1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
////////////////////////////////////////////////////////////////////////
// This file is part of the SndObj library
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// Copyright (c)Victor Lazzarini, 1997-2004
// See License.txt for a disclaimer of all warranties
// and licensing information
/////////////////////////////////////////////////
// PVA.cpp: Phase Vocoder Analysis class
//
// Victor Lazzarini, 2003
/////////////////////////////////////////////////
#include "PVA.h"
#include <cstring>
PVA::PVA(){
m_rotcount = 0;
m_phases = new float[m_halfsize];
memset(m_phases, 0, sizeof(float)*m_halfsize);
m_factor = m_sr/(m_hopsize*TWOPI);
}
PVA::PVA(Table* window, SndObj* input, float scale,
int fftsize, int hopsize, float sr)
:FFT(window, input, scale, fftsize, hopsize, sr)
{
m_rotcount = 0;
m_phases = new float[m_halfsize];
memset(m_phases, 0, sizeof(float)*m_halfsize);
m_factor = m_sr/(m_hopsize*TWOPI);
}
PVA::~PVA(){
delete[] m_phases;
}
int
PVA::Set(char* mess, float value){
switch(FindMsg(mess)){
case 22:
SetFFTSize((int) value);
return 1;
case 23:
SetHopSize((int) value);
return 1;
default:
return FFT::Set(mess, value);
}
}
void
PVA::SetFFTSize(int fftsize){
m_rotcount = 0;
FFT::SetFFTSize(fftsize);
}
void
PVA::SetHopSize(int hopsize){
m_rotcount = 0;
m_factor = m_sr/(hopsize*TWOPI);
FFT::SetFFTSize(hopsize);
}
void
PVA::pvanalysis(float* signal){
double re, im, pha, diff;
int i2;
rfftw_one(m_plan, signal, m_ffttmp);
m_output[0] = m_ffttmp[0]/m_norm;
m_output[1] = m_ffttmp[m_halfsize]/m_norm;
for(int i=2; i<m_fftsize; i+=2){
i2 = i/2;
re = m_ffttmp[i2]/m_norm;
im = m_ffttmp[m_fftsize-(i2)]/m_norm;
if((m_output[i] = sqrt((re*re)+(im*im)))==0.f){
diff = 0.f;
}
else {
pha = atan2(im,re);
diff = pha - m_phases[i2];
m_phases[i2] = (float) pha;
while(diff > PI) diff -= TWOPI;
while(diff < -PI) diff += TWOPI;
}
m_output[i+1] = (float) diff*m_factor + i2*m_fund;
}
}
short
PVA::DoProcess(){
if(!m_error){
if(m_input){
if(m_enable){
int i; float sig = 0.f;
for(m_vecpos = 0; m_vecpos < m_hopsize; m_vecpos++) {
// signal input
sig = m_input->Output(m_vecpos);
// distribute to the signal fftframes and apply the window
// according to a time pointer (kept by counter[n])
// input is also rotated according to the input time.
for(i=0;i < m_frames; i++){
m_sigframe[i][m_rotcount]= (float) sig*m_table->Lookup(m_counter[i]);
m_counter[i]++;
}
m_rotcount++;
}
m_rotcount %= m_fftsize;
// every vecsize samples
// set the current fftframe to be transformed
m_cur--; if(m_cur<0) m_cur = m_frames-1;
// phase vocoder analysis
pvanalysis(m_sigframe[m_cur]);
// zero the current fftframe time pointer
m_counter[m_cur] = 0;
return 1;
} else { // if disabled, reset the fftframes
for(m_vecpos =0; m_vecpos < m_hopsize; m_vecpos++)
m_output[m_vecpos] = 0.f;
return 1;
}
} else {
m_error = 3;
return 0;
}
}
else
return 0;
}
|