SUM_MEMORY_SIZE; i++)
{
gen_outs[i] = 0.0; /* "outs" are this pass */
gen_ins[i] = 0.0; /* "ins" are last pass */
mod_outs[i] = 0.0;
mod_ins[i] = 0.0;
prev_mod_ins[i] = 0.0;
prev_gen_ins[i] = 0.0;
peak_mod_ins[i] = 0.0;
peak_gen_ins[i] = 0.0;
}
for (i = 0; i < GENERATORS; i++)
gens[i] = (generator *)calloc(1, sizeof(generator));
for (i = 0; i < MODIFIERS; i++)
{
mods[i] = (modifier *)calloc(1, sizeof(modifier));
mods[i]->mult_scl_1 = 1;
mods[i]->mult_scl_0 = 1;
}
for (i = 0; i < DELAYS; i++)
dlys[i] = (delay *)calloc(1, sizeof(delay));
for (i = 0; i < DELAY_MEMORY_SIZE; i++)
delay_memory[i] = 0.0;
for (i = 0; i < 4; i++)
{
dac_out[i] = 0.0;
dac_out_peak[i] = 0.0;
}
tick = 0;
pass = 0;
}
static void all_done(void)
{
if (snd_file)
{
int header_info[1];
fclose(snd_file);
snd_file = fopen(output_filename, "r+"); /* mmm */
fseek(snd_file, 4L, SEEK_SET);
header_info[0] = 88 + samples * 4 * 4; /* total data bytes 4 chans, 4 bytes/float */
fwrite((void *)header_info, 4, 1, snd_file);
fseek(snd_file, 76L, SEEK_SET);
header_info[0] = samples * 4 * 4;
fwrite((void *)header_info, 4, 1, snd_file);
fclose(snd_file);
#if MULTIPLE_SRATES
snd_file = NULL;
#endif
fprintf(stderr, "%s: %dHz, %d samples, %.4f secs", output_filename, srate, samples, (double)samples / (double)srate); /* mmm */
fprintf(stderr, ", maxamps: %.3f %.3f %.3f %.3f\n", dac_out_peak[0], dac_out_peak[1], dac_out_peak[2], dac_out_peak[3]);
}
#if (!MULTIPLE_SRATES)
exit(0);
#endif
}
static void dac_write(double data, int chan)
{
/* during a given pass we accumulate output to the dac */
dac_out[chan] += (float)(data / 2.0);
/* mmm - /2 seems best now that other scalings have been adjusted */
}
/* ---------------------------------------- generator processing ---------------------------------------- */
/*
* DAJ - Here is JOS's translation into english of the generator processing.
*
* Associated with each generator are the following quantities:
* FrqSwp20 (20 bits) alpha -- oscillator frequency sweep rate
* OscFrq28 (28 bits) omega -- oscillator frequency
* OscAng20 (20 bits) theta -- oscillator angle
* NumCos11 (11 bits) number of cosines to be summed
* CosScl4 (4 bits) binary scale of cosine or sum of cosines
* AmpSwp20 (20 bits) delta -- decay rate
* CurAmp24 (24 bits) phi -- decay exponent
* AmpOff12 (12 bits) asymptote
* OutSum6 (6 bits) sum memory address into which output is added
* FmSum7 (7 bits) sum memory address from which frequency modulation data is taken
* FmSum7 = QAAAAAA
* Q: 0 generator-last-pass quadrant
* 1 modifier-last-pass quadrant
* AAAAAA: sum address within quadrant
* Gmode10 (10 bits) generator mode
* Gmode10 = RRRREESSSS
*
* Processing
* ----------
*
* Calculations performed for a generator, governed by its
* mode, proceed as detailed below.
*
* 1) The word in sum memory addressed by FmSum7 is read (20 bits);
* the sum is formed of it and the high-order 20 bits of
* OscFrq28 (call the result FmPhase20).
*
* 2) If the oscillator side is running, FrqSwp20, right-adjusted with
* sign extended, is added into OscFrq28.
*
* 3) If the oscillator mode is SIN(J+Fm), FmPhase20 is taken; otherwise OscAng20.
* Call the 20-bit result Phase20, and its high-order 13 bits
* Phase13.
*
* 4) If the oscillator side is running, FmPhase20 is added into OscAng20.
*
* 5) If the run mode is WRITEDATA, the word in sum memory addressed by FmSum7
* is sent to the CPU as the next write-data item; if the run
* mode is DACOUT it is sent to the DAC addressed by the low-order
* 4 bits of FrqSwp20.
*
* 6) In oscillator modes other than SIN(K) and SIN(J+Fm), Phase13 is multiplied
* by NumCos11. Call the low-order 12 bits of the product, with two bits
* equal to 01 appended to the right, the 14-bit result SinAdr.
* In oscillator modes SIN(K) and SIN(J+Fm), SinAdr is the high-order 13
* bits of Phase20, with a bit equal to 1 appended to the right.
*
* 7) If the oscillator mode is SIN(K) or SIN(J+Fm), pi/2 is taken (the binary
* number 010...0); otherwise Phase13. Call the result CscAdr.
*
* 8) In floating point, the product csc (CscAdr) * sin (SinAdr) is
* formed; then converted to fixed point with a scale factor
* of 2**(-CosScl4). Call the result (13 bits) TblOut13.
*
*
* 9) The result of the oscillator side (13 bits, call it OscOut13) is
* then determined according to the oscillator mode.
* SSSS: SUMCOS TblOut13
* SAWTOOTH Phase13 (but 0 when Phase13 is 1000000000000)
* SQUARE -1/2 (on a scale from -1 to +1) if Phase13 is negative,
* else +1/2
* PULSE +1/2 if overflow occurred in step 1) or 4) above;
* else 0.
* SIN(K) TblOut13
* SIN(J+Fm) TblOut13
*
* 10) The high-order 12 bits of CurAmp24 are taken (call the result CurAmp12).
*
* 11) If the envelope side is running, AmpSwp20 right-adjusted, sign
* extended, is added into CurAmp24 (overflow dealt with according
* to the run mode). (The overflow condition is CurAmp24 changing
* sign such that the high-order bit of the resultant CurAmp24 equals
* the sign bit of AmpSwp20.)
*
* 12) If the envelope mode is 10 or 11, 2**(-CurAmp12) is looked up;
* otherwise CurAmp12 is taken. Call the resulting 12 bits NewAmp12.
* Scaling is such that if CurAmp12 is 0 then 2**(-CurAmp12) is
* 111 111 111 101 binary; if CurAmp12 is 000 100 000 000 binary,
* then 2**(-CurAmp12) is 011 111 111 110.
*
* 13) If the envelope mode is 01 or 11, NewAmp12 is added to AmpOff12; else
* it is subtracted from AmpOff12. This creates Env12, the result
* of the envelope side.
*
* 14) OscOut13 is multiplied by Env12. If the run mode specifies adding
* into sum memory, the high-order 19 bits of the rounded product,
* right-adjusted with sign extended, are added into the sum
* memory location designated by OutSum6; except that in run mode
* READDATA, the product is added to the next read-data item from the
* CPU and the sum replaces the contents of the sum memory
* location addressed.
*/
#define osc_mode(gmode) (gmode & 0xf)
/*
SSSS: 0100 sum of cosines
0001 sawtooth
0010 square
0011 pulse train
0000 sin (K)
1000 sin (J + fm)
*/
#define SUMCOS 4
#define SAWTOOTH 1
#define SQUARE 2
#define PULSE 3
#define SIN_K 0
#define SIN_FM 8
#define osc_env(gmode) ((gmode >> 4) & 0x3)
/*
EE: 00 L - Q
01 L + Q
10 L - 2**(-Q)
11 L + 2**(-Q)
*/
#define L_PLUS_Q 1
#define L_MINUS_Q 0
#define L_MINUS_2_TO_MINUS_Q 2
#define L_PLUS_2_TO_MINUS_Q 3
#define osc_run(gmode) ((gmode >> 6) & 0xf)
static void set_osc_run(int gen, int RRRR)
{
generator *g;
if (gen >= GENERATORS) {fprintf(stderr, "gen mode set overflow\n"); gen = 0;}
g = gens[gen];
/* RRRREESSSS */
g->GMODE = (g->GMODE & 0x3f) | (RRRR << 6);
if (g->GMODE == 3) g->GMODE = 2; /* if write data, send it to the DAC outputs instead */
}
/* osc. run? env. run? add to sum?
RRRR:0000 inactive no no no
0001 pause no no no
1111 running A yes yes, sticky yes
1110 running B yes yes, free; yes
triggers subseq.
on overflow
1001 wait yes no no
1101 running C yes yes, free; yes
stops and
triggers subseq.
