1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
/*
Package snowflake_server implements the functionality necessary to accept Snowflake
connections from Snowflake clients.
Included in the package is a Transport type that implements the Pluggable Transports v2.1 Go API
specification. To start a TLS Snowflake server using the golang.org/x/crypto/acme/autocert
library, configure a