1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
#include <stdio.h> /* for printf */
#include <stdlib.h> /* malloc, free */
#include <string.h> /* memmove */
#include "header.h"
#define HEAD 2*sizeof(int)
#define EXTENDER 40
/* This modules provides a simple mechanism for arbitrary length writable
strings, called 'blocks'. They are 'symbol *' items rather than 'char *'
items however.
The calls are:
symbol * b = create_b(n);
- create an empty block b with room for n symbols
b = increase_capacity_b(b, n);
- increase the capacity of block b by n symbols (b may change)
b2 = copy_b(b)
- copy block b into b2
lose_b(b);
- lose block b
b = add_to_b(b, p, n);
- add the n symbols at address p to the end of the data in b
SIZE(b)
- is the number of symbols in b
For example:
symbol * b = create_b(0);
{ symbol i;
for (i = 'A'; i <= 'Z'; i++) {
add_symbol_to_b(b, i);
}
}
After running the above code b contains:
{ (symbol)'A', (symbol)'B', ..., (symbol)'Z' }
*/
/* For a block b, SIZE(b) is the number of symbols so far written into it,
CAPACITY(b) the total number it can contain, so SIZE(b) <= CAPACITY(b).
In fact blocks have 1 extra character over the promised capacity so
they can be zero terminated by 'b[SIZE(b)] = 0;' without fear of
overwriting.
*/
extern symbol * create_b(int n) {
symbol * p = (symbol *) (HEAD + (char *) MALLOC(HEAD + (n + 1) * sizeof(symbol)));
CAPACITY(p) = n;
SIZE(p) = 0;
return p;
}
extern void report_b(FILE * out, const symbol * p) {
int i;
for (i = 0; i < SIZE(p); i++) {
if (p[i] > 255) {
printf("In report_b, can't convert p[%d] to char because it's 0x%02x\n", i, (int)p[i]);
exit(1);
}
putc(p[i], out);
}
}
extern void output_str(FILE * outfile, struct str * str) {
report_s(outfile, str_data(str));
}
extern void lose_b(symbol * p) {
if (p == NULL) return;
FREE((char *) p - HEAD);
}
extern symbol * increase_capacity_b(symbol * p, int n) {
symbol * q = create_b(CAPACITY(p) + n + EXTENDER);
memmove(q, p, CAPACITY(p) * sizeof(symbol));
SIZE(q) = SIZE(p);
lose_b(p); return q;
}
extern symbol * add_to_b(symbol * p, const symbol * q, int n) {
int x = SIZE(p) + n - CAPACITY(p);
if (x > 0) p = increase_capacity_b(p, x);
memmove(p + SIZE(p), q, n * sizeof(symbol)); SIZE(p) += n; return p;
}
extern symbol * copy_b(const symbol * p) {
int n = SIZE(p);
symbol * q = create_b(n);
add_to_b(q, p, n);
return q;
}
int space_count = 0;
static void * xmalloc(size_t n) {
void * result = malloc(n);
if (result == NULL) {
fprintf(stderr, "Failed to allocate %lu bytes\n", (unsigned long)n);
exit(1);
}
return result;
}
extern void * check_malloc(size_t n) {
space_count++;
return xmalloc(n);
}
extern void check_free(void * p) {
space_count--;
free(p);
}
/* To convert a block to a zero terminated string: */
extern char * b_to_sz(const symbol * p) {
int n = SIZE(p);
char * s = (char *)xmalloc(n + 1);
{
int i;
for (i = 0; i < n; i++) {
if (p[i] > 255) {
printf("In b_to_s, can't convert p[%d] to char because it's 0x%02x\n", i, (int)p[i]);
exit(1);
}
s[i] = (char)p[i];
}
}
s[n] = 0;
return s;
}
/* Add a single symbol to a block. If p = 0 the
block is created. */
extern symbol * add_symbol_to_b(symbol * p, symbol ch) {
int k;
if (p == NULL) p = create_b(1);
k = SIZE(p);
{
int x = k + 1 - CAPACITY(p);
if (x > 0) p = increase_capacity_b(p, x);
}
p[k] = ch;
SIZE(p)++;
return p;
}
extern byte * create_s(int n) {
byte * p = (byte *) (HEAD + (byte *) MALLOC(HEAD + (n + 1)));
CAPACITY(p) = n;
SIZE(p) = 0;
return p;
}
extern void report_s(FILE * out, const byte * p) {
fwrite(p, 1, SIZE(p), out);
}
extern void lose_s(byte * p) {
if (p == NULL) return;
FREE((byte *) p - HEAD);
}
extern byte * increase_capacity_s(byte * p, int n) {
byte * q = create_s(CAPACITY(p) + n + EXTENDER);
memmove(q, p, CAPACITY(p));
SIZE(q) = SIZE(p);
lose_s(p);
return q;
}
extern byte * copy_s(const byte * p) {
return add_s_to_s(NULL, (const char*)p, SIZE(p));
}
/* Add a string with given length to a byte block. If p = 0 the
