1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
|
<html>
<head><title>The Sound Library</title></head>
<body bgcolor="#ffffff">
<center>
<h1>SndLib</h1>
</center>
<br><br>
<center>Bill Schottstaedt (bil@ccrma.stanford.edu)</center>
<br><br>
<h2>Contents</h2>
<dl>
<dt><a href="#introduction">Introduction</a>
<dt><a href="#headers">Headers</a>
<dt><a href="#data">Data</a>
<dt><a href="#hardware">Hardware</a>
<dt><a href="#music5">Music V</a>
<dt><a href="#examples">Examples</a>
<dd><a href="#sndinfo">SndInfo</a>
<dd><a href="#sndplay">SndPlay</a>
<dd><a href="#sndrecord">SndRecord</a>
<dd><a href="#audinfo">AudInfo</a>
<dd><a href="#sndsine">SndSine</a>
<dd><a href="#clmosc">clmosc</a>
<dd><a href="#otherexamples">Other Examples</a>
<dt><a href="#building">How to Make Sndlib and the examples</a>
<dt><a href="#currentstatus">Current Status</a>
<dt><a href="#lowerlevels">Lower Levels</a>
<dt><a href="#sndlibguile">Sndlib and Guile</a>
</dl>
<h2><a name="introduction">Introduction</a></h2>
<p>The sound library is a collection of sound file and audio hardware
handlers written in C and running currently on SGI (either
audio library), NeXT, Sun, Be, OSS or ALSA (Linux and others), Mac, HPUX, MkLinux/LinuxPPC, and Windoze systems.
It provides relatively straightforward access to many sound file headers and data
types, and most of the features of the audio hardware. </p>
<p>The following files make up sndlib:</p>
<ul>
<li>io.c (read and write sound file data)
<li>headers.c (read and write sound file headers)
<li>audio.c (read and write sound hardware ports)
<li>sound.c (provide slightly higher level access to the preceding files)
<li>sndlib.h (header for the preceding files)
<li>sndlib2scm.c and sndlib-strings.h (tie preceding into Guile)
<li>clm.c and clm.h (Music V implementation)
<li>clm2scm.c, vct.c and vct.h (tie clm.c into Guile)
<li>old-sndlib.h (old names)
</ul>
<p>In version 6.0, I changed most of the exported names to
use the prefix "mus" or "SNDLIB" (to be more in line with
the Gnu standard); see old-sndlib.h for backwards compatibility.
</p>
<p>To build sndlib (sndlib.so if possible, and sndlib.a):</p>
<pre>
./configure
make
</pre>
<p>To install it, 'make install' -- I've tested this process in Linux,
SGI, Sun, and NeXT. It could conceivably work elsewhere. For more
details see <a href="#building">How to Make Sndlib</a> below.</p>
<h2><a name="headers">Headers</a></h2>
<p>Sound files have built-in descriptors known as headers.
The following functions return the information in the header.
In each case the argument to the function is the full file
name of the sound file.
</p>
<pre>
int sound_samples (char *arg) /* samples of sound according to header (can be incorrect) */
int sound_frames (char *arg) /* samples per channel */
float sound_duration (char *arg)
int sound_datum_size (char *arg) /* bytes per sample */
int sound_data_location (char *arg) /* location of first sample (bytes) */
int sound_chans (char *arg) /* number of channels (samples are interleaved) */
int sound_srate (char *arg) /* sampling rate */
int sound_header_type (char *arg) /* header type (aiff etc) */
int sound_data_format (char *arg) /* data format (alaw etc) */
int sound_original_format (char *arg) /* unmodified data format specifier */
char *sound_comment (char *arg) /* comment if any */
int sound_comment_start (char *arg) /* comment start (bytes) if any */
int sound_comment_end (char *arg) /* comment end (bytes) */
int sound_length (char *arg) /* true file length (for error checks) */
int sound_fact_samples (char *arg) /* compression scheme data */
int sound_distributed (char *arg) /* is header scattered around in sound file */
int sound_write_date (char *arg) /* bare (uninterpreted) file write date */
int sound_type_specifier (char *arg) /* original header type identifier */
int sound_align (char *arg) /* more compression data */
int sound_bits_per_sample(char *arg) /* bits per sample */
int sound_bytes_per_sample(int format) /* bytes per sample */
int sound_max_amp(char *arg, int *vals)/* return list of max-amp sample pairs */
int sound_aiff_p(char *arg) /* is it an old-style AIFF file (not AIFC) */
void initialize_sndlib(void) /* initialize everything */
int sound_aiff_p(char *arg) /* if sound's header actually an old-style AIFF (not AIFC) header */
</pre>
<p>The following can be used to provide user-understandable descriptions
of the header type and the data format:</p>
<pre>
char *sound_type_name(int type) /* "AIFF" etc */
char *sound_format_name(int format) /* "16-bit big endian linear" etc */
</pre>
<p>In all cases if an error occurs, -1 is returned; for information about
the error use:</p>
<pre>
int audio_error(void) /* returns error code indicated by preceding audio call */
char *audio_error_name(int err) /* gives string decription of error code */
</pre>
<p>Header data is cached internally, so the actual header is read
only if it hasn't already been read, or the write date has changed.
Loop points are also available, if there's interest. To go below the
"sound" level, see headers.c -- once a header has been read, all the
components that have been found can be read via functions such as
<b>mus_header_srate</b>.
</p>
<h2><a name="data">Data</a></h2>
<p>The following functions provide access to
sound file data:</p>
<pre>
int open_sound_input (char *arg)
int open_sound_output (char *arg, int srate, int chans, int data_format, int header_type, char *comment)
int reopen_sound_output (char *arg, int type, int format, int data_loc)
int close_sound_input (int fd)
int close_sound_output (int fd, int bytes_of_data)
int read_sound (int fd, int beg, int end, int chans, int **bufs)
int write_sound (int fd, int beg, int end, int chans, int **bufs)
int seek_sound (int fd, long offset, int origin)
int seek_sound_frame (int fd, int frame)
int mus_float_sound(char *charbuf, int samps, int charbuf_format, float *buffer)
</pre>
<p><i>open_sound_input</i> opens <i>arg</i> for reading. Most standard
uncompressed formats are readable. This function returns the associated
file number, or -1 upon failure. </p>
<p><i>close_sound_input</i> closes an open sound file. Its argument is
the integer returned by open_sound_input.</p>
<p><i>open_sound_output</i> opens <i>arg</i>, setting its sampling rate
to be <i>srate</i>, number of channels to <i>chans</i>, data format
to <i>data_format</i> (see sndlib.h for these types: SNDLIB_16_LINEAR,
for example, means 16-bit 2's complement big endian fractions),
header type to <i>header_type</i> (AIFF for example; the available
writable header types are AIFF_sound_file, RIFF_sound_file ('wave'),
NeXT_sound_file, and IRCAM_sound_file), and comment (if any) to
<i>comment</i>. The header is not considered complete without
an indication of the data size, but since this is rarely known
in advance, it is supplied when the sound file is closed. This
function returns the associated file number.</p>
<p><i>close_sound_output</i> first updates the file's header to
reflect the final data size <i>bytes_of_data</i>, then closes
the file. The argument <i>fd</i> is the integer returned by
open_sound_output.</p>
<p><i>read_sound</i> reads data from the file indicated by <i>fd</i>,
placing data in the array <i>obufs</i> as 32-bit integers in the
host's byte order. <i>chans</i> determines how many arrays of
ints are in obufs, which is filled by read_sound from its
index <i>beg</i> to <i>end</i> with zero padding if necessary.