on overflow
0111 read data from computer no yes yes
0011 write data to computer no no no
0010 write data to DAC no no no
(address in GO)
*/
static bool osc_is_running(int mode)
{
int RRRR;
RRRR = osc_run(mode);
return((RRRR == 15) || (RRRR == 14) || (RRRR == 9) || (RRRR == 13));
}
static bool env_is_running(int mode)
{
int RRRR;
RRRR = osc_run(mode);
return((RRRR == 15) || (RRRR == 14) || (RRRR == 7) || (RRRR == 13));
}
static bool adding_to_sum(int mode)
{
int RRRR;
RRRR = osc_run(mode);
return((RRRR == 15) || (RRRR == 14) || (RRRR == 7) || (RRRR == 13));
}
static bool gen_is_active(generator *g)
{
return((osc_is_running(g->GMODE)) && (g->GQ != 0) && (g->GJ != 0));
}
static double gen_amp(generator *g)
{
int emode;
double Q;
if (osc_run(g->GMODE) == 0) return(0.0);
emode = osc_env(g->GMODE);
if ((emode == L_PLUS_2_TO_MINUS_Q) ||
(emode == L_MINUS_2_TO_MINUS_Q))
Q = pow(2.0, -16.0 * g->f_GQ);
else Q = g->f_GQ;
if ((emode == L_PLUS_Q) ||
(emode == L_PLUS_2_TO_MINUS_Q))
return(g->f_GL + Q);
return(g->f_GL - Q);
}
static bool read_data_warned = false;
static void process_gen(int gen)
{
#define FmSum7 g->GFM
#define OutSum6 g->GSUM
#define FrqSwp20 g->f_GO
#define OscFreq28 g->f_GJ
#define OscAng20 g->f_GK
#define NumCos11 g->GN
#define AmpSwp20 g->f_GP
#define AmpOff12 g->f_GL
#define Gmode10 g->GMODE
#define CurAmp24 g->f_GQ
#define CosScl4 g->GM
#define ShiftOut g->GS
generator *g;
double fm, FmPhase20, Phase20, SinAdr, CscAdr, TblOut13, OscOut13 = 0.0, CurAmp12, NewAmp12, Env12, temp;
g = gens[gen];
if (osc_run(g->GMODE) == 0) /* inactive */
return;
if (osc_run(Gmode10) == 3)
{
/* mmm - just ignore write-data generators since everything is being written out anyway */
return;
}
if ((FmSum7 >> 6) == 0)
fm = gen_ins[FmSum7 & 0x3f];
else fm = mod_ins[FmSum7 & 0x3f];
/* fm *= 0.5; */
FmPhase20 = fm + OscFreq28;
if (osc_is_running(Gmode10))
OscFreq28 += (FrqSwp20 / 256.0); /* right adjusted 20 bit */
if (osc_mode(Gmode10) == SIN_FM) /* sin(J+fm) */
Phase20 = FmPhase20;
else Phase20 = OscAng20;
if (osc_is_running(Gmode10))
OscAng20 += FmPhase20;
/* mmm - dac write goes here and does not stop the processing (probably makes no diff) */
if (osc_run(Gmode10) == 2)
{
dac_write(fm, g->GO & 0xf); /* in this case, we need the integer value of GO */
return;
}
/* probably should be osc_mode(Gmode10) == SUMCOS */
if ((osc_mode(Gmode10) != SIN_K) &&
(osc_mode(Gmode10) != SIN_FM))
{
SinAdr = (Phase20 * NumCos11); /* was & 0xfff) << 2) + 1 */
CscAdr = Phase20;
if (fmod(CscAdr, 1.0) != 0.0)
temp = sin(M_PI * SinAdr) / sin(M_PI * CscAdr); /* was (1 << 13)) */
else temp = (double)NumCos11;
}
else
{
SinAdr = Phase20; /* was >> 6) | 1 */
temp = sin(M_PI * SinAdr);
}
TblOut13 = temp / (double)(1 << CosScl4);
switch (osc_mode(Gmode10))
{
case SUMCOS: case SIN_K: case SIN_FM:
OscOut13 = TblOut13;
break;
case SAWTOOTH:
OscOut13 = fmod(Phase20, 2.0) - 1.0;
break;
case SQUARE:
if (fmod(Phase20, 2.0) < 1.0)
OscOut13 = -0.5;
else OscOut13 = 0.5;
break;
case PULSE:
/* pulse mode was primarily used for triggered noise */
if ((OscAng20 >= 2.0) || (OscAng20 < -2.0))
{
OscAng20 = fmod(OscAng20, 2.0);
OscOut13 = 0.5;
}
else OscOut13 = 0.0;
break;
}
CurAmp12 = CurAmp24;
if (env_is_running(Gmode10))
{
double old_amp;
old_amp = CurAmp24;
CurAmp24 += (AmpSwp20 / 32.0); /* was 16.0 */ /* mmm - don't know why 32 but it seems to be more accurate than 16 */
/*
The envelope side of the generator can be sticky, which means
that rather than overflow it will stay at the last value it attained
before it would have overflowed; or it can be free, in which case it
wraps around.
Transitions between run modes can be accomplished in various ways.
1) A command can output a new GMODE.
2) A MISC command can specify "clear all pause bits", which
will cause any generator in run mode 0001 to change to
mode 1111.
3) A MISC command can specify "clear all wait bits", which
will cause any generator in run mode 1001 to change to
mode 1111.
4) If the envelope side of a generator in run mode 1101
overflows, that generator goes to run mode 1001.
5) A generator in run mode 1001 will go to run mode 1101 if
on the same pass the preceding generator (the one
whose generator number is one less) caused a
trigger (was in run mode 1110 or 1101 and envelope
overflowed).
*/
if ((CurAmp24 > 1.0) || (CurAmp24 < 0.0)) /* if ((BIT(CurAmp24, 23) != BIT(old_amp, 23)) && (BIT(CurAmp24, 22) == BIT(AmpSwp20, 19))) */
{
/* overflow */
if (osc_run(Gmode10) == 15) /* "running A" */
CurAmp24 = old_amp;
else
{
if (osc_run(Gmode10) == 13) /* "running C" */
{
set_osc_run(gen, 9);
if (osc_run(gens[gen + 1]->GMODE) == 9)
set_osc_run(gen + 1, 13);
}
else
{
if ((osc_run(Gmode10) == 14) && /* "running B" */
(osc_run(gens[gen + 1]->GMODE) == 9))
set_osc_run(gen + 1, 13);
}
}
}
}
if ((osc_env(Gmode10) == L_PLUS_2_TO_MINUS_Q) ||
(osc_env(Gmode10) == L_MINUS_2_TO_MINUS_Q))
NewAmp12 = pow(2.0, -16.0 * CurAmp12);
else NewAmp12 = CurAmp12; /* was / 4 */ /* mmm - no scaling called for here */
/* I think this matches the spec:
* if temp6 is 0, then 2^(-temp6) is 1, the specs say #b111111111101,
* which assuming 12 bit unsigned fractions is 4093/4096,
* if temp6 is #b000100000000 (256), 2^(-temp6) is #b011111111110,
* which is .5 (fractional) so we really want 2^(-16*temp6) = 2^-1
*/
/* in the notes: "The scaling involved is a left shift of temp6 by 4 bits".
* This scaling matters in FM since it is a multiplier on the index, and in pluck.
*/
if ((osc_env(Gmode10) == L_PLUS_Q) ||
(osc_env(Gmode10) == L_PLUS_2_TO_MINUS_Q))
Env12 = AmpOff12 + NewAmp12;
else Env12 = AmpOff12 - NewAmp12;
OscOut13 *= Env12;
if (adding_to_sum(Gmode10))
{
if (osc_run(Gmode10) != 7)
{
/* "If GS is 0, the high-order 19 bits
of the rounded product are taken, right-adjusted with sign
extended; if GS is 1, the high-order 20 bits of the rounded
product are taken."
*/
if (g->GS == 0)
gen_outs[OutSum6] += OscOut13 / 2.0; /* mmm - right-shifted high order 19 bits so divide by 2 */
else gen_outs[OutSum6] += OscOut13; /* mmm - no shift, so leave value alone */
}
else
{
/* read-data: assume we're reading floats from a raw file */
if (read_data_file)
{
float read_data_value;
size_t ret;
ret = fread((void *)(&read_data_value), 4, 1, read_data_file);
if (ret != 1) fprintf(stderr, "fread: %zu floats read\n", ret);
gen_outs[OutSum6] = OscOut13 + read_data_value; /* was * 2 */
/*
"If the run mode
specifies adding into sum memory, Temp9 is added into the sum
memory location designated by GSUM; except that in run mode
0111, the product is added to the next read-data item from the
CPU and the sum replaces the contents of the sum memory
location addressed."
*/
}
else
{
if (!read_data_warned)
{
fprintf(stderr, "read data?!?\n");
read_data_warned = true;
}
}
}
}
}
/* ---------------------------------------- modifier processing ---------------------------------------- */
/*
* Each modifier has the following numeric parameters.
* M0 (30 bits) coefficient
* M1 (30 bits) other coefficient
* L0 (20 bits) running term
* L1 (20 bits) other running term
* MIN (8 bits) address in sum memory where modifier reads "A" data
* MRM (8 bits) address in sum memory where modifier reads "B" data
* MIN, MRM = QQAAAAAA
* QQ:
* 00 generator-last-pass quadrant
* 01 modifier-last-pass quadrant
* 10 modifier-this-pass quadrant
* 11 (reserved)
* AAAAAA: sum address within quadrant
* MSUM (7 bits) result address in sum memory
* MSUM = RAAAAAA
* R: 0 add to sum
* 1 replace sum
* AAAAAA: sum address in modifier-this-pass quadrant
*/
static void print_mod_read_name(int m)
{
char *mem_names[4] = {"gen-ins", "mod-ins", "mod-outs", "oops"};
fprintf(stderr, "%s[", mem_names[(m >> 6) & 0x3]);
if (((m & 0x3f) == 0) && (((m >> 6) & 0x3) != 0))
fprintf(stderr, "zero");
else fprintf(stderr, "%d", m & 0x3f);
fprintf(stderr, "]");
}
static double mod_read(int addr)
{
int QQ, A;
A = addr & 0x3f;
QQ = LDB(addr, 2, 6);
switch (QQ)
{
case 0: return(gen_ins[A]);
case 1: return(mod_ins[A]);
case 2: return(mod_outs[A]);
case 3:
/* "reserved", but it seems to happen in MARS.SAM, and Pete says:
*
* "Thanks to Al Kossow of the Computer History Museum for putting scans
* of the (preliminary) synthesizer schematics and the theory-of-
* operation manual up on bitsavers.org.
*
* It appears that QQ=3 will work the same as QQ=1, i.e. modifier last
* pass quadrant."
*/
return(mod_ins[A]);
}
return(0);
}
static void mod_write(int addr, double val)
{
int R, AAAAAA;
if (isnan(val))
{
fprintf(stderr, "write %d %d NaN!\n", addr >> 6, addr & 0x3f);
}
AAAAAA = addr & 0x3f;
R = BIT(addr, 6);
if (R == 0)
mod_outs[AAAAAA] += val;
else mod_outs[AAAAAA] = val;
}
/*
* MMODE (9 bits) modifier mode
* MMODE = MMMMMAABB
* AA: scale of second multiplication
* BB: scale of first multiplication
* For fraction multiplications:
* 00: x 1
* 01: x 2
* 10: x 4
* 11: x 8
* For integer multiplications:
* 00: x 1/4
* 01: x 1/2
* 10: x 1
* 11: x 2
* A multiplication involving parameter M1 will be the first
* multiplication; one involving M0 will be the second.
*
* MMMMM: function
* 00000: inactive
* 00010: uniform noise
* 00011: triggered uniform noise
* 00100: latch
* 00110: threshold
* 00111: invoke delay unit
*
* 01000: two poles
* 01001: two poles, M0 variable
* 01011: two poles, M1 variable
* 01100: two zeros
* 01101: two zeros, M0 variable
* 01111: two zeros, M1 variable
*
* 10000: integer mixing
* 10001: one pole
* 10100: mixing
* 10110: one zero
*
* 11000: four-quadrant multiplication
* 11001: amplitude modulation
* 11010: maximum
* 11011: minimum
* 11100: signum
* 11101: zero-crossing pulser
*
* others: (reserved)
*/
#define mod_mode(M) ((M >> 4) & 0x1f)
#define M_INACTIVE 0
#define M_NOISE 2
#define M_TRIGGERED_NOISE 3
#define M_LATCH 4
#define M_THRESHOLD 6
#define M_DELAY 7
#define M_TWO_POLE 8
#define M_TWO_POLE_M0 9
#define M_TWO_POLE_M1 11
#define M_TWO_ZERO 12
#define M_TWO_ZERO_M0 13
#define M_TWO_ZERO_M1 15
#define M_INTEGER_MIXING 16
#define M_ONE_POLE 17
#define M_MIXING 20
#define M_ONE_ZERO 22
#define M_MULTIPLY 24
#define M_AMP_MOD 25
#define M_MAX 26
#define M_MIN 27
#define M_SIGNUM 28
#define M_ZERO_CROSS 29
static double delay_read(int dly);
static void delay_write(int dly, double val);
static void process_mod(int mod)
{
modifier *m;
int mode, IS;
double S, A, B, tmp0, tmp1;
m = mods[mod];
mode = mod_mode(m->MMODE);
if (mode == M_INACTIVE)
{
/* technically, mod_write(m->MSUM, 0.0) which might be in "replace" mode if BIT(m->MSUM, 6) is not 0 */
return;
}
A = mod_read(m->MIN);
B = mod_read(m->MRM);
switch (mode)
{
case M_INACTIVE:
/* 00000: inactive. S := 0
*/
break;
case M_NOISE:
/* 00010: uniform noise. S := L0 + L1*M0 (integer multiply, low-order
* 20 bits of product used; overflow ignored); L1 := S
*
* see below -- I don't think this is correct.
