File: PVMorph.cpp

package info (click to toggle)
sndobj 2.6.6.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 4,368 kB
  • ctags: 5,467
  • sloc: ansic: 55,155; cpp: 19,258; python: 348; makefile: 125
file content (142 lines) | stat: -rw-r--r-- 3,488 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
 
////////////////////////////////////////////////////////////////////////
// This file is part of the SndObj library
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
//
// Copyright (c)Victor Lazzarini, 1997-2004
// See License.txt for a disclaimer of all warranties
// and licensing information

#include "PVMorph.h"

PVMorph::PVMorph(){


  m_offset2 = 0.f;
  m_interpobj2 = 0;
  AddMsg("frequency morph", 41);
  AddMsg("amplitude morph", 41);
}

PVMorph::PVMorph(float morphfr, float morpha, SndObj* input1, SndObj* input2,
		 SndObj* inmorphfr, SndObj* inmorpha, int vecsize, float sr)
  :SpecInterp(morphfr, input1, input2, inmorphfr, vecsize, sr)
{

  m_offset2 = morpha;
  m_interpobj2 = inmorpha;
  AddMsg("frequency morph", 41);
  AddMsg("amplitude morph", 41);
}

PVMorph::~PVMorph(){

}


int
PVMorph::Connect(char* mess, void* input){

  switch(FindMsg(mess)){

  case 41:
    SetFreqMorph(m_offset, (SndObj*) input);
    return 1;

  case 42:
    SetAmpMorph(m_offset2, (SndObj*) input);
    return 1;

  default:
    return SpecInterp::Connect(mess, input);

  }


}

int
PVMorph::Set(char* mess, float value){

  switch(FindMsg(mess)){

  case 41:
    SetFreqMorph(value, m_interpobj);
    return 1;
    
  case 42:
    SetAmpMorph(value, m_interpobj2);
    return 1;


  default:
    return SpecInterp::Set(mess, value);

  }


}

short
PVMorph::DoProcess(){
	
  if(!m_error){
    if(m_input && m_input2){
      float morphfr,fr1, fr2;
      double ratio;
      float morpha, amp1, amp2;
      morphfr =  m_offset + (m_interpobj ? m_interpobj->Output(0) : 0);
      morpha =  m_offset2 + (m_interpobj2 ? m_interpobj2->Output(0) : 0);
			
      morpha = morpha > 1 ? 1 : (morpha < 0 ? 0 : morpha);
      morphfr = morphfr > 1 ? 1 : (morphfr < 0 ? 0 : morphfr);

      for(m_vecpos = 2; m_vecpos < m_vecsize; m_vecpos+=2) {
	if(m_enable) {     
	  // interpolate amps
	  amp1 =m_input->Output(m_vecpos);
	  amp2 =m_input2->Output(m_vecpos);
	  m_output[m_vecpos] = amp1 + (amp2-amp1)*morpha;
	  // interpolate frs
	  fr1 = m_input->Output(m_vecpos+1);
	  fr2 = m_input2->Output(m_vecpos+1);
	  ratio = fr1 ? fr2/fr1 : HUGE_VAL;
	  ratio = ratio > 0 ? ratio : -ratio;
	  m_output[m_vecpos+1] = fr1 * pow((double)ratio, 
					   (double)morphfr);
	  // fudge against NaN-type result
	  if(!m_output[m_vecpos+1]) 
	    m_output[m_vecpos+1] = (m_vecpos/2)*m_sr/m_vecsize;
	}
	else 
	  m_output[0] = m_output[1] =
	    m_output[m_vecpos+1] = m_output[m_vecpos] = 0.f;
      } 
      amp1 =m_input->Output(0);
      amp2 =m_input2->Output(0);
      m_output[m_vecpos] = amp1 + (amp2-amp1)*morpha;
      amp1 =m_input->Output(1);
      amp2 =m_input2->Output(1);
      m_output[m_vecpos] = amp1 + (amp2-amp1)*morpha;
      return 1;
    } else {
      m_error = 3;
      return 0;
    }
  }
  else return 0;
	
}