See the sndplay example below if this is not obvious.</p>
<p><i>write_sound</i> writes data to the file indicated by <i>fd</i>,
starting for each of <i>chans</i> channels in <i>obufs</i> at
<i>beg</i> and ending at <i>end</i>.</p>
<p><i>seek_sound</i> moves the read or write position for the
file indicated by <i>fd</i> to <i>offset</i> given the
<i>origin</i> indication (both treated as in lseek).
The new actual position attained is returned. In both
cases (the returned value and offset), the output datum
size is considered to be 2, no matter what it really is.
That is, use byte positions as if you were always reading
and writing 16-bit data, and seek_sound will compensate
if its actually 32-bit floats or whatever. Since this
is impossible to understand, there's also seek_sound_frame
which moves to the indicated frame.
</p>
<p><a name="floatsound"><i>mus_float_sound</i></a> takes a buffer full of sound data in
some format (<i>charbuf_format</i> and returns the data
as a buffer full of (unscaled) floats.</p>
<h2><a name="hardware">Hardware</a></h2>
<p>The following functions provide access to audio harware. If an
error occurs, they return -1, and the audio_error functions
can be used to find out what went wrong.</p>
<pre>
int initialize_audio(void)
void save_audio_state(void)
void restore_audio_state(void)
void describe_audio_state(void)
char *report_audio_state(void)
int open_audio_output(int dev, int srate, int chans, int format, int size)
int open_audio_input(int dev, int srate, int chans, int format, int size)
int write_audio(int line, char *buf, int bytes)
int close_audio(int line)
int read_audio(int line, char *buf, int bytes)
int read_audio_state(int dev, int field, int chan, float *val)
int write_audio_state(int dev, int field, int chan, float *val)
int audio_systems(void)
char *audio_system_name(int system)
void setup_dsps(int cards, int *dsps, int *mixers) /* OSS only */
</pre>
<p><i>initialize_audio</i> takes care of any necessary intialization.</p>
<p><i>save_audio_state</i> saves the current audio hardware state.</p>
<p><i>restore_audio_state</i> restores the audio hardware to the last saved state.</p>
<p><i>describe_audio_state</i> prints to stdout a description of the
current state of the audio hardware. <i>report_audio_state</i>
returns the same description as a string.</p>
<p><i>audio_systems</i> returns the number of separate and complete
audio systems (soundcards essentially) that are available.
<i>audio_system_name</i> returns some user-recognizable name for the given card.
</p>
<p><i>open_audio_input</i> opens an audio port to read sound data (i.e. a microphone, line in, etc).
The input device is <i>dev</i> (see sndlib.h for details; when in doubt, use SNDLIB_DEFAULT_DEVICE).
The input sampling rate is <i>srate</i> or as close as we
can get to it. The number of input channels (if available) is <i>chans</i>.
The input data format is <i>format</i> (when in doubt, use the macro SNDLIB_COMPATIBLE_FORMAT).
And the input buffer size (if settable at all) is <i>size</i> (bytes). This
function returns an integer to distinguish its port from others that might be
in use. In this and other related functions, the device has an optional second
portion that refers to the soundcard or system for that device. SNDLIB_AUDIO_SYSTEM(n)
refers to the nth such card, so (SNDLIB_DAC_DEVICE | SNDLIB_AUDIO_SYSTEM(1)) is the 2nd
card's dac (the default is system 0, the first card).
</p>
<p><i>open_audio_output</i> opens an audio port to write date (i.e. speakers, line out, etc).
The output device is <i>dev</i> (see sndlib.h). Its sampling rate is <i>srate</i>, number
of channels <i>chans</i>, data format <i>format</i>, and buffer size <i>size</i>. This
function returns the associated line number of the output port.</p>
<p><i>close_audio</i> closes the port (input or output) associated with <i>line</i>.</p>
<p><i>read_audio</i> reads sound data from <i>line</i>. The incoming <i>bytes</i> bytes of data are placed
in <i>buf</i>. If no error was returned from open_audio_input, the data is in the format requested
by that function with channels interleaved.</p>
<p><i>write_audio</i> writes <i>bytes</i> bytes of data in <i>buf</i> to the output
port associated with <i>line</i>. This data is assumed to be in the format
requested by open_audio_output with channels interleaved.</p>
<p><a name="readaudiostate"><i>read_audio_state</i></a> and <i>write_audio_state</i> are complicated. They
get and set the audio hardware state. The audio hardware is treated as a
set of "systems" (sound cards) each of which has a set of "devices" (dacs, adcs, etc),
with various "fields" that can be read or set (gain, channels active, etc).
For example, a microphone is called
the SNDLIB_MICROPHONE_DEVICE, and its hardware gain setting (if any) is called
the SNDLIB_AMP_FIELD. All gains are considered to be linear between 0.0 and
1.0, so to set the microphone's first channel amplitude to .5 (that is,
the gain of the signal before it reaches the analog-to-digital converter),</p>
<pre>
float vals[1];
vals[0]=0.5;
write_audio_state(SNDLIB_MICROPHONE_DEVICE,SNDLIB_AMP_FIELD,0,vals);
</pre>
<p>Similarly</p>
<pre>
read_audio_state(SNDLIB_MICROPHONE_DEVICE,SNDLIB_AMP_FIELD,0,vals);
amp=vals[0];
</pre>
<p>returns the current gain in the float array vals. read_audio_state
can also return a description of the currently available audio
hardware.</p>
<p>If a requested operation is not implemented, -1 is returned, and
SNDLIB_AUDIO_ERROR is set to SNDLIB_CANT_READ or SNDLIB_CANT_WRITE. If an error occurs
during the requested operation, -1 is returned, and SNDLIB_AUDIO_ERROR
is set to SNDLIB_READ_ERROR or SNDLIB_WRITE_ERROR. If some operation cannot
be performed on the current hardware, -1 is returned and SNDLIB_AUDIO_ERROR
tries to indicate what portion of the requested operation is
impossible (SNDLIB_SRATE_NOT_AVAILABLE, SNDLIB_FORMAT_NOT_AVAILABLE, and so on).</p>
<h4>Systems</h4>
<p>Each separate sound card is called a system, accessible via the <i>device</i>
argument through the macro SNDLIB_AUDIO_SYSTEM(n). The count starts at 0 which is the default. The
function <b>audio_systems</b> returns how many such cards are available. (Currently
it returns more than one only on Linux systems with multiple sound cards).