*/
/* IS = (m->L0 + (m->L1 * m->M0)) & 0xfffff; */
IS = (m->L0 + ((m->L1 * m->M0) >> 10)) & 0xfffff;
mod_write(m->MSUM, TWOS_20_TO_DOUBLE(IS));
m->L1 = IS;
break;
case M_TRIGGERED_NOISE:
/* 00011: triggered uniform noise. S := L0 + L1*M0 (integer multiply,
* low-order 20 bits of product used; overflow ignored);
* if B*M1 (integer multiply, low-order 20 bits of product
* used; overflow ignored) is not 0, L1 := S
*/
/* IS = (m->L0 + (m->L1 * m->M0)) & 0xfffff; */
/* I'm getting an immediate fixed-point from the SAM files that used triggered noise! */
/* they used the M0 seed of 359035904, (L1: 204282), which immediately cycles. */
/* perhaps the spec is wrong... -- I'll try taking the middle bits */
IS = (m->L0 + ((m->L1 * m->M0) >> 10)) & 0xfffff;
mod_write(m->MSUM, TWOS_20_TO_DOUBLE(IS));
if ((B != 0.0) &&
(m->M1 != 0))
m->L1 = IS;
break;
case M_LATCH:
/* 00100: latch (sample and hold). S := L1; If B*M1 is not 0, L1 := A
* but in the errata:
* "BIL has discovered empirically that the modifier latch mode operation should actually read
* 00100: latch (sample and hold). S := L1; If B*M1 is not 0, L1 := A*M0"
*/
mod_write(m->MSUM, m->f_L1);
if ((B * m->f_M1) != 0.0) m->f_L1 = A * m->f_M0;
break;
case M_THRESHOLD:
/* 00110: threshold. If A*M0 + L0 is less than 0, then S := 0;
* if A*M0 + L0 is equal to or greater than 0, then S := B*M1
*/
tmp0 = A * m->f_M0 + m->f_L0;
if (tmp0 < 0.0)
mod_write(m->MSUM, 0.0);
else mod_write(m->MSUM, B * m->f_M1);
break;
case M_DELAY:
/* 00111: invoke delay unit.
* Unit # := MRM (low-order 5 bits);
* S := L0 + L1*M0; L0 := DM; Temp0 := A + DM*M1;
* L1 := Temp0; DM := Temp0
*/
/* to handle table lookups, we need the integer side here */
/* fprintf(stderr, "d%d, m%d: %.4f = %.4f + %.4f * %.4f\n", m->MRM & 0x1f, mod, m->f_L0 + m->f_L1 * m->f_M0, m->f_L0, m->f_L1, m->f_M0); */
mod_write(m->MSUM, m->f_L0 + m->f_L1 * m->f_M0);
m->f_L0 = delay_read(m->MRM & 0x1f);
m->f_L1 = A + m->f_L0 * m->f_M1;
delay_write(m->MRM & 0x1f, m->f_L1);
break;
case M_TWO_POLE:
case M_TWO_POLE_M0:
case M_TWO_POLE_M1:
/* 01000: two poles. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := S
*
* 01001: two poles, M0 variable. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := S; M0 := M0 + B
*
* 01011: two poles, M1 variable. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := S; M1 := M1 + B
*/
tmp0 = m->f_L1 * m->f_M1;
tmp1 = m->f_L0 * m->f_M0;
S = tmp0 + tmp1 + A; /* divide A by 1024.0 here probably */
mod_write(m->MSUM, S);
m->f_L0 = m->f_L1;
m->f_L1 = S;
if (mode == M_TWO_POLE_M0)
m->f_M0 += (B / 1024.0);
/* "when a quantity is added to M0 or M1 it is added right-justified, with sign extended"
* does that include "A" above? I think it does... (see one and two_zero below).
*/
if (mode == M_TWO_POLE_M1)
m->f_M1 += (B / 1024.0);
break;
case M_TWO_ZERO:
case M_TWO_ZERO_M0:
case M_TWO_ZERO_M1:
/* 01100: two zeros. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := A
*
* 01101: two zeros, M0 variable. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := A; M0 := M0 + B
*
* 01101: two zeros, M0 variable. S := L1*M1 + L0*M0 + A; L0 := L1; L1 := A; M1 := M1 + B
*/
tmp0 = m->f_L1 * m->f_M1;
tmp1 = m->f_L0 * m->f_M0;
mod_write(m->MSUM, tmp0 + tmp1 + A); /* divide A by 1024.0 here probably */
m->f_L0 = m->f_L1;
m->f_L1 = A / 1024.0;
if (mode == M_TWO_ZERO_M0)
m->f_M0 += (B / 1024.0);
if (mode == M_TWO_ZERO_M1)
m->f_M1 += (B / 1024.0);
break;
case M_INTEGER_MIXING:
/* 10000: integer mixing. S := A*M0 + B*M1 (integer multiply, low-order
* 20 bits of product used; overflow ignored)
*/
/* I don't remember how we used this -- I'll assume the M's are the ints */
mod_write(m->MSUM, A * m->M0 + B * m->M1);
break;
case M_MIXING:
/* 10100: mixing. S := A*M0 + B*M1
*/
mod_write(m->MSUM, A * m->f_M0 + B * m->f_M1);
break;
case M_ONE_POLE:
/* 10001: one pole. S := L1*M1 + B*M0; L1 := S
*
* but in the errata:
* "DAJ - It seems that the modifier mode one pole is really
* 10001: one pole. S := L1*M1 + B*L0; L1 := S"
*
* but I think that is incorrect; old reverbs are definitely using the spec form of the 1-pole filter
*/
tmp0 = m->f_L1 * m->f_M1;
#if DAJ_FIXES
tmp1 = B * m->f_L0;
#else
tmp1 = B * m->f_M0;
#endif
m->f_L1 = tmp0 + tmp1;
mod_write(m->MSUM, m->f_L1);
break;
case M_ONE_ZERO:
/* 10110: one zero. S := L1*M1 + L0*M0; L0 := L1; L1 := A
*/
tmp0 = m->f_L1 * m->f_M1;
tmp1 = m->f_L0 * m->f_M0;
m->f_L0 = m->f_L1;
m->f_L1 = A;
mod_write(m->MSUM, tmp0 + tmp1);
break;
case M_MULTIPLY:
/* 11000: four-quadrant multiplication. S := L1*M1; L1 := A*B
*/
mod_write(m->MSUM, m->f_L1 * m->f_M1);
m->f_L1 = A * B;
break;
case M_AMP_MOD:
/* 11001: amplitude modulation. S := L1*M1; L1 := A * ((B+1)/2)
* (The term ((B+1)/2) interprets B as a signed two's-complement
* fraction ranging in value from -1 to +1-epsilon.)
*/
mod_write(m->MSUM, m->f_L1 * m->f_M1);
m->f_L1 = A * (B + 1.0) * 0.5;
break;
case M_MAX:
/* 11010: maximum. S := max (A*M0, B*M1)
*/
tmp0 = A * m->f_M0;
tmp1 = B * m->f_M1;
mod_write(m->MSUM, (tmp0 > tmp1) ? tmp0 : tmp1);
break;
case M_MIN:
/* 11011: minimum. S := min (A*M0, B*M1)
*/
tmp0 = A * m->f_M0;
tmp1 = B * m->f_M1;
mod_write(m->MSUM, (tmp0 < tmp1) ? tmp0 : tmp1);
break;
case M_SIGNUM:
/* 11100: signum. If A*M0 is less than B*M1, then S := -1 (integer)
* if A*M0 equals B*M1, then S := 0;
* if A*M0 is greater than B*M1, the S := 1 (integer)
*/
tmp0 = A * m->f_M0;
tmp1 = B * m->f_M1;
if (tmp0 < tmp1) mod_write(m->MSUM, TWOS_20_TO_DOUBLE(-1));
else if (tmp0 == tmp1) mod_write(m->MSUM, 0.0);
else mod_write(m->MSUM, TWOS_20_TO_DOUBLE(1));
break;
case M_ZERO_CROSS:
/* 11101: zero-crossing pulser. Temp0 := B*M0; Temp1 := L1*M1;
* if Temp1 is not 0 and either Temp0 is 0 or Temp0*Temp1 is
* negative then S := -epsilon, else S := 0; L1 := Temp0
* (The term -epsilon is a binary number with all bits set.)
*/
tmp0 = B * m->f_M0;
tmp1 = m->f_L1 * m->f_M0;
if ((tmp1 != 0) &&
((tmp0 == 0) || (tmp0 * tmp1 < 0)))
mod_write(m->MSUM, TWOS_20_TO_DOUBLE(-1));
m->f_L1 = tmp0;
break;
default:
fprintf(stderr, "reserved modifier mode?\n");
break;
}
}
/* ---------------------------------------- delay processing ---------------------------------------- */
/* Each delay unit has the following numeric parameters.
*
* P mode (4 bits). The mode is interpreted as follows:
* mode: 0000 inactive
* 1000 delay line
* 1010 table look-up
* 1011 table look-up, argument rounded
* 1100 delay tap
* others: (reserved)
*/
#define D_INACTIVE 0
#define D_LINE 8
#define D_TABLE_LOOKUP 10
#define D_TABLE_LOOKUP_ROUNDED 11
#define D_TAP 12
/*
* Z unit length (16 bits) or binary scale factor (4 bits).
* In delay line and delay tap modes, Z gives 1 less than the
* total number of locations in delay memory used by the delay
* unit, i.e. the index of the last delay memory address for
* this unit. In table look-up modes, the low-order four bits
* of Z specify the number of binary places that the argument
* is shifted to the right before it is used to address the
* memory; if rounding is specified, the address after shifting
* is incremented by 1 if the most-significant bit shifted out
* was a 1.
*
* Y index (16 bits). In delay line and delay tap modes, this is the
* running index on the memory area for the unit.
*
* X base address (16 bits). The base address is the lowest-numbered
* delay memory location used by this unit.
*
* In inactive mode, delay memory is not modified and the unit
* returns indeterminate results. Delay units not accommodated due
* to the number of ticks in a pass act as if in the inactive mode.
* If the number of processing ticks is 4*n + m where m is 1, 2, or 3,
* delay unit number n should be put in the inactive mode.
*
* In delay line mode, a 20-bit data word is received from
* the modifier that calls for the delay unit, and another 20-bit
* word is sent to it. The word received is put into the next slot
* in the delay line. It will be retrieved and sent back to the
* modifier Z+3 passes later. In delay tap mode, a word is sent to
* the modifier but delay memory is not written into.