block is created. */
extern byte * add_s_to_s(byte * p, const char * s, int n) {
int k;
if (p == NULL) p = create_s(n);
k = SIZE(p);
{
int x = k + n - CAPACITY(p);
if (x > 0) p = increase_capacity_s(p, x);
}
memcpy(p + k, s, n);
SIZE(p) += n;
return p;
}
/* Add a zero terminated string to a byte block. If p = 0 the
block is created. */
extern byte * add_sz_to_s(byte * p, const char * s) {
return add_s_to_s(p, s, strlen(s));
}
/* Add a single character to a byte block. If p = 0 the
block is created. */
extern byte * add_char_to_s(byte * p, char ch) {
int k;
if (p == NULL) p = create_s(1);
k = SIZE(p);
{
int x = k + 1 - CAPACITY(p);
if (x > 0) p = increase_capacity_s(p, x);
}
p[k] = ch;
SIZE(p)++;
return p;
}
/* The next section defines string handling capabilities in terms
of the lower level byte block handling capabilities of space.c */
/* -------------------------------------------------------------*/
struct str {
byte * data;
};
/* Create a new string. */
extern struct str * str_new(void) {
struct str * output = (struct str *) xmalloc(sizeof(struct str));
output->data = create_s(0);
return output;
}
/* Delete a string. */
extern void str_delete(struct str * str) {
lose_s(str->data);
free(str);
}
/* Append a str to this str. */
extern void str_append(struct str * str, const struct str * add) {
byte * q = add->data;
str->data = add_s_to_s(str->data, (char *)q, SIZE(q));
}
/* Append a character to this str. */
extern void str_append_ch(struct str * str, char add) {
str->data = add_char_to_s(str->data, add);
}
/* Append a low level byte block to a str. */
extern void str_append_s(struct str * str, const byte * q) {
str->data = add_s_to_s(str->data, (const char *)q, SIZE(q));
}
/* Append a (char *, null terminated) string to a str. */
extern void str_append_string(struct str * str, const char * s) {
str->data = add_sz_to_s(str->data, s);
}
/* Append an integer to a str. */
extern void str_append_int(struct str * str, int i) {
char s[30];
sprintf(s, "%d", i);
str_append_string(str, s);
}
/* Append wide character to a string as UTF-8. */
extern void str_append_wchar_as_utf8(struct str * str, symbol ch) {
if (ch < 0x80) {
str_append_ch(str, ch);
return;
}
if (ch < 0x800) {
str_append_ch(str, (ch >> 6) | 0xC0);
str_append_ch(str, (ch & 0x3F) | 0x80);
return;
}
str_append_ch(str, (ch >> 12) | 0xE0);
str_append_ch(str, ((ch >> 6) & 0x3F) | 0x80);
str_append_ch(str, (ch & 0x3F) | 0x80);
}
/* Clear a string */
extern void str_clear(struct str * str) {
SIZE(str->data) = 0;
}
/* Set a string */
extern void str_assign(struct str * str, const char * s) {
str_clear(str);
str_append_string(str, s);
}
/* Copy a string. */
extern struct str * str_copy(const struct str * old) {
struct str * newstr = str_new();
str_append(newstr, old);
return newstr;
}
/* Get the data stored in this str. */
extern byte * str_data(const struct str * str) {
return str->data;
}
/* Get the length of the str. */
extern int str_len(const struct str * str) {
return SIZE(str->data);
}
/* Get the last character of the str.
*
* Or -1 if the string is empty.
*/
extern int str_back(const struct str *str) {
return SIZE(str->data) ? str->data[SIZE(str->data) - 1] : -1;
}
/* Remove the last character of the str.
*
* Or do nothing if the string is empty.
*/
extern void str_pop(const struct str *str) {
if (SIZE(str->data)) --SIZE(str->data);
}
extern int get_utf8(const symbol * p, int * slot) {
int b0, b1;
b0 = *p++;
if (b0 < 0xC0) { /* 1100 0000 */
* slot = b0; return 1;
}
b1 = *p++;
if (b0 < 0xE0) { /* 1110 0000 */
* slot = (b0 & 0x1F) << 6 | (b1 & 0x3F); return 2;
}
* slot = (b0 & 0xF) << 12 | (b1 & 0x3F) << 6 | (*p & 0x3F); return 3;
}
extern int put_utf8(int ch, symbol * p) {
if (ch < 0x80) {
p[0] = ch; return 1;
}
if (ch < 0x800) {
p[0] = (ch >> 6) | 0xC0;
p[1] = (ch & 0x3F) | 0x80; return 2;
}
p[0] = (ch >> 12) | 0xE0;
p[1] = ((ch >> 6) & 0x3F) | 0x80;
p[2] = (ch & 0x3F) | 0x80; return 3;
}
|