</p>
<h4>Devices</h4>
<p>Each audio system has a set of available devices. To find out what is
available on a given system</p>
<pre>
#define LIST_MAX_SIZE 32;
float device_list[LIST_MAX_SIZE];
read_audio_state(SNDLIB_AUDIO_SYSTEM(0),SNDLIB_DEVICE_FIELD,LIST_MAX_SIZE,device_list);
</pre>
<p>The list of available devices is returned in the device_list array,
with the number of the devices as device_list[0]. The set of device
identifiers is in sndlib.h (SNDLIB_LINE_IN_DEVICE for example). Two special
devices are SNDLIB_MIXER_DEVICE and SNDLIB_DAC_FILTER_DEVICE. The latter refers
to the low-pass filter often associated with a DAC. The former
refers to a set of analog gain and tone controls often associated
with a sound card. The individual gains are accessed through the
various fields (described below).
</p>
<h4>Fields</h4>
<p>The field argument in read-audio-state and write-audio-state selects
one aspect of the given card's devices' controls.
The simplest operations involve SNDLIB_AMP_FIELD and SNDLIB_SRATE_FIELD. The latter
gets or sets the sampling rate of the device, and the former gets or sets
the amplitude (between 0.0 and 1.0) of the specified channel of the device.
The value to be set or returned is in the 0th element of the <i>vals</i>
array. An example of reading the current microphone gain is given above.
The meaning of the field argument can depend on which device it is
applied to, so there is some complexity here. The <i>channel</i>
argument usually selects which channel we are interested in, but in
some cases it instead tells read-audio-state how big a returned list
can get. A brief description of the fields:</p>
<pre>
SNDLIB_AMP_FIELD gain or volume control (0.0 to 1.0)
SNDLIB_SRATE_FIELD sampling rate
SNDLIB_CHANNEL_FIELD active channels
SNDLIB_BASS_FIELD, SNDLIB_TREBLE_FIELD mixer's tone control
SNDLIB_LINE_FIELD mixer's line-in gain control
SNDLIB_MIC_FIELD mixer's microphone gain control
similarly for SNDLIB_IMIX_FIELD, SNDLIB_IGAIN_FIELD,
SNDLIB_RECLEV_FIELD, SNDLIB_PCM_FIELD, SNDLIB_PCM2_FIELD,
SNDLIB_OGAIN_FIELD, SNDLIB_LINE1_FIELD,
SNDLIB_LINE2_FIELD, SNDLIB_LINE3_FIELD, SNDLIB_SYNTH_FIELD
SNDLIB_FORMAT_FIELD return list of usable sound formats (e.g. SNDLIB_16_LINEAR)
SNDLIB_DEVICE_FIELD return list of available devices (e.g. SNDLIB_MICROPHONE_DEVICE)
</pre>
<h2><a name="music5">MusicV</a></h2>
<p>clm.c and friends implement all the generators found in CLM, a common lisp
music V implementation, and clm2scm.c ties these into Guile (Scheme). The
primary clm documentation (which describes both the Scheme and Common Lisp implementations)
is clm.html found in clm-2.tar.gz alongside sndlib at ccrma-ftp.
The simplest way to try these out is to load them into Snd; see extsnd.html
and examp.scm in snd-3.tar.gz for more details.
The C implementation is essentially the same as the two Lisp versions, but (as might be expected), works
at a lower level, expecting the caller to handle garbage collection and so forth.
The following briefly describes the C calls (see clm.h).
</p>
<p>clm.c implements a bunch of generators and sound IO handlers. Each generator
has three associated functions, make-gen, gen, and gen_p; the first
creates the generator (if needed), the second gets the next sample from
the generator, and the last examines some pointer to determine if it is
that kind of generator. In addition, there are a variety of "generic"
functions that generators respond to: mus_free, for example, frees a
generator, and mus_frequency returns its current frequency, if relevant.
All generators are pointers to mus_any structs. Finally, CLM has two
special data types: frame and mixer. A frame is an array that represents
a multi-channel sample (that is, in a stereo file, at time 0.0, there
are two samples, one for each channel). A mixer is a array of arrays
that represents a set of input and output scalers, as if it were the
current state of a mixing console's volume controls. A frame (a multi-channel
input) can be "mixed" into a new frame (a multi-channel output) by passing
it through a "mixer" (a matrix, the operation being a matrix multiply).
</p>
<ul>
<li>oscil -- generate a sine wave.
<ul>
<li>mus_any *mus_make_oscil (float freq, float phase)
<li>float mus_oscil (mus_any *o, float fm, float pm)
<li>int mus_oscil_p (mus_any *ptr)
</ul>
<pre><font size = "2">
mus_any *osc;
init_mus_module();
osc = mus_make_oscil(440.0,0.0);
if (oscil_p(osc)) fprintf(stderr,"%.3f, %.3f ",.1 * mus_oscil(osc,0.0,0.0),mus_frequency(osc));
mus_free(osc);
</font></pre>
</ul>
<p>The other generators are:</p>
<ul>
<li>sum_of_cosines -- generate a pulse train made up of cosines
<li>delay -- a delay line with optional interpolation
<li>tap -- read delay line
<li>comb -- comb filter
<li>notch -- notch filter
<li>all_pass -- all pass filter
<li>table_lookup -- interpolating table lookup
<li>sawtooth_wave, triangle_wave, pulse_train, square_wave
<li>rand -- white noise (a step function)
<li>rand-interp -- interpolating noise
<li>asymmetric_fm -- a variety of FM
<li>one_zero, two_zero, one_pole, two_pole -- basic filters
<li>formant -- create a formant region (two poles, two zeros)
<li>sine_summation -- another way to create sine waves
<li>filter, fir_filter, iir_filter -- direct form filters of any order
<li>wave_train -- sequence of possibly overlapping waves
<li>buffer -- a way to handle block processing in the generator world
<li>env -- envelopes
<li>waveshape -- waveshaping
<li>readin, file2sample, file2frame, in_any -- file sample input
<li>locsig, sample2file, frame2file, out_any -- file sample output
<li>src -- sampling rate conversion
<li>granulate -- granular synthesis
<li>convolve -- convolution
</ul>
<p>Some useful functions provided by clm.c are: </p>
<ul>
<li>float mus_radians2hz(float rads) -- convert radians/sample to cycles/sec.
<li>float mus_hz2radians(float hz) -- and the reverse.
<li>float mus_degrees2radians(float deg) -- convert degrees to radians.
<li>float mus_radians2degrees(float rads) -- and the reverse.