*
* In table look-up mode, the 20-bit data word received
* from the modifier is shifted to the right Z bits, bringing in zeros,
* and the right 16 bits of the result are used to address the memory
* area assigned to the unit. The 20-bit word in the addressed memory
* location is returned to the modifier three passes later.
*/
static bool table_read_warned = false, table_write_warned = false;
static double delay_read(int dly)
{
delay *d;
d = dlys[dly];
switch (d->P)
{
case D_INACTIVE:
return(0.0);
case D_LINE:
case D_TAP:
/* return the value with a hidden 2 sample delay (Z+3 == total delay length + 2) */
#if 0
return(delay_memory[d->X + d->Y]);
#else
{
/* I originally thought this was making a raspy or crackling sound in the reverbs, but now I don't hear it (bil) */
double val;
val = d->xd2;
d->xd2 = d->xd1;
d->xd1 = delay_memory[d->X + d->Y];
return val;
}
#endif
case D_TABLE_LOOKUP:
case D_TABLE_LOOKUP_ROUNDED:
{
int Z_shift, dY;
if (!table_read_warned)
{
fprintf(stderr, "table lookup read is unlikely to work.\n");
table_read_warned = true;
}
Z_shift = d->Z & 0xf;
dY = (d->I >> Z_shift) & 0xffff;
return(delay_memory[d->X + dY]);
}
}
return(0);
}
static void delay_write(int dly, double val)
{
delay *d;
d = dlys[dly];
switch (d->P)
{
case D_INACTIVE:
case D_TAP:
break;
case D_LINE:
delay_memory[d->X + d->Y] = val;
break;
case D_TABLE_LOOKUP:
case D_TABLE_LOOKUP_ROUNDED:
if (!table_write_warned)
{
fprintf(stderr, "table lookup write is unlikely to work.\n");
table_write_warned = true;
}
d->I = DOUBLE_TO_TWOS_20(val); /* can this work? */
break;
}
}
static void process_dly(int dly)
{
delay *d;
d = dlys[dly];
d->Y += 1;
if (d->Y > d->Z) /* unit size - 1 so not >= ? */
d->Y = 0;
}
/* ---------------------------------------- run! ---------------------------------------- */
static void dump_patch(void);
static void linger(int time)
{
/* process each sample ("pass") until pass == time */
/* but linger was a 20-bit number, so it wrapped around I believe, so pass should be mod 2^20? */
if (!snd_file)
{
fprintf(stderr, "no ticks setting found!\n");
exit(0);
}
if (time < pass)
pass = pass - (1 << 20);
/* old SAM files had endless strings of lingers at the end generating enormous empty sound files, but
*
* mmm - this was causing the long trailing reverb of some of my files to be cut off.
*/
if ((FLUSH_TRAILING_LINGERS) &&
((total_commands - current_command) < 100) &&
(total_commands > 1000) &&
((time - pass) > (6 * srate)))
{
fprintf(stderr, "ignore trailing %d sample (%.3f second) linger (%d)\n",
time - pass, (double)(time - pass) / (double)srate, total_commands - current_command);
pass = time;
return;
}
while (pass < time)
{
/* run through all available ticks, processing gen+mod+dly,
* then write accumulated dac_outs, clear, update memories (this-pass -> last-pass),
* and increment pass
*/
int i, tick, gen = 0, mod = 0, dly = 0;
for (tick = 0; tick < processing_ticks; tick++)
{
/* given the timing info I'll simplify a bit and run 1 gen per tick, 1 mod every 2 ticks, and 1 delay every 4 ticks */
if (gen < GENERATORS)
process_gen(gen++);
/* I'm guessing... */
if (((tick & 1) == 0) &&
(mod < MODIFIERS))
process_mod(mod++);
if (((tick & 3) == 0) &&
(dly < DELAYS))
process_dly(dly++);
}
if (dump_patch_at == samples)
dump_patch();
for (i = 0; i < SUM_MEMORY_SIZE; i++)
{
if (fabs(gen_ins[i]) > peak_gen_ins[i])
peak_gen_ins[i] = fabs(gen_ins[i]);
prev_gen_ins[i] = gen_ins[i];
gen_ins[i] = gen_outs[i];
gen_outs[i] = 0.0;
if (fabs(mod_ins[i]) > peak_mod_ins[i])
peak_mod_ins[i] = fabs(mod_ins[i]);
prev_mod_ins[i] = mod_ins[i];
mod_ins[i] = mod_outs[i];
mod_outs[i] = 0.0;
}
fwrite(dac_out, 4, 4, snd_file);
samples++;
for (i = 0; i < 4; i++)
{
if (fabs(dac_out[i]) > dac_out_peak[i])
dac_out_peak[i] = fabs(dac_out[i]);
dac_out[i] = 0.0;
}
pass++;
if (samples == TOTAL_SAMPLES)
all_done();
}
}
/* ---------------------------------------- commands ---------------------------------------- */
/*
* -----------------------------------------------------------------
* : (20) data : 0 0 0 0 0: RR : x x: W: P: S:
* -----------------------------------------------------------------
* MISC
* RR: 00 no effect
* 01 load DX from data
* 10 load TTL buffer A from left 16 bits of data
* 11 load TTL buffer B from left 16 bits of data
* set analog output filters from right 4 bits of data:
* 01xx Mode 0
* 00nn Mode 1, frequency f0, f1, f2, or f3 according
* to nn
* W: if 1, clear all wait bits
* P: if 1, clear all pause bits
* S: if 1, stop clock
*/
static void misc_command(int cmd)
{
int data, RR, W, P, S;
char *RR_name[4] = {"noop", "load DX", "TTL-A", "TTL-B"};
data = LDB(cmd, 20, 12);
RR = LDB(cmd, 2, 5);
W = BIT(cmd, 2);
P = BIT(cmd, 1);
S = BIT(cmd, 0);
if (describe_commands)
fprintf(stderr, "sam: %d, %s%s%s%s\n",
data,
RR_name[RR],
(W == 1) ? "" : ", clear waits",
(P == 1) ? "" : ", clear pauses",
(S == 1) ? "" : ", stop clock");
if (RR == 1) DX = data;
if (W == 1)
{
/* cause any generator in run mode 1001 to change to mode 1111 */
int i;
for (i = 0; i < GENERATORS; i++)
if ((gens[i]) && (osc_run(gens[i]->GMODE) == 9))
set_osc_run(i, 15);
}
if (P == 1)
{
/* cause any generator in run mode 0001 to change to mode 1111 */
int i;
for (i = 0; i < GENERATORS; i++)
if ((gens[i]) && (osc_run(gens[i]->GMODE) == 1))
set_osc_run(i, 15);
}
if (REPORT_BAD_COMMANDS)
{
if ((S == 1) &&
((total_commands - current_command) > 1000))
fprintf(stderr, "sam: %x: stop clock?\n", cmd);
}
}
/*
* -----------------------------------------------------------------
* : (16) data :(4)data: 0 0 0 0 1: U U: (5) unit # :
* -----------------------------------------------------------------
* DLY X, Y, Z
* UU: 00 X 16 bits base address; clear Y
* 01 Y 16 bits one's complement of index
* 10 Z,P 16 bits delay unit size minus 1, or scale (low
* 4 bits of 16); 4 bits mode
* 11 (unused)
*/
static const char *P_name(int P)
{
switch (P)
{
case D_INACTIVE: return("inactive");
case D_LINE: return("line");
case D_TAP: return("tap");
case D_TABLE_LOOKUP: return("table");
case D_TABLE_LOOKUP_ROUNDED: return("rtable");
default: return("unknown");
}
}
static void dly_command(int cmd)
{
int unit, UU, data_4, data_16;
delay *d;
char *UU_name[4] = {"set base, clear index", "set index", "set size", "un-used!"};
unit = (cmd & 0x1f);
UU = LDB(cmd, 2, 5);
if (UU == 3)
{
fprintf(stderr, "unknown delay command!\n");
return;
}
data_4 = LDB(cmd, 4, 12);
data_16 = LDB(cmd, 16, 16);
d = dlys[unit];
switch (UU)
{
case 0:
d->X = data_16;
d->Y = 0;
break;
case 1:
d->Y = data_16;
break;
case 2:
d->Z = data_16;
d->P = data_4;
break;
}
if (describe_commands)
{
fprintf(stderr, "d%d %s", unit, UU_name[UU]);
if (UU == 0)
fprintf(stderr, ": X: %d", d->X);
else
{
if (UU == 1)
fprintf(stderr, ": Y: %d", d->Y);
else fprintf(stderr, ": Z: %d, P: %s", d->Z, P_name(d->P));
}
fprintf(stderr, "\n");
}
}
/*
* -----------------------------------------------------------------
* : (20) data : 0 0 0 1 0: x x: T T: x x x:
* -----------------------------------------------------------------
* TIMER
* TT: 00 no effect
* 10 Linger: process no further commands until pass counter
* equals data
* 11 clear pass counter, then Linger as for 10
* 01 set pass counter from data
*/
static void timer_command(int cmd)
{
int data, TT;
char *TT_name[4] = {"noop", "set pass", "linger", "clear pass and linger"};
TT = LDB(cmd, 2, 3);
data = LDB(cmd, 20, 12);
if (describe_commands)
fprintf(stderr, "sam %s: %d at sample %d %.4f\n", TT_name[TT], data, samples, (double)samples / (double)srate);
switch (TT)
{
case 0:
break;
case 1:
pass = data;
break;
case 2:
linger(data);
break;
case 3:
pass = 0;
linger(data);
break;
}
}
/*
* -----------------------------------------------------------------
* : xxx xxx xxx x : (10) data : 0 0 0 1 1: x x: 0: Q: x x x:
* -----------------------------------------------------------------
* TICKS
* Q: 0 designate highest-numbered processing tick per pass
* (should not exceed 255 [See appendix - DAJ])
* 1 designate next-to-highest-numbered tick (processing
* plus overhead plus update) per pass
*/
static bool bit_31_warned = false;
static void ticks_command(int cmd)
{
int Q, data, bit_31;
char *Q_name[2] = {"set highest processing tick", "set highest tick"};
bit_31 = BIT(cmd, 4);
Q = BIT(cmd, 3);
data = LDB(cmd, 10, 12);
if (REPORT_BAD_COMMANDS)
{
if (bit_31 != 0)
{
if (!bit_31_warned)
{
fprintf(stderr, "ticks bit 31 is on?\n");
bit_31_warned = true;
}
return; /* what is going on here? */
}
}
if (data != 0) /* used at end of some box sequences, but that confuses srate */
{
if (Q == 0)
processing_ticks = data + 1; /* mmm - data is highest numbered processing tick per pass, so processing_ticks is 1 greater. */
else
{
#if MULTIPLE_SRATES
if (srate > 1) /* Not sure if this check needed, but seems to work */
all_done(); /* Finish previous file. Doesn't exit */
#else
if (srate <= 1)
#endif
{
/* mmm - srate can now be set from the command line in certain cases. I had some weird tick settings for some reason.