<li>float mus_srate(void) -- current sampling rate
<li>float mus_set_srate(float rate) -- set current sampling rate
<li>float mus_ring_modulate(float sig1, float sig2) -- multiply sig1 by sig2
<li>float mus_amplitude_modulate(float s1, float s2, float s3) -- AM
<li>float mus_contrast_enhancement(float sig, float index)
<li>float mus_dot_product(float *data1, float *data2, int size)
<li>void mus_clear_array(float *arr, int size)
<li>float mus_array_interp(float *wave, float phase, int size)
<li>float mus_polynomial(float *coeffs, float x, int ncoeffs);
<li>void mus_multiply_arrays(float *data, float *window, int len);
<li>void mus_rectangular2polar(float *rl, float *im, int size);
<li>void mus_spectrum(float *rdat, float *idat, float *window, int n, int type)
<li>void mus_fft(float *rl, float *im, int n, int isign, int ipow)
<li>float *mus_make_fft_window(int size, int type, float beta)
<li>void mus_convolution(float* rl1, float* rl2, int n, int ipow)
<li>float *mus_partials2wave(float *partial_data, int partials, float *table, int table_size, int normalize)
<li>float *mus_phasepartials2wave(float *partial_data, int partials, float *table, int table_size, int normalize)
</ul>
<p>and various others -- see clm.h.</p>
<p>The more useful generic functions are:</p>
<ul>
<li>int mus_free(mus_any *ptr)
<li>char *mus_describe(mus_any *gen)
<li>float mus_phase(mus_any *gen)
<li>float mus_set_phase(mus_any *gen, float val)
<li>float mus_set_frequency(mus_any *gen, float val)
<li>float mus_frequency(mus_any *gen)
<li>int mus_length(mus_any *gen)
<li>int mus_set_length(mus_any *gen, int len)
<li>float *mus_data(mus_any *gen)
<li>float *mus_set_data(mus_any *gen, float *data)
<li>char *mus_name(mus_any *ptr)
<li>int mus_type(mus_any *ptr)
<li>float mus_scaler(mus_any *gen)
<li>float mus_set_scaler(mus_any *gen, float val)
</ul>
<p>Before using any of these functions, call init_mus_module. Errors are reported
through mus_error which can be redirected or muffled. See clm2scm.c for an example.
</p>
<hr>
<h2><a name="examples">Examples</a></h2>
<p>In the following examples I've omitted the usual garrulous C-header
gab and other inessential stuff. The full
program code is available as noted below.</p>
<h3><a name="sndinfo">SndInfo</a></h3>
<p>This program prints out a description of a sound file (sndinfo.c).</p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
int fd,chans,srate,samples;
float length;
time_t date;
char *comment;
char timestr[64];
initialize_sndlib();
fd = mus_open_read(argv[1]); /* see if it exists */
if (fd != -1)
{
close(fd);
date = sound_write_date(argv[1]);
srate = sound_srate(argv[1]);
chans = sound_chans(argv[1]);
samples = sound_samples(argv[1]);
comment = sound_comment(argv[1]);
length = (float)samples / (float)(chans * srate);
strftime(timestr,64,"%a %d-%b-%y %H:%M %Z",localtime(&date));
fprintf(stdout,"%s:\n srate: %d\n chans: %d\n length: %f\n",
argv[1],srate,chans,length);
fprintf(stdout," type: %s\n format: %s\n written: %s\n comment: %s\n",
sound_type_name(sound_header_type(argv[1])),
sound_format_name(sound_data_format(argv[1])),
timestr,comment);
}
else
fprintf(stderr,"%s: %s\n",argv[1],strerror(errno));
return(0);
}
</font>
</pre>
<h3><a name="sndplay">SndPlay</a></h3>
<p>This code plays a sound file (sndplay.c):</p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
int fd,afd,i,j,n,k,chans,srate,frames,outbytes;
int **bufs;
short *obuf;
initialize_sndlib();
fd = open_sound_input(argv[1]);
if (fd != -1)
{
chans = sound_chans(argv[1]);
srate = sound_srate(argv[1]);
frames = sound_frames(argv[1]);
outbytes = BUFFER_SIZE * chans * 2;
bufs = (int **)calloc(chans,sizeof(int *));
for (i=0;i<chans;i++) bufs[i] = (int *)calloc(BUFFER_SIZE,sizeof(int));
obuf = (short *)calloc(BUFFER_SIZE * chans,sizeof(short));
afd = open_audio_output(SNDLIB_DEFAULT_DEVICE,srate,chans,SNDLIB_COMPATIBLE_FORMAT,outbytes);
if (afd != -1)
{
for (i=0;i<frames;i+=BUFFER_SIZE)
{
read_sound(fd,0,BUFFER_SIZE-1,chans,bufs);
for (k=0,j=0;k<BUFFER_SIZE;k++,j+=chans)
for (n=0;n<chans;n++) obuf[j+n] = bufs[n][k];
write_audio(afd,(char *)obuf,outbytes);
}
close_audio(afd);
}
close_sound_input(fd);
for (i=0;i<chans;i++) free(bufs[i]);
free(bufs);
free(obuf);
}
else
fprintf(stderr,"%s: %s ",argv[1],audio_error_name(audio_error()));
return(0);
}
</font>
</pre>
<h3><a name="sndrecord">SndRecord</a></h3>
<p>This code records a couple seconds of sound from a microphone.
Input formats and sampling rates are dependent on available
hardware, so in a "real" program, you'd use <a href="#readaudiostate">read_audio_state</a>
to find out what was available, then <a href="#floatsound">float-sound</a> to
turn that data into a stream of floats.