* mmm - highest_tick_per_pass is actually being set here to the max *number* of ticks per pass, including overhead
*/
highest_tick_per_pass = data + 2; /* why isn't this 9? */
/* "It's not clear from the documentation, so to clarify: On the # TICKS
* command, the number to be supplied for Q=1 is the total number of ticks
* per pass minus 2. (TVR - 7 August 1984)"
*/
/* it's a 10 bit field, and higher bits are ignored, so the slowest we
* can run is 5010Hz or thereabouts
*/
if (highest_tick_per_pass > GENERATORS)
highest_tick_per_pass = GENERATORS; /* mmm - could it not be higher in some cases? */
srate = (int)(1000000000.0 / (double)(highest_tick_per_pass * 195));
}
#if (!MULTIPLE_SRATES)
else
{
highest_tick_per_pass = (1000000000.0 / (double)srate / 195.0);
}
#endif
}
}
if (describe_commands)
{
fprintf(stderr, "sam %s: %d", Q_name[Q], data);
if (Q == 1)
fprintf(stderr, " (%d Hz)", srate);
fprintf(stderr, "\n");
}
if ((data != 0) && (srate != 0))
{
if ((snd_file) && (samples == 0) && (Q == 1)) /* 2 tick commands at the start? */
{
fclose(snd_file); /* start over... */
snd_file = NULL;
}
if (snd_file == NULL)
{
/* now that we know the sampling rate, open the output file */
int header_info[24] = {1179011410, 88, 1163280727, 1263424842,
28, 0, 0, 0,
0, 0, 0, 0,
544501094, 16, 262147, 44100,
705600, 2097168, 1635017060, 16,
0, 0, 0, 0};
header_info[15] = srate;
/* mmm - generate output filename based on input filename */
{
char *dot = NULL;
int i, len;
len = strlen(filename);
#if MULTIPLE_SRATES
if (output_filename) free(output_filename);
output_filename = (char *)malloc(len + 4); /* Leave room for 999 files! */
#else
output_filename = (char *)malloc(len + 1);
#endif
strcpy(output_filename, filename);
/* dot = strchr(output_filename, '.');
* can be confused by ../test/TEST.SAM
*/
for (i = len - 1; i > 0; i--)
if (filename[i] == '.')
{
dot = (char *)(output_filename + i);
break;
}
#if MULTIPLE_SRATES
if (!dot)
dot = output_filename + strlen(output_filename); /* In case it's missing the extension */
sprintf(dot, "%d.wav", fileCounter++);
fprintf(stderr, "OPENING %s\n",output_filename);
#else
strcpy(dot + 1, "wav");
#endif
snd_file = fopen(output_filename, "w");
}
if (!snd_file)
{
fprintf(stderr, "can't open test.snd!\n");
exit(0);
}
fwrite((void *)header_info, 4, 24, snd_file);
}
}
}
static int last_GMODE_command = 0;
/* GQ (24 bits) phi -- decay exponent
* -----------------------------------------------------------------
* GQ : (20) data : 0 0 1: E: (8) gen # :
* -----------------------------------------------------------------
*
* E: 0 Q right-adjusted, sign extended
* 1 Q left-adjusted, low bits from left of DX; clear DX
*/
static void gq_command(int cmd)
{
/* GQ is 24 bits */
int data, E, gen, old_DX = 0;
#if 0
int old_GQ;
double old_f_GQ;
#endif
generator *g;
char *E_name[2] = {"right adjusted", "left adjusted + DX"};
gen = LDB(cmd, 8, 0);
E = BIT(cmd, 8);
data = LDB(cmd, 20, 12);
g = gens[gen];
#if 0
old_GQ = g->GQ;
old_f_GQ = g->f_GQ;
#endif
/* spec says "sign extended" which makes me think this number is signed, but I think it is unsigned in exp modes */
/* mmm - I also believe it is unsigned. */
/* pete:
* Hmm, it looks like it makes more sense to call it unsigned. Certainly
* the multiplication of envelope times waveform treats the envelope as
* unsigned (i.e. non-negative).
*/
if (E == 0)
g->GQ = data; /* mmm */
else
{
g->GQ = (data << 4) | ((DX >> 16) & 0xf); /* mmm */
old_DX = DX;
DX = 0;
}
g->f_GQ = (double)(g->GQ) / (double)(1 << 24); /* mmm - proper scaling of unsigned value */
if (describe_commands)
{
if (E == 0)
fprintf(stderr, "g%d amp: %s, %d %.4f\n", gen, E_name[E], g->GQ, g->f_GQ);
else fprintf(stderr, "g%d amp: %s, %d = %d %.4f (DX: %d)\n", gen, E_name[E], data, g->GQ, g->f_GQ, old_DX);
}
#if 0
if ((gen_is_active(g)) &&
(samples > last_GMODE_command))
{
if (REPORT_BAD_COMMANDS)
fprintf(stderr, "sample %d (%.3f), command %d, stray amp: g%d %.4f from %.4f (last mode sample: %d)\n",
samples, (double)samples / (double)srate, current_command,
gen, g->f_GQ, old_f_GQ,
last_GMODE_command);
if (FLUSH_BAD_COMMANDS)
{
g->GQ = old_GQ;
g->f_GQ = old_f_GQ;
}
}
#endif
}
/* GJ (28 bits) omega -- oscillator frequency
* -----------------------------------------------------------------
* GJ : (20) data : 0 1 0: E: (8) gen # :
* -----------------------------------------------------------------
*
* E: 0 J right-adjusted, sign extended
* 1 J left-adjusted, low bits from left of DX; clear DX
*/
static void gj_command(int cmd)
{
/* GJ is 28 bits */
int data, E, gen, old_DX = 0, old_GJ;
double old_f_GJ;
generator *g;
char *E_name[2] = {"right adjusted", "left adjusted + DX"};
gen = LDB(cmd, 8, 0);
E = BIT(cmd, 8);
data = LDB(cmd, 20, 12);
g = gens[gen];
old_GJ = g->GJ;
old_f_GJ = g->GJ;
if (E == 0)
g->GJ = TWOS_20(data);
else
{
g->GJ = TWOS_28(((data << 8) + (DX >> 12))); /* need 28 - 20 = 8 bits? */
old_DX = DX;
DX = 0;
}
g->f_GJ = DOUBLE_28(g->GJ);
if (describe_commands)
{
if (E == 0)
fprintf(stderr, "g%d freq: %s, %d %.4f (%.4f Hz)\n", gen, E_name[E], g->GJ, g->f_GJ, g->f_GJ * 0.5 * srate);
else fprintf(stderr, "g%d freq: %s (DX: %d), %d = %d %.4f (%.4f Hz)\n", gen, E_name[E], old_DX, data, g->GJ, g->f_GJ, g->f_GJ * 0.5 * srate);
}
if ((gen_is_active(g)) &&
(g->GJ != old_GJ) &&
(samples > last_GMODE_command))
{
#if (!DAJ_FIXES)
if (REPORT_BAD_COMMANDS)
fprintf(stderr, "sample %d (%.3f), command %d, stray freq: g%d %.4f from %.4f (last mode sample: %d), data: %d\n",
samples, (double)samples / (double)srate, current_command,
gen, g->f_GJ * 0.5 * srate, DOUBLE_28(old_GJ) * 0.5 *srate,
last_GMODE_command, data);
#endif
if (FLUSH_BAD_COMMANDS)
{
g->GJ = old_GJ;
g->f_GJ = old_f_GJ;
}
}
}
/* GP (20 bits) delta -- decay rate
* -----------------------------------------------------------------
* GP : (20) data : 0 1 1 0: (8) gen # :
* -----------------------------------------------------------------
*/
static void gp_command(int cmd)
{
/* GP is 20 bits */
int data, gen;
generator *g;
gen = LDB(cmd, 8, 0);
data = LDB(cmd, 20, 12);
g = gens[gen];
g->GP = TWOS_20(data);
g->f_GP = DOUBLE_20(g->GP);
if (describe_commands)
fprintf(stderr, "g%d amp change: %d (%.4f/sec), amp: %.4f\n", gen, g->GP, g->f_GP * srate, g->f_GQ);
}
/* GN (11 bits) number of cosines to be summed
* GM (4 bits) binary scale of cosine or sum of cosines
* GS (1 bit) whether to shift output when adding to sum memory
* GN, -----------------------------------------------------------------
* GM, :N:M:S S:x: (11) GN :(4) GM : 0 1 1 1: (8) gen # :
* GS -----------------------------------------------------------------
*
* N: if 1, disable loading GN
* M: if 1, disable loading GM
* SS: 00 clear GS to 0
* 01 set GS to 1
* 10 no effect
* 11 (reserved)
*/
static void gn_command(int cmd)
{
int N, M, SS, GN, GM, gen;
generator *g;
char *SS_name[4] = {", clear GS", ", set GS to 1", "", ", GS reserved?"};
gen = LDB(cmd, 8, 0);
GM = LDB(cmd, 4, 12);
GN = LDB(cmd, 11, 16);
SS = LDB(cmd, 2, 28);
M = BIT(cmd, 30);
N = BIT(cmd, 31);
if (describe_commands)
{
if (N == 1)
{
if (M == 1)
fprintf(stderr, "g%d sum-memory shift:%s\n", gen, SS_name[SS]);
else fprintf(stderr, "g%d ncos scale: %d%s\n", gen, GM, SS_name[SS]);
}
else
{
if (M == 1)
fprintf(stderr, "g%d ncos: %d%s\n", gen, GN, SS_name[SS]);
else fprintf(stderr, "g%d ncos: %d%s, scale: %d\n", gen, GN, SS_name[SS], GM);
}
}
g = gens[gen];
if (N == 0)
g->GN = GN;
if (M == 0)
g->GM = GM;
switch(SS)
{
case 0:
g->GS = 0;
break;
case 1:
g->GS = 1;
break;
}
}
/* GL (12 bits) asymptote
* GSUM (6 bits) sum memory address into which output is added
* -----------------------------------------------------------------
* GL, :L:S: (12) GL : (6) GSUM : 1 0 0 0: (8) gen # :
* GSUM -----------------------------------------------------------------
*
* L: if 1, disable loading GL
* S: if 1, disable loading GSUM
*/
static void gl_command(int cmd)
{
int GL, GSUM, L, S, gen, old_GSUM;
generator *g;
gen = LDB(cmd, 8, 0);
GSUM = LDB(cmd, 6, 12);
GL = LDB(cmd, 12, 18);