You'd also provide, no doubt,
some whizzy user interface to turn the thing off. (sndrecord.c)</p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
int fd,afd,i,err;
short *ibuf;
#if MACOS
argc = ccommand(&argv);
#endif
afd = -1;
initialize_sndlib();
fd = open_sound_output(argv[1],22050,1,SNDLIB_16_LINEAR,NeXT_sound_file,"created by sndrecord");
if (fd != -1)
{
ibuf = (short *)calloc(BUFFER_SIZE,sizeof(short));
afd = open_audio_input(SNDLIB_MICROPHONE_DEVICE,22050,1,SNDLIB_16_LINEAR,BUFFER_SIZE);
if (afd != -1)
{
for (i=0;i<10;i++) /* grab 10 buffers of input */
{
err = read_audio(afd,(char *)ibuf,BUFFER_SIZE*2);
if (err != SNDLIB_NO_ERROR) {fprintf(stderr,audio_error_name(audio_error())); break;}
write(fd,ibuf,BUFFER_SIZE*2);
}
close_audio(afd);
}
else
fprintf(stderr,audio_error_name(audio_error()));
close_sound_output(fd,BUFFER_SIZE*10*2);
free(ibuf);
}
else
fprintf(stderr,"%s: %s ",argv[1],strerror(errno));
return(0);
}
</font>
</pre>
<h3><a name="audinfo">AudInfo</a></h3>
<p>This program describes the current audio harware state (audinfo.c):</p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
initialize_sndlib();
describe_audio_state();
return(0);
}
</font>
</pre>
<h3><a name="sndsine">SndSine</a></h3>
<p>This program writes a one channel NeXT/Sun sound file
containing a sine wave at 440 Hz.</p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
int fd,i,k,frames;
float phase,incr;
int *obuf[1];
initialize_sndlib();
fd = open_sound_output(argv[1],22050,1,SNDLIB_16_LINEAR,NeXT_sound_file,"created by sndsine");
if (fd != -1)
{
frames = 22050;
phase = 0.0;
incr = 2*PI*440.0/22050.0;
obuf[0] = (int *)calloc(BUFFER_SIZE,sizeof(int));
k=0;
for (i=0;i<frames;i++)
{
obuf[0][k] = (int)(3276.8 * sin(phase)); /* amp = .1 */
phase += incr;
k++;
if (k == BUFFER_SIZE)
{
write_sound(fd,0,BUFFER_SIZE-1,1,obuf);
k=0;
}
}
if (k>0) write_sound(fd,0,k-1,1,obuf);
close_sound_output(fd,22050*mus_format2bytes(SNDLIB_16_LINEAR));
free(obuf[0]);
}
return(0);
}
</font>
</pre>
<h3><a name="clmosc">clmosc</a></h3>
<p>This is program uses the clm.c oscillator and output functions to write the same sine wave
as we wrote in SndSine. (Compile clm.c with -DHAVE_SNDLIB=1).<p>
<pre>
<font size="2">
int main(int argc, char *argv[])
{
int i;
mus_any *osc,*op;
initialize_sndlib();
init_mus_module();
osc = mus_make_oscil(440.0,0.0);
op = mus_make_file_output("test.snd",22050,1,SNDLIB_16_LINEAR,NeXT_sound_file,"created by clmosc");
if (op) for (i=0;i<22050;i++) mus_sample2file(op,i,0,.1 * mus_oscil(osc,0.0,0.0));
mus_free(osc);
if (op) mus_free(op);
return(0);
}
</font>
</pre>
<p>Here is the fm-violin and a sample with-sound call:</p>
<pre><font size = "2">
static int feq(float x, int i) {return(fabs(x-i)<.00001);}
void fm_violin(float start, float dur, float frequency, float amplitude, float fm_index, mus_any *op)
{
float pervibfrq = 5.0,
ranvibfrq = 16.0,
pervibamp = .0025,
ranvibamp = .005,
noise_amount = 0.0,
noise_frq = 1000.0,
gliss_amp = 0.0,
fm1_rat = 1.0,
fm2_rat = 3.0,
fm3_rat = 4.0,
reverb_amount = 0.0,
degree = 0.0,
distance = 1.0;
float fm_env[] = {0.0, 1.0, 25.0, 0.4, 75.0, 0.6, 100.0, 0.0};
float amp_env[] = {0.0, 0.0, 25.0, 1.0, 75.0, 1.0, 100.0, 0.0};
float frq_env[] = {0.0, -1.0, 15.0, 1.0, 25.0, 0.0, 100.0, 0.0};
int beg = 0,end,easy_case = 0,npartials,i;
float *coeffs,*partials;
float frq_scl,maxdev,logfrq,sqrtfrq,index1,index2,index3,norm,vib = 0.0,modulation = 0.0,fuzz = 0.0,indfuzz = 1.0,ampfuzz = 1.0;
mus_any *carrier,*fmosc1,*fmosc2,*fmosc3,*ampf,*indf1,*indf2,*indf3,*fmnoi = NULL,*pervib,*ranvib,*frqf = NULL,*loc;
beg = start * mus_srate();
end = beg + dur * mus_srate();
frq_scl = mus_hz2radians(frequency);
maxdev = frq_scl * fm_index;
if ((noise_amount == 0.0) && (feq(fm1_rat,floor(fm1_rat))) && (feq(fm2_rat,floor(fm2_rat))) && (feq(fm3_rat,floor(fm3_rat)))) easy_case = 1;
logfrq = log(frequency);
sqrtfrq = sqrt(frequency);
index1 = maxdev * 5.0 / logfrq; if (index1 > M_PI) index1 = M_PI;
index2 = maxdev * 3.0 * (8.5 - logfrq) / (3.0 + frequency * .001); if (index2 > M_PI) index2 = M_PI;
index3 = maxdev * 4.0 / sqrtfrq; if (index3 > M_PI) index3 = M_PI;
if (easy_case)
{
npartials = floor(fm1_rat);
if ((floor(fm2_rat)) > npartials) npartials = floor(fm2_rat);
if ((floor(fm3_rat)) > npartials) npartials = floor(fm3_rat);
npartials++;
partials = (float *)CALLOC(npartials,sizeof(float));
partials[(int)(fm1_rat)] = index1;
partials[(int)(fm2_rat)] = index2;
partials[(int)(fm3_rat)] = index3;
coeffs = mus_partials2polynomial(npartials,partials,1);
norm = 1.0;
}
else norm = index1;
carrier = mus_make_oscil(frequency,0.0);
if (easy_case == 0)
{
fmosc1 = mus_make_oscil(frequency * fm1_rat,0.0);
fmosc2 = mus_make_oscil(frequency * fm2_rat,0.0);
fmosc3 = mus_make_oscil(frequency * fm3_rat,0.0);
}
else fmosc1 = mus_make_oscil(frequency,0.0);
ampf = mus_make_env(amp_env,4,amplitude,0.0,1.0,dur,0,0,NULL);
indf1 = mus_make_env(fm_env,4,norm,0.0,1.0,dur,0,0,NULL);
if (gliss_amp != 0.0) frqf = mus_make_env(frq_env,4,gliss_amp * frq_scl,0.0,1.0,dur,0,0,NULL);
if (easy_case == 0)
{
indf2 = mus_make_env(fm_env,4,index2,0.0,1.0,dur,0,0,NULL);
indf3 = mus_make_env(fm_env,4,index3,0.0,1.0,dur,0,0,NULL);
}
pervib = mus_make_triangle_wave(pervibfrq,frq_scl * pervibamp,0.0);
ranvib = mus_make_rand_interp(ranvibfrq,frq_scl * ranvibamp);
if (noise_amount != 0.0) fmnoi = mus_make_rand(noise_frq,noise_amount * M_PI);
loc = mus_make_locsig(degree,distance,reverb_amount,1,(mus_output *)op,NULL);
for (i=beg;i<end;i++)
{
if (noise_amount != 0.0) fuzz = mus_rand(fmnoi,0.0);
if (frqf) vib = mus_env(frqf); else vib = 0.0;
vib += mus_triangle_wave(pervib,0.0) + mus_rand_interp(ranvib,0.0);
if (easy_case)
modulation = mus_env(indf1) * mus_polynomial(coeffs,mus_oscil(fmosc1,vib,0.0),npartials);
else
modulation = mus_env(indf1) * mus_oscil(fmosc1,(fuzz + fm1_rat * vib),0.0) +
mus_env(indf2) * mus_oscil(fmosc2,(fuzz + fm2_rat * vib),0.0) +
mus_env(indf3) * mus_oscil(fmosc3,(fuzz + fm3_rat * vib),0.0);
mus_locsig(loc,i,mus_env(ampf) * mus_oscil(carrier,vib + indfuzz * modulation,0.0));
}
mus_free(pervib);
mus_free(ranvib);
mus_free(carrier);
mus_free(fmosc1);
mus_free(ampf);
mus_free(indf1);
if (fmnoi) mus_free(fmnoi);
if (frqf) mus_free(frqf);
if (easy_case == 0)
{
mus_free(indf2);
mus_free(indf3);
mus_free(fmosc2);
mus_free(fmosc3);
}
else
FREE(partials);
mus_free(loc);
}
int main(int argc, char *argv[])
{
mus_any *osc = NULL,*op = NULL;
initialize_sndlib();
init_mus_module();
op = mus_make_file_output("test.snd",22050,1,SNDLIB_16_LINEAR,NeXT_sound_file,"created by clmosc");
if (op)
{
fm_violin(0.0,20.0,440.0,.3,1.0,op);
mus_free(op);
}
return(0);
}
</font></pre>
<p>The CLM version is v.ins, the Scheme version can be found in examp.scm.