L = BIT(cmd, 31);
S = BIT(cmd, 30);
g = gens[gen];
old_GSUM = g->GSUM;
if (L == 0)
{
/* is this signed? -- posies treats it as unsigned, I believe */
#if 1
g->GL = GL;
g->f_GL = UNSIGNED_12_TO_DOUBLE(GL);
#else
g->GL = TWOS_12(GL);
g->f_GL = DOUBLE_12(g->GL);
#endif
}
if (S == 0)
g->GSUM = GSUM;
if (describe_commands)
{
if (L == 1)
{
if (S == 1)
fprintf(stderr, "g%d: noop\n", gen);
else fprintf(stderr, "g%d outloc: gen-outs[%d]\n", gen, g->GSUM);
}
else
{
if (S == 0)
fprintf(stderr, "g%d amp offset: %d = %.4f\n", gen, g->GL, g->f_GL);
else fprintf(stderr, "g%d outloc: gen-outs[%d] + amp offset: %d = %.4f\n", gen, g->GSUM, g->GL, g->f_GL);
}
}
if (REPORT_BAD_COMMANDS)
{
if ((GL == 1) && (L == 1) && (S == 0))
fprintf(stderr, "sample %d (%.3f), command %d, possible gen output loc overflow: g%d %d\n",
samples, (double)samples / (double)srate, current_command,
gen, GSUM);
if ((gen_is_active(g)) &&
(g->GSUM != old_GSUM) &&
(samples > last_GMODE_command) &&
(S == 0))
fprintf(stderr, "sample %d (%.3f), command %d, stray output loc: g%d %d from %d (last mode sample: %d)\n",
samples, (double)samples / (double)srate, current_command,
gen, g->GSUM, old_GSUM,
last_GMODE_command);
}
}
/* (20 bits) theta -- oscillator angle
* -----------------------------------------------------------------
* GK : (20) data : 1 0 0 1: (8) gen # :
* -----------------------------------------------------------------
*/
static void gk_command(int cmd)
{
/* GK is 20 bits */
int data, gen, old_GK;
double old_f_GK;
generator *g;
gen = LDB(cmd, 8, 0);
data = LDB(cmd, 20, 12);
g = gens[gen];
old_GK = g->GK;
old_f_GK = g->f_GK;
g->GK = TWOS_20(data);
g->f_GK = DOUBLE_20(g->GK);
if (describe_commands)
fprintf(stderr, "g%d phase: %d %.4f\n", gen, g->GK, g->f_GK);
if ((gen_is_active(g)) &&
(samples > last_GMODE_command))
{
if (REPORT_BAD_COMMANDS)
fprintf(stderr, "sample %d (%.3f), command %d, stray phase: g%d %.4f (last mode sample: %d)\n",
samples, (double)samples / (double)srate, current_command,
gen, g->f_GK,
last_GMODE_command);
if (FLUSH_BAD_COMMANDS)
{
g->GK = old_GK;
g->f_GK = old_f_GK;
}
}
}
/* GFM (7 bits) sum memory address from which frequency modulation
* GMODE (10 bits) generator mode
* -----------------------------------------------------------------
* :M:F:C: (10) GMODE :(7) GFM: 1 0 1 0: (8) gen # :
* -----------------------------------------------------------------
* GMODE,
* GFM M: if 1, disable loading GMODE
* F: if 1, disable loading GFM
* C: if 1, clear GK
*/
static bool bad_mode(int mode)
{
int R, S;
R = osc_run(mode);
/* E = osc_env(mode); */
S = osc_mode(mode);
if ((R != 2) && (R != 7) && (R != 3) && (R != 0))
switch (S)
{
case SUMCOS: case SAWTOOTH: case SQUARE: case PULSE: case SIN_K: case SIN_FM:
break;
default:
return(true);
}
switch (R)
{
case 0: case 1: case 15: case 14: case 9: case 13: case 7: case 3: case 2:
break;
default:
return(true);
}
return(false);
}
static void print_gmode_name(int mode)
{
/* RRRREESSSS */
int R, E, S;
char *E_name[4] = {"L-Q", "L+Q", "L-2^Q", "L+2^Q"};
R = osc_run(mode);
E = osc_env(mode);
S = osc_mode(mode);
if (R == 0)
{
fprintf(stderr, "inactive");
return;
}
if ((R != 2) && (R != 7) && (R != 3))
{
switch (S)
{
case SUMCOS: fprintf(stderr, "ncos"); break;
case SAWTOOTH: fprintf(stderr, "saw"); break;
case SQUARE: fprintf(stderr, "square"); break;
case PULSE: fprintf(stderr, "pulse"); break;
case SIN_K: fprintf(stderr, "sin"); break;
case SIN_FM: fprintf(stderr, "sin+fm"); break;
default: fprintf(stderr, "unknown"); break;
}
fprintf(stderr, "-%s-", E_name[E]);
}
switch (R)
{
case 1: fprintf(stderr, "pause"); break;
case 15: fprintf(stderr, "A"); break;
case 14: fprintf(stderr, "B"); break;
case 9: fprintf(stderr, "wait"); break;
case 13: fprintf(stderr, "C"); break;
case 7: fprintf(stderr, "rd"); break;
case 3: fprintf(stderr, "wrt"); break;
case 2: fprintf(stderr, "DAC"); break;
default: fprintf(stderr, "unknown"); break;
}
}
static void gmode_command(int cmd)
{
int gen, M, F, C, GMODE, GFM, old_GMODE, old_GFM;
bool gen_was_active;
generator *g;
last_GMODE_command = samples;
gen = LDB(cmd, 8, 0);
GFM = LDB(cmd, 7, 12);
GMODE = LDB(cmd, 10, 19);
M = BIT(cmd, 31);
F = BIT(cmd, 30);
C = BIT(cmd, 29);
g = gens[gen];
old_GFM = g->GFM;
old_GMODE = g->GMODE;
gen_was_active = gen_is_active(g);
if (M == 0)
g->GMODE = GMODE;
if (F == 0)
g->GFM = GFM;
if (C == 1)
g->GK = 0;
/*
if (osc_env(GMODE) > 1) fprintf(stderr, "expt %d ", samples);
*/
if (describe_commands)
{
fprintf(stderr, "g%d ", gen);
if (M == 0)
{
fprintf(stderr, "mode: ");
print_gmode_name(g->GMODE);
}
if (F == 0)
{
if (M == 0) fprintf(stderr, ", ");
fprintf(stderr, "inloc: %s[%d]", ((g->GFM >> 6) == 0) ? "gen-ins" : "mod-ins", g->GFM & 0x3f);
}
if (C == 1)
{
if ((M == 0) || (F == 0))
fprintf(stderr, ", ");
fprintf(stderr, "clear phase");
}
fprintf(stderr, "\n");
}
if (REPORT_BAD_COMMANDS)
{
if (bad_mode(GMODE))
fprintf(stderr, "sample %d (%.3f), command %d, bad mode: g%d %x\n",
samples, (double)samples / (double)srate, current_command,
gen, GMODE);
if ((gen_is_active(g)) &&
(gen >= processing_ticks))
fprintf(stderr, "sample %d (%.3f), command %d, g%d cannot actually run (procticks: %d)\n",
samples, (double)samples / (double)srate, current_command,
gen, processing_ticks);
#if 0
if ((gen_was_active) &&
(!gen_is_active(g)) &&
(g->f_GQ != 0.0))
fprintf(stderr, "sample %d (%.3f), command %d, g%d turned off with amp %.4f\n",
samples, (double)samples / (double)srate, current_command,
gen, g->f_GQ);
#endif
if ((gen_was_active) &&
((g->GFM != old_GFM) || (g->GMODE != old_GMODE)) &&
(samples > last_GMODE_command))
{
if (g->GFM != old_GFM)
fprintf(stderr, "sample %d (%.3f), command %d, stray input loc: g%d %d from %d (last mode sample: %d)\n",
samples, (double)samples / (double)srate, current_command,
gen, g->GFM, old_GFM,
last_GMODE_command);
else
{
fprintf(stderr, "sample %d (%.3f), command %d, stray mode: g%d ",
samples, (double)samples / (double)srate, current_command, gen);
print_gmode_name(g->GMODE);
fprintf(stderr, " from ");
print_gmode_name(old_GMODE);
fprintf(stderr, " (last mode sample: %d)\n", last_GMODE_command);
}
}
}
}
/* GO (20 bits) alpha -- oscillator frequency sweep rate
* -----------------------------------------------------------------
* GO : (20) data : 1 0 1 1: (8) gen # :
* -----------------------------------------------------------------
*/
static void go_command(int cmd)
{
/* GO is 20 bits */
int data, gen;
generator *g;
gen = LDB(cmd, 8, 0);
data = LDB(cmd, 20, 12);
g = gens[gen];
g->GO = TWOS_20(data);
g->f_GO = DOUBLE_20(g->GO);
if (describe_commands)
{
if (osc_run(g->GMODE) == 2)
fprintf(stderr, "g%d DAC out: %d\n", gen, data);
else fprintf(stderr, "g%d freq change: %d %.4f (%.4f Hz/sec), freq: %.4f\n",
gen, g->GO, g->f_GO, g->f_GO * 0.5 * srate * srate / 256.0, g->f_GJ * srate * 0.5);
}
}
/* M0 (30 bits) coefficient
* M1 (30 bits) other coefficient
* -----------------------------------------------------------------
* MM : (20) data : 1 1 0: V V: (7) mod # :
* -----------------------------------------------------------------
*
* VV: 00 M0 right-adjusted, sign extended
* 01 M1 right-adjusted, sign extended
* 10 M0 left-adjusted, low bits from left of DX; clear DX
* 11 M1 left-adjusted, low bits from left of DX; clear DX
*/
/* To avoid endless repetition in the modifier processing, I'll incorporate the scalers
* into M0 and M1 when they are set, or when the scalers are changed, but this means
* (for simplicity) keeping track of the original M0 and M1 values: ("o_M0" and friends)
*/
static void mm_command(int cmd)
{
/* M0 and M1 are 30 bits */
int mod, VV, data, old_DX = 0;
modifier *m;
mod = LDB(cmd, 7, 0);
VV = LDB(cmd, 2, 7);
data = LDB(cmd, 20, 12);
m = mods[mod];
switch (VV)
{
case 0:
m->M0 = TWOS_20(data);
m->f_M0 = DOUBLE_30(m->M0);
m->o_M0 = m->M0;
m->o_f_M0 = m->f_M0;
m->M0 = m->M0 * m->mult_scl_0 / 4;
m->f_M0 *= m->mult_scl_0;
break;
case 1:
m->M1 = TWOS_20(data);
m->f_M1 = DOUBLE_30(m->M1);
m->o_M1 = m->M1;
m->o_f_M1 = m->f_M1;