This code can be run:</p>
<pre>
cc v.c -o vc -O3 -lm io.o headers.o audio.o sound.o clm.o -DLINUX
</pre>
<p>where clm.o was compiled with -DHAVE_SNDLIB.</p>
<hr>
<h3><a name="otherexamples">Other Examples</a></h3>
<p>The primary impetus for the sound library was the development
of Snd and CLM, both of which are freely available.</p>
<hr>
<h3><a name="building">How to Make Sndlib and the examples</a></h3>
<p>The Sndlib files can be used as separate modules or made into a
library. The following sequence, for example, builds the sndplay
program from scratch on an SGI:</p>
<pre>
cc -c io.c -O -DSGI
cc -c headers.c -O -DSGI
cc -c audio.c -O -DSGI
cc -c sound.c -O -DSGI
cc sndplay.c -o sndplay -O -DSGI audio.o io.o headers.o sound.o -laudio -lm
</pre>
<p>To make a library out of
the sndlib files, first compile them as above, then:</p>
<pre>
ld -r audio.o io.o headers.o sound.o -o sndlib.a
cc sndplay.c -o sndplay -O -DSGI sndlib.a -laudio -lm
</pre>
<p>The full sequence in Linux:</p>
<pre>
cc -c io.c -O -DLINUX
cc -c audio.c -O -DLINUX
cc -c headers.c -O -DLINUX
cc -c sound.c -O -DLINUX
cc sndplay.c -o sndplay -O -DLINUX audio.o io.o headers.o sound.o -lm
ld -r audio.o io.o headers.o sound.o -o sndlib.a
cc sndplay.c -o sndplay -O -DLINUX sndlib.a -lm
</pre>
<p>And on a NeXT:</p>
<pre>
cc -c io.c -O -DNEXT
cc -c audio.c -O -DNEXT
cc -c headers.c -O -DNEXT
cc -c sound.c -O -DNEXT
cc sndplay.c -o sndplay -O -DNEXT audio.o io.o headers.o sound.o
ld -r audio.o io.o headers.o sound.o -o sndlib.a
cc sndplay.c -o sndplay -O -DNEXT sndlib.a
</pre>
<p>Some similar sequence should work on a Sun (-DSOLARIS) or in HP-UX (-DHPUX).
On a Mac, you need to make a project in CodeWarrior or whatever that
includes all the basic sndlib .c and .h files (io.c, audio.c
headers.c, sound.c, sndlib.h) as source
files. Add the main program you're interested in
(say sndplay.c), and "Make" the project. When the
project is "Run", a dialog pops up asking for
the arguments to the program (in this case the
name of the file to be played, as a quoted string).
In Windoze, you can use the C IDE (a project builder as in the Mac case),
or run the compiler from a DOS shell. In the latter case,
(in Watcom C) cl io.c -c -DWINDOZE to create the object files (io.obj and so on), then</p>
<pre>
cl sndplay sndplay.obj -DWINDOZE audio.obj io.obj headers.obj sound.obj
</pre>
<p>or in MS C</p>
<pre>
cl -c io.c -DWINDOZE
(and so on)
cl sndplay.c -DWINDOZE sndplay.obj audio.obj io.obj headers.obj sound.obj winmm.lib
</pre>
<p>or in gcc (available via the cygwin project)</p>
<pre>
gcc -c io.c -DWINDOZE -O2
</pre>
<p>
You can run the program from the DOS shell (sndplay oboe.snd or ./sndplay.exe oboe.snd).
On a Be, you can either build a project or use a makefile.
The C compiler's name is mwcc.
The tricky part
here is that you have to find and include explicitly
the Be audio library, libmedia.so -- look first in beos/system/lib.
Or</p>
<pre>
make sndplay
</pre>
<p>To make sndlib into a shared library,</p>
<pre>
ld -shared io.o headers.o audio.o sound.o -o sndlib.so
</pre>
<p>(in Linux), or (to include the CLM module),</p>
<pre>
ld -shared io.o headers.o audio.o sound.o clm.o -o sndlib.so
</pre>
<hr>
<h2><a name="currentstatus">Current Status</a></h2>
<table border>
<tr><th>System<th>SndSine<th>SndInfo<th>Audinfo<th>SndPlay<th>SndRecord<th>CLM
<tr><td>NeXT 68k<td>ok<td>ok<td>ok<td>ok<td>ok<td>ok
<tr><td>NeXT Intel<td>ok<td>ok<td>ok<td>interruptions<td>runs (*)<td>untried
<tr><td>SGI old and new AL<td>ok<td>ok<td>ok<td>ok<td>ok<td>ok
<tr><td>OSS (Linux et al)<td>ok<td>ok<td>ok<td>ok<td>ok<td>ok
<tr><td>Be<td>ok<td>ok<td>ok<td>ok<td>ok<td>untried
<tr><td>Mac<td>ok<td>ok<td>ok<td>ok<td>ok<td>ok
<tr><td>Windoze<td>ok<td>ok<td>ok<td>ok<td>not written<td>ok
<tr><td>Sun<td>ok<td>ok<td>ok<td>ok<td>runs (*)<td>ok
<tr><td>HPUX<td>untested<td>untested<td>untested<td>untested<td>untested<td>untried
<tr><td>MkLinux/LinuxPPC<td>ok<td>ok<td>ok<td>ok<td>untested (**)<td>ok
<tr><td>ALSA<td>untested<td>untested<td>untested<td>untested<td>untested<td>untested
</table>
<br>
<pre>
<font size="2">
(*) I can't find a microphone.
(**) Last I looked, recording was still not supported in this OS.
</font>
</pre>
<br>
<dl>
<dt>headers supported read/write
<dd>NeXT/Sun/DEC/AFsp
<dd>AIFF/AIFC
<dd>RIFF (Microsoft wave)
<dd>IRCAM (old style)
<dd>NIST-sphere
<dd>no header
<dt>headers supported read-only
<dd>8SVX (IFF), IRCAM Vax float, EBICSF, INRS, ESPS,
<dd>SPPACK, ADC (OGI), AVR, VOC,
<dd>Sound Tools, Turtle Beach SMP, SoundFont 2.0,
<dd>Sound Designer I and II, PSION, MAUD, Kurzweil 2000,
<dd>Tandy DeskMate, Gravis Ultrasound, ASF,
<dd>Comdisco SPW, Goldwave sample, omf, quicktime
<dd>Sonic Foundry, SBStudio II, Delusion digital,
<dd>Digiplayer ST3, Farandole Composer WaveSample,
<dd>Ultratracker WaveSample, Sample Dump exchange,
<dd>Yamaha SY85, SY99, and TX16, Covox v8, SPL, AVI,
</dl>
<pre>
<font size="2">
Incomplete: OMF, AVI, ASF, QuickTime, SoundFont 2.0.