m->M1 = m->M1 * m->mult_scl_1 / 4;
m->f_M1 *= m->mult_scl_1;
break;
case 2:
m->M0 = TWOS_30(((data << 10) + ((DX >> 10) & 0x3ff)));
m->f_M0 = DOUBLE_30(m->M0);
m->o_M0 = m->M0;
m->o_f_M0 = m->f_M0;
old_DX = DX;
DX = 0;
m->M0 = (m->M0 / 4) * m->mult_scl_0; /* try not to set the sign bit */
m->f_M0 *= m->mult_scl_0;
break;
case 3:
m->M1 = TWOS_30(((data << 10) + ((DX >> 10) & 0x3ff)));
m->f_M1 = DOUBLE_30(m->M1);
m->o_M1 = m->M1;
m->o_f_M1 = m->f_M1;
old_DX = DX;
DX = 0;
m->M1 = (m->M1 / 4) * m->mult_scl_1;
m->f_M1 *= m->mult_scl_1;
break;
}
if (describe_commands)
{
switch (VV)
{
case 0:
fprintf(stderr, "m%d M0: %d: %d %.6f\n", mod, data, m->M0, m->f_M0);
break;
case 1:
fprintf(stderr, "m%d M1: %d: %d %.6f\n", mod, data, m->M1, m->f_M1);
break;
case 2:
fprintf(stderr, "m%d M0+DX: data: %d + DX: %d (scl: %d), %d -> %d, %.6f -> %.6f\n",
mod, data, old_DX, m->mult_scl_0, m->o_M0, m->M0, m->o_f_M0, m->f_M0);
break;
case 3:
fprintf(stderr, "m%d M1+DX: data: %d + DX: %d (scl: %d), %d -> %d, %.6f -> %.6f\n",
mod, data, old_DX, m->mult_scl_1, m->o_M1, m->M1, m->o_f_M1, m->f_M1);
break;
}
}
}
/* L0 (20 bits) running term
* L1 (20 bits) other running term
* -----------------------------------------------------------------
* ML : (20) data : 1 1 1 0: N: (7) mod # :
* -----------------------------------------------------------------
*
* N: 0 L0
* 1 L1
*/
static void ml_command(int cmd)
{
int mod, N, data;
modifier *m;
mod = LDB(cmd, 7, 0);
data = LDB(cmd, 20, 12);
N = BIT(cmd, 7);
m = mods[mod];
if (N == 0)
{
m->L0 = TWOS_20(data);
m->f_L0 = DOUBLE_20(m->L0);
}
else
{
m->L1 = TWOS_20(data);
m->f_L1 = DOUBLE_20(m->L1);
}
if (describe_commands)
{
if (N == 0)
fprintf(stderr, "m%d L0: %d: %d %.6f\n", mod, data, m->L0, m->f_L0);
else fprintf(stderr, "m%d L1: %d: %d %.6f\n", mod, data, m->L1, m->f_L1);
}
}
/* MSUM (7 bits) result address in sum memory
* MMODE (9 bits) modifier mode
* -----------------------------------------------------------------
* :M:S:C:H: (9) MMODE :(7)MSUM: 1 1 1 1 0: (7) mod # :
* -----------------------------------------------------------------
*
* MMODE,
* MSUM M: if 1, disable loading MMMMM bits of MMODE
* S: if 1, disable loading MSUM
* C: if 1, clear L0
* H: if 1, disable loading AABB bits of MMODE
*/
static const char *mode_name(int m)
{
switch (m)
{
case M_INACTIVE: return("inactive");
case M_NOISE: return("noise");
case M_TRIGGERED_NOISE: return("triggered-noise");
case M_LATCH: return("latch");
case M_THRESHOLD: return("thresh");
case M_DELAY: return("delay");
case M_TWO_POLE: return("2pole");
case M_TWO_POLE_M0: return("2pole-M0");
case M_TWO_POLE_M1: return("2pole-M1");
case M_TWO_ZERO: return("2zero");
case M_TWO_ZERO_M0: return("2zero-M0");
case M_TWO_ZERO_M1: return("2zero-M1");
case M_INTEGER_MIXING: return("int-mix");
case M_ONE_POLE: return("1pole");
case M_MIXING: return("mix");
case M_ONE_ZERO: return("1zero");
case M_MULTIPLY: return("multiply");
case M_AMP_MOD: return("am");
case M_MAX: return("max");
case M_MIN: return("min");
case M_SIGNUM: return("signum");
case M_ZERO_CROSS: return("0cross");
}
return("unknown");
}
static void mmode_command(int cmd)
{
int mod, MSUM, MMODE, M, S, C, H;
modifier *m;
mod = LDB(cmd, 7, 0);
MSUM = LDB(cmd, 7, 12);
MMODE = LDB(cmd, 9, 19);
M = BIT(cmd, 31);
S = BIT(cmd, 30);
C = BIT(cmd, 29);
H = BIT(cmd, 28);
m = mods[mod];
if (S == 0)
m->MSUM = MSUM;
if (C == 1)
{
m->L0 = 0;
m->f_L0 = 0.0;
}
/* MMODE is MMMMMAABB */
if (H == 0)
{
/* set up the scale factors now, so we don't have to futz around later */
/* BB = first (!) */
m->mult_scl_1 = (1 << (MMODE & 0x3));
m->mult_scl_0 = (1 << ((MMODE >> 2) & 0x3));
/* whenever M0/M1 are set, we will include these factors */
m->M0 = (m->o_M0 / 4) * m->mult_scl_0; /* order matters -- don't want to set sign bit by accident */
m->M1 = (m->o_M1 / 4) * m->mult_scl_1;
m->f_M0 = m->o_f_M0 * m->mult_scl_0;
m->f_M1 = m->o_f_M1 * m->mult_scl_1;
if (M == 0)
m->MMODE = MMODE; /* set both */
else m->MMODE = (MMODE & 0xf) + (m->MMODE & 0x1f0); /* H is 0, so set AABB */
}
else
{
if (M == 0)
m->MMODE = (MMODE & 0x1f0) + (m->MMODE & 0xf); /* M is 0, so set MMMMM */
}
if (describe_commands)
{
fprintf(stderr, "m%d ", mod);
if (M == 0)
fprintf(stderr, "mode: %s", mode_name(MMODE >> 4));
if (H == 0)
{
if (M == 0)
fprintf(stderr, ", ");
fprintf(stderr, "AA: %d, BB: %d (M0: %d, %.3f, M1: %d, %.3f)", (MMODE >> 2) & 0x3, MMODE & 0x3, m->M0, m->f_M0, m->M1, m->f_M1);
}
if (S == 0)
{
if ((H == 0) || (M == 0))
fprintf(stderr, ", ");
fprintf(stderr, "outloc(%s): mod-outs[%d]", ((MSUM >> 6) == 0) ? "+" : "=", MSUM & 0x3f);
}
if (C == 1)
{
if ((S == 0) || (H == 0) || (M == 0))
fprintf(stderr, ", ");
fprintf(stderr, "L0=0");
}
fprintf(stderr, "\n");
}
if (REPORT_BAD_COMMANDS)
{
if (((MMODE >> 4) != M_INACTIVE) &&
((mod * 2) >= processing_ticks))
fprintf(stderr, "sample %d (%.3f), command %d, m%d cannot actually run (procticks: %d)\n",
samples, (double)samples / (double)srate, current_command,
mod, processing_ticks);
}
}
/* MIN (8 bits) address in sum memory where modifier reads "A" data
* MRM (8 bits) address in sum memory where modifier reads "B" data
* -----------------------------------------------------------------
* :R:I:C C: (8) MRM : (8) MIN : 1 1 1 1 1: (7) mod # :
* -----------------------------------------------------------------
*
* MRM,
* MIN, R: if 1, disable loading MRM
* MT I: if 1, disable loading MIN
* CC: 00 turn off truncation
* 01 turn on truncation
* 10 clear L1
* 11 no effect
*/
static void mrm_command(int cmd)
{
int mod, MRM, MIN, R, I, CC;
modifier *m;
mod = LDB(cmd, 7, 0);
MIN = LDB(cmd, 8, 12);
MRM = LDB(cmd, 8, 20);
R = BIT(cmd, 31);
I = BIT(cmd, 30);
CC = LDB(cmd, 2, 28);
m = mods[mod];
if (R == 0)
m->MRM = MRM;
if (I == 0)
m->MIN = MIN;
switch (CC)
{
case 0:
m->T = 0;
break;
case 1:
m->T = 1;
break;
case 2:
m->L1 = 0;
m->f_L1 = 0.0;
break;
}
if (describe_commands)
{
fprintf(stderr, "m%d inlocs:", mod);
if (R == 0)
{
if (mod_mode(m->MMODE) == M_DELAY)
fprintf(stderr, ", delay: %d", MRM & 0x1f);
else
{
fprintf(stderr, ", MRM: ");
print_mod_read_name(MRM);
}
}
if (I == 0)
{
fprintf(stderr, ", MIN: ");
print_mod_read_name(MIN);
}
if (CC == 0) fprintf(stderr, ", trunc off");
if (CC == 1) fprintf(stderr, ", trunc on");
if (CC == 2) fprintf(stderr, ", L1=0");
fprintf(stderr, "\n");
}
}
static void handle_command(int cmd)
{
/* actually we should take highest_tick - processing_ticks - 8 commands at a time, then run a sample */
int op;
if ((start_describing <= samples) &&
(stop_describing >= samples))
describe_commands = true;
else describe_commands = DEFAULT_DESCRIBE_COMMANDS;
op = LDB(cmd, 4, 8);
switch (op)
{
case 0:
if (BIT(cmd, 7) == 1)
dly_command(cmd);
else misc_command(cmd);
break;
case 1:
if (BIT(cmd, 7) == 1)
ticks_command(cmd);
else timer_command(cmd);
break;
case 2: case 3:
gq_command(cmd);
break;
case 4: case 5:
gj_command(cmd);
break;
case 6:
gp_command(cmd);
break;
case 7:
gn_command(cmd);
break;
case 8:
gl_command(cmd);
break;
case 9:
gk_command(cmd);
break;
case 10:
gmode_command(cmd);
break;
case 11:
go_command(cmd);
break;
case 12: case 13:
mm_command(cmd);
break;
case 14:
ml_command(cmd);
break;
case 15:
if (BIT(cmd, 7) == 0)
mmode_command(cmd);
else mrm_command(cmd);
break;
default:
fprintf(stderr, "impossible command\n");
break;
}
current_command++;
}
/* ---------------------------------------- debugging ---------------------------------------- */
#if 0
static void dump_gens(void)
{
int i;
for (i = 0; i < GENERATORS; i++)
if (gens[i]->GMODE != 0)
fprintf(stderr, "g%d GMODE: %d, %d [%.3f] -> %d [%.3f], GQ: %.3f, GP: %.3f, GL: %.3f, GJ: %.3f, GO: %.3f, GN: %d, GS: %d\n",
i,
gens[i]->GMODE,
gens[i]->GFM, ((gens[i]->GFM >> 6) == 0) ? gen_ins[gens[i]->GFM & 0x3f] : mod_ins[gens[i]->GFM & 0x3f],
gens[i]->GSUM, gen_outs[gens[i]->GSUM],
gens[i]->f_GQ, gens[i]->f_GP, gens[i]->f_GL, gens[i]->f_GJ, gens[i]->f_GO,
gens[i]->GN, gens[i]->GS);
}
static void dump_mods(void)
{
int i;
for (i = 0; i < MODIFIERS; i++)
if (mods[i]->MMODE != 0)
fprintf(stderr, "m%d MMODE: %d, (%d [%.3f] %d [%.3f]) -> %d [%.3f], M0: %.3f, M1: %.3f, L0: %.3f, L1: %.3f\n",
i,
mods[i]->MMODE,
mods[i]->MIN, mod_read(mods[i]->MIN),
mods[i]->MRM, mod_read(mods[i]->MRM),
mods[i]->MSUM, mod_outs[mods[i]->MSUM],
mods[i]->f_M0, mods[i]->f_M1, mods[i]->f_L0, mods[i]->f_L1);
}
#endif
static void dump_gen_sum(int addr)
{
int i;
/* show prev-ins : ins : out, g%d for all writers */
fprintf(stderr, "g-sum%d: %.3f %.3f %.3f [max: %.3f]", addr, prev_gen_ins[addr], gen_ins[addr], gen_outs[addr], peak_gen_ins[addr]);
for (i = 0; i < GENERATORS; i++)
if ((gens[i]->GMODE != 0) &&
(gens[i]->GSUM == addr))
fprintf(stderr, " g%d", i);
}
static void dump_mod_sum(int addr)
{
int i;
/* show prev-ins : ins : out, m%d for all writers */
fprintf(stderr, "m-sum%d: %.3f %.3f %.3f [max: %.3f]", addr, prev_mod_ins[addr], mod_ins[addr], mod_outs[addr], peak_mod_ins[addr]);
for (i = 0; i < MODIFIERS; i++)
if ((mod_mode(mods[i]->MMODE) != M_INACTIVE) &&
((mods[i]->MSUM &0x3f) == addr))
fprintf(stderr, " m%d", i);
}
static void print_mod_sum(int addr)
{
int loc;
loc = addr & 0x3f;
switch ((addr >> 6) & 0x3)
{
case 0:
fprintf(stderr, "[");
dump_gen_sum(loc);
break;
case 1:
fprintf(stderr, "[");
if (loc == 0)
{
if ((prev_mod_ins[0] != 0.0) || (mod_ins[0] != 0.0) || (mod_outs[0] != 0.0) || (peak_mod_ins[0] != 0))
dump_mod_sum(0);
else fprintf(stderr, "zero");
}
else dump_mod_sum(loc);
break;
case 2:
fprintf(stderr, "-out[");
if (loc == 0)
{
if ((prev_mod_ins[0] != 0.0) || (mod_ins[0] != 0.0) || (mod_outs[0] != 0.0) || (peak_mod_ins[0] != 0))
dump_mod_sum(0);
else fprintf(stderr, "zero");
}
else dump_mod_sum(loc);
break;
case 3:
fprintf(stderr, "[illegal: %d", addr);
break;
}
}
static int gen_mem_readers(int addr)
{
int i, rds = 0;
for (i = 0; i < GENERATORS; i++)
if ((gens[i]->GMODE != 0) &&
(gens[i]->GFM == addr)) /* Q bit 0 = gen */
rds++;
for (i = 0; i < MODIFIERS; i++)
if (mod_mode(mods[i]->MMODE) != M_INACTIVE)
{
if (mods[i]->MIN == addr) /* QQ bits = 0 = gen */
rds++;
if ((mod_mode(mods[i]->MMODE) != M_DELAY) &&
(mods[i]->MRM == addr))
rds++;
}
return(rds);
}
static int mod_mem_readers(int addr)
{
int i, rds = 0;
for (i = 0; i < GENERATORS; i++)
if ((gens[i]->GMODE != 0) &&
(gens[i]->GFM == 64 + addr)) /* Q bit 1 = mod */
rds++;
for (i = 0; i < MODIFIERS; i++)
if (mod_mode(mods[i]->MMODE) != M_INACTIVE)
{
if ((mods[i]->MIN == 64 + addr) ||
(mods[i]->MIN == 128 + addr))
rds++;
if ((mod_mode(mods[i]->MMODE) != M_DELAY) &&
((mods[i]->MRM == 64 + addr) ||
(mods[i]->MRM == 128 + addr)))
rds++;
}
return(rds);
}
static void dump_patch(void)
{
/* try to show all currently active elements and memory with some history */
int i, p;
fprintf(stderr, "sample: %d, command: %d, ", samples, current_command);
for (i = 0, p = 0; i < GENERATORS; i++)
if (gens[i]->GMODE != 0)
p++;
fprintf(stderr, "active gens: %d, ", p);
for (i = 0, p = 0; i < MODIFIERS; i++)
if (mod_mode(mods[i]->MMODE) != M_INACTIVE)
p++;
fprintf(stderr, "active mods: %d, ", p);
for (i = 0, p = 0; i < DELAYS; i++)
if (dlys[i]->P != 0)
p++;
fprintf(stderr, "active delays: %d\n\n", p);
for (i = 0; i < GENERATORS; i++)
if (gens[i]->GMODE != 0)
{
generator *g;
g = gens[i];
fprintf(stderr, "g%d ", i);
print_gmode_name(g->GMODE);
fprintf(stderr, " [");
if ((g->GFM >> 6) == 0)
dump_gen_sum(g->GFM & 0x3f);
else print_mod_sum(g->GFM);
fprintf(stderr, "]->[");
if (osc_run(g->GMODE) == 2)
fprintf(stderr, "OUT%d", g->GO & 0xf);
else dump_gen_sum(g->GSUM);
fprintf(stderr, " (%d)], (amp: %.3f, freq: %.3f",
gen_mem_readers(g->GSUM),
gen_amp(g),
g->f_GJ * 0.5 * srate);
if (g->f_GJ == 0.0)
fprintf(stderr, ", phase: %.3f", g->f_GK);
fprintf(stderr, ")\n");
}
fprintf(stderr, "\n");
for (i = 0; i < MODIFIERS; i++)
if (mod_mode(mods[i]->MMODE) != M_INACTIVE)
{
modifier *m;
m = mods[i];
fprintf(stderr, "m%d %s ", i, mode_name(mod_mode(m->MMODE)));
if (mod_mode(m->MMODE) == M_MIXING)
fprintf(stderr, "%.4f * ", m->f_M0);
fprintf(stderr, "A");
print_mod_sum(m->MIN);
fprintf(stderr, "], ");
if (mod_mode(m->MMODE) == M_MIXING)
fprintf(stderr, "%.4f * ", m->f_M1);
fprintf(stderr, "B");
if (mod_mode(m->MMODE) == M_DELAY)
{
delay *d;
d = dlys[m->MRM & 0x1f];
fprintf(stderr, "[delay: %d (%.4f)", m->MRM & 0x1f, delay_memory[d->X + d->Y]);
fprintf(stderr, ", M0: %.4f, M1: %.4f, L0: %.4f, L1: %.4f", m->f_M0, m->f_M1, m->f_L0, m->f_L1);
}
else print_mod_sum(m->MRM);
fprintf(stderr, "]->[");
if ((m->MSUM >> 6) != 0)
fprintf(stderr, "-replace");
dump_mod_sum(m->MSUM & 0x3f);
fprintf(stderr, " (%d)]\n", mod_mem_readers(m->MSUM));
}
fprintf(stderr, "\n");
for (i = 0; i < DELAYS; i++)
if (dlys[i]->P != D_INACTIVE)
{
delay *d;
d = dlys[i];
fprintf(stderr, "d%d %s %.3f (%d + %d of %d)\n",
i, P_name(d->P),
delay_memory[d->X + d->Y],
d->X, d->Y, d->Z);
}
{
double dmax;
dmax = fabs(delay_memory[0]);
for (i = 1; i < DELAY_MEMORY_SIZE; i++)
if (fabs(delay_memory[i]) > dmax)
dmax = fabs(delay_memory[i]);
fprintf(stderr, "delay memory peak: %.4f\n\n", dmax);
}
}
/* ---------------------------------------- main program ---------------------------------------- */
int main(int argc, char **argv)
{
if (argc < 2)
fprintf(stderr, "sam filename [read_data file] [srate]\n"); /* mmm */
else
{
FILE *sam_file;
filename = argv[1];
sam_file = fopen(filename, "r");
if (!sam_file)
fprintf(stderr, "can't find %s\n", filename);
else
{
long size;
fseek(sam_file, 0, SEEK_END);
size = ftell(sam_file);
rewind(sam_file);
if (size <= 0)
{
fprintf(stderr, "%s is empty\n", filename);
fclose(sam_file);
}
else
{
size_t i, bytes;
unsigned char *command;
if (argc > 2)
{
read_data_file = fopen(argv[2], "r");
if (argc > 3)
{
/* mmm - set srate explicitly. I had an inexplicably high max tick setting in one sam file with read data input. */
sscanf(argv[3], "%d", &srate);
}
}
start_clean();
command = (unsigned char *)calloc(size + 1, sizeof(unsigned char));
bytes = fread(command, sizeof(unsigned char), size, sam_file);
fclose(sam_file);
/* these were stored in at least 2 different formats
*
* FASTF.SAM: "Type: 32BITR BADSAM ;Looks like a SAM command file but has questionable data"
* MACDON.SAM: "Type: SAM SIMPLE ;Simple SAM command file (corresponding sound file possible)"
*
* FASTF was written as 32 bits (using the 1st case below), and MACDON as 36 (using the 2nd case).
* it looks like someone got a flag backwards, and wrote the known-good 32-bit files as 36,
* and the possibly not-32 bit files as 32. I can't find the corresponding code in the writers
* that Nando found on the exabyte tapes.
*
* The *.SAM.snd files are raw big-endian 24-bit int data (stereo?)
* with many (6?) renditions?
*/
#if 1
if ((command[0] != 0) || /* just a first guess */
(command[1] != 0))
{
fprintf(stderr, "32\n");
total_commands = (int)(bytes / 4);
current_command = 0;
for (i = 0; i < bytes; i += 4)
{
int cmd;
int b1, b2, b3, b4;
b1 = command[i + 0];
b2 = command[i + 1];
b3 = command[i + 2];
b4 = command[i + 3];
cmd = b4 + (b3 << 8) + (b2 << 16) + (b1 << 24);
handle_command(cmd);
}
}
else
{
fprintf(stderr, "36\n");
total_commands = (int)(bytes / 5);
current_command = 0;
for (i = 0; i < bytes; i += 5)
{
int cmd;
int b1, b2, b3, b4, b5;
b1 = command[i + 0];
b2 = command[i + 1];
b3 = command[i + 2];
b4 = command[i + 3];
b5 = command[i + 4];
cmd = ((b5 >> 4) & 0xff) + (b4 << 4) + (b3 << 12) + (b2 << 20) + ((b1 & 0xff) << 28);
handle_command(cmd);
}
}
#else
/* another format that Mike used:
* cmd = (b1 << 28) | (b2 << 24) | (b3 << 16) | (b4 << 8) | b5;
*/
total_commands = (int)(bytes / 5);
current_command = 0;
for (i = 0; i < bytes; i += 5)
{
int cmd;
int b1, b2, b3, b4, b5;
b1 = command[i + 0];
b2 = command[i + 1];
b3 = command[i + 2];
b4 = command[i + 3];
b5 = command[i + 4];
cmd = (b1 << 28) | (b2 << 24) | (b3 << 16) | (b4 << 8) | b5;
handle_command(cmd);
}
#endif
}
all_done();
}
}
return(0);
}
/* on the cover of an old copy of the specs:
NOT TO LEAVE THE MUSIC ROOM [red ink and underlined]
Would be an awful fate, [pencilled in below]
Said Cleopatra to her groom,
and struck him on the pate!
*/
|