Not handled: Esignal, ILS, HTK, DVSM, SoundEdit.
Handled by Snd: Mus10, IEEE text, HCOM, various compression schemes.
</font>
</pre>
<h2><a name="lowerlevels">Lower Levels</a></h2>
<p>If you'd like to go below the "sound" interface described above,
the following functions are exported from sndlib. You need to remember
to call sndlib_initialize (or the underlying initializers) before
using these functions (this is normally done for you by the various
"sound_" functions).</p>
<pre>
<font size="2">
int mus_read_header (char *name)
int mus_write_header (char *name, int type, int in_srate, int in_chans, int loc, int size, int format, char *comment, int len)
int mus_update_header (char *name, int type, int size, int srate, int format, int chans, int loc)
int mus_header_writable(int type, int format)
</font>
</pre>
These read and write a sound file's header. The <i>loc</i> parameter is normally 0 (the data location depends
on many things -- you'd normally write the header, then use mus_header_data_location to get the resultant
data location). <i>len</i> is the length (bytes) of <i>comment</i>. <i>mus_update_header</i> is normally
used only to set the file size after the sound has been written. <i>mus_header_writable</i> returns
1 if the given combination of header type and data format can be handled by sndlib. If you already have
the file descriptor (as returned by open), the corresponding lower level calls are:</p>
<pre>
<font size="2">
int mus_read_header_with_fd (int fd)
int mus_write_header_with_fd (int fd, int type, int in_srate, int in_chans, int loc, int size, int format, char *comment, int len)
int mus_update_header_with_fd (int fd, int type, int siz)
</font>
</pre>
<p>Once mus_read_header has been called, the data in it can be accessed through:</p>
<pre>
<font size="2">
int mus_header_samples (void) samples
int mus_header_frames (void) frames (samples / chans)
int mus_header_data_location (void) location of data (bytes)
int mus_header_chans (void) channels
int mus_header_srate (void) srate
int mus_header_type (void) header type (i.e. aiff, wave, etc) (see sndlib.h)
int mus_header_format (void) data format (see sndlib.h)
int mus_header_distributed (void) true if header info is scattered around in the file
int mus_header_comment_start (void) comment start location (if any) (bytes)
int mus_header_comment_end (void) comment end location
int mus_header_aux_comment_start (int n) if multiple comments, nth start location
int mus_header_aux_comment_end (int n) if multiple comments, nth end location
int mus_header_type_specifier (void) original (header-specific) type ID
int mus_header_bits_per_sample (void) sample width in bits
int mus_true_file_length (void) true (lseek) file length
int mus_header_format2bytes (void) sample width in bytes
int mus_header_aiff_p(void) is header actually old-style AIFF, not AIFC
char *mus_header_type2string (int type) sound_type_name
char *mus_header_data_format2string (int format) sound_format_name
</font>
</pre>
<p>Various less useful header fields are accessible:
see headers.c or sndlib.h for details. The next functions handle various IO calls:</p>
<pre>
<font size="2">
int mus_open_read (char *arg) open file read-only
int mus_probe_file (char *arg) return 1 if file exists
int mus_open_write (char *arg) open file read-write, creating it if necessary, else truncating
int mus_create (char *arg) create file
int mus_reopen_write (char *arg) open file read-write without changing anything
int mus_close (int fd) close file
long mus_seek (int tfd, long offset, int origin)
int mus_seek_frame (int tfd, int frame) go to a specific frame in file
int mus_read (int fd, int beg, int end, int chans, int **bufs)
int mus_read_chans (int fd, int beg, int end, int chans, int **bufs, int *cm)
int mus_read_any (int tfd, int beg, int chans, int nints, int **bufs, int *cm)
int mus_write_zeros (int tfd, int num)
int mus_write (int tfd, int beg, int end, int chans, int **bufs)
int mus_float_sound (char *charbuf, int samps, int charbuf_format, float *buffer)
int mus_unshort_sound (short *in_buf, int samps, int new_format, char *out_buf)
int sound_max_amp (char *ifile, int *vals)
</font>
</pre>
<p>If you're trying to deal with various data types yourself,
the following functions may be useful; they perform various
byte-order-aware type conversions:</p>
<pre>
<font size="2">
void mus_set_big_endian_int (unsigned char *j, int x)
int mus_big_endian_int (unsigned char *inp)
void mus_set_little_endian_int (unsigned char *j, int x)
int mus_little_endian_int (unsigned char *inp)
int mus_uninterpreted_int (unsigned char *inp)
void mus_set_big_endian_float (unsigned char *j, float x)
float mus_big_endian_float (unsigned char *inp)
void mus_set_little_endian_float (unsigned char *j, float x)
float mus_little_endian_float (unsigned char *inp)
void mus_set_big_endian_short (unsigned char *j, short x)
short mus_big_endian_short (unsigned char *inp)
void mus_set_little_endian_short (unsigned char *j, short x)
short mus_little_endian_short (unsigned char *inp)
void mus_set_big_endian_unsigned_short (unsigned char *j, unsigned short x)
unsigned short mus_big_endian_unsigned_short (unsigned char *inp)
void mus_set_little_endian_unsigned_short (unsigned char *j, unsigned short x)
unsigned short mus_little_endian_unsigned_short (unsigned char *inp)
double mus_little_endian_double (unsigned char *inp)
double mus_big_endian_double (unsigned char *inp)
void mus_set_big_endian_double (unsigned char *j, double x)
void mus_set_little_endian_double (unsigned char *j, double x)
unsigned int mus_big_endian_unsigned_int (unsigned char *inp)
unsigned int mus_little_endian_unsigned_int (unsigned char *inp)
</font>
</pre>
<p>Finally, a couple functions are provided to read and write sound files
to and from arrays:</p>
<pre>
<font size="2">
int mus_file2array (char *filename, int chan, int start, int samples, int *array)
int mus_array2file (char *filename, int *ddata, int len, int srate, int channels)
</font>
</pre>
<h2><a name="sndlibguile">Sndlib and Guile</a></h2>
<p>Much of sndlib is accessible at run time in any program that has Guile;
the modules sndlib2scm and clm2scm tie most of the library into Scheme
making it possible to call the library functions from Guile. The documentation
is scattered around, unfortunately: the clm side is in clm.html and extsnd.html with many
examples in Snd's examp.scm. Most of these are obvious translations of the
constants and functions described above into Scheme.
</p>
<pre>
<font size="2">
snd-16-linear snd-16-linear-little-endian snd-24-linear snd-24-linear-little-endian
snd-32-float snd-32-float-little-endian snd-32-linear snd-32-linear-little-endian
snd-64-double snd-64-double-little-endian snd-8-alaw snd-8-linear
snd-8-mulaw snd-8-unsigned snd-16-unsigned snd-16-unsigned-little-endian
next-sound-file nist-sound-file aiff-sound-file ircam-sound-file raw-sound-file riff-sound-file
sndlib-default-device sndlib-read-write-device sndlib-line-out-device
sndlib-line-in-device sndlib-microphone-device sndlib-speakers-device
sndlib-dac-out-device sndlib-adat-in-device sndlib-aes-in-device
sndlib-digital-in-device sndlib-digital-out-device sndlib-adat-out-device
sndlib-aes-out-device sndlib-dac-filter-device sndlib-mixer-device
sndlib-line1-device sndlib-line2-device sndlib-line3-device
sndlib-aux-input-device sndlib-cd-in-device sndlib-aux-output-device
sndlib-spdif-in-device sndlib-spdif-out-device
sndlib-amp-field sndlib-srate-field sndlib-channel-field
sndlib-format-field sndlib-device-field sndlib-imix-field
sndlib-igain-field sndlib-reclev-field sndlib-pcm-field
sndlib-pcm2-field sndlib-ogain-field sndlib-line-field
sndlib-mic-field sndlib-line1-field sndlib-line2-field
sndlib-line3-field sndlib-synth-field sndlib-bass-field
sndlib-treble-field sndlib-cd-field
sound-samples (filename) samples of sound according to header (can be incorrect)
sound-frames (filename) frames of sound according to header (can be incorrect)
sound-duration (filename) duration of sound in seconds
sound-datum-size (filename) bytes per sample
sound-data-location (filename) location of first sample (bytes)
sound-chans (filename) number of channels (samples are interleaved)
sound-srate (filename) sampling rate
sound-header-type (filename) header type (e.g. <i>aiff-sound-file</i>)
sound-data-format(filename) data format (e.g. <i>16-linear</i>)
sound-length (filename) true file length (bytes)
sound-type-specifier (filename) original header type identifier
sound-max-amp(filename) returns a vector of max amps and locations thereof
sound-type-name (type) e.g. "AIFF"
sound-format-name (format) e.g. "16-bit big endian linear"
sound-comment (filename) header comment, if any
sound-bytes-per-sample (format) bytes per sample
audio-error () returns error code indicated by preceding audio call
audio-error-name(err) string decription of error code
describe-audio () describe audio hardware state
report-audio-state() return audio hardware state as a string
set-oss-buffers (num size) in Linux (OSS) sets the number and size of the OSS "fragments"
audio-outputs(speaker, headphones, line-out) On the Sun, cause output to go to the chosen devices
open-sound-input (filename) open filename (a sound file) returning an integer ("fd" below)
open-sound-output (filename srate chans data-format header-type comment)
create a new sound file with the indicated attributes, return "fd"
reopen-sound-output (filename chans data-format header-type data-location)
reopen (without disturbing) filename, ready to be written
close-sound-input (fd) close sound file
close-sound-output (fd bytes) close sound file and update its length indication, if any
read-sound (fd beg end chans sdata) read data from sound file <i>fd</i> from frame beg to end
<i>sdata</i> is a sound-data object that should be able to accomodate the read
write-sound (fd beg end chans sdata) write data to sound file <i>fd</i>
seek-sound (fd offset origin) complicated -- see seek_sound above
seek-sound-frame (fd frame) move to <i>frame</i> in sound file <i>fd</i>
open-audio-output (device srate chans format bufsize)
open audio port <i>device</i> ready for output with the indicated attributes
open-audio-input (device srate chans format bufsize)
open audio port <i>device</i> ready for input with the indicated attributes
write-audio (line sdata frames) write <i>frames</i> of data from sound-data object <i>sdata</i> to port <i>line</i>
read-audio (line sdata frames) read <i>frames</i> of data into sound-data object <i>sdata</i> from port <i>line</i>
close-audio (line) close audio port <i>line</i>
read-audio-state (device field channel vals)
read current state of <i>device</i>'s <i>field</i> -- see read_audio_state above.
write-audio-state (device field channel vals)
write new state for <i>device</i>'s <i>field</i> -- see write_audio_state above.
audio-systems () returns how many separate "systems" (soundcards) it can find. To specify
a particular system in the "device" parameters, add (ash system 16) to the device.
save-audio-state () write current audio state to .mixer or whatever
restore-audio-state () read previously stored audio state
make-sound-data (chans, frames) return a sound-data object with <i>chans</i> arrays, each of length <i>frames</i>
sound-data-ref (obj chan frame) return (as a float) the sample in channel <i>chan</i> at location <i>frame</i>
sound-data-set! (obj chan frame val) set <i>obj</i>'s sample at <i>frame</i> in <i>chan</i> to (the float) <i>val</i>
sound-data? (obj) #t if <i>obj</i> is of type sound-data
sound-data-length (obj) length of each channel of data in <i>obj</i>
sound-data-chans (obj) number of channels of data in <i>obj</i>
sound-data->vct (sdobj chan vobj) place sound-data channel data in vct
vct->sound-data (vobj sdobj chan) place vct data in sound-data
;;; this function prints header information
(define info
(lambda (file)
(string-append
file
": chans: " (number->string (sound-chans file))
", srate: " (number->string (sound-srate file))
", " (sound-type-name (sound-header-type file))
", " (sound-format-name (sound-data-format file))
", len: " (number->string
(/ (sound-samples file)
(* (sound-chans file) (sound-srate file)))))))
;;; this function reads the first 32 samples of a file, returning the 30th in channel 0
(define read-sample-30
(lambda (file)
(let* ((fd (open-sound-input file))
(chans (sound-chans file))
(data (make-sound-data chans 32)))
(read-sound fd 0 31 chans data)
;; we could use sound-data->vct here to return all the samples
(let ((val (sound-data-ref data 0 29)))
(close-sound-input fd)
val))))
;;; here we get the microphone volume, then set it to .5
(define vals (make-vector 32))
(read-audio-state sndlib-microphone-device sndlib-amp-field 0 vals)
(vector-ref vals 0)
(vector-set! vals 0 .5)
(write-audio-state sndlib-microphone-device sndlib-amp-field 0 vals)
;;; this function plays a sound (we're assuming that we can play 16-bit linear little-endian data)
(define play-sound
(lambda (file)
(let* ((sound-fd (open-sound-input file))
(chans (sound-chans file))
(frames (sound-frames file))
(bufsize 256)
(data (make-sound-data chans bufsize))
(bytes (* bufsize chans 2)))
(read-sound sound-fd 0 (1- bufsize) chans data)
(let ((audio-fd (open-audio-output sndlib-default-device (sound-srate file) chans snd-16-linear-little-endian bytes)))
(do ((i 0 (+ i bufsize)))
((>= i frames))
(write-audio audio-fd data bufsize)
(read-sound sound-fd 0 (1- bufsize) chans data))
(close-sound-input sound-fd)
(close-audio audio-fd)))))
</font>
</pre>
</body></html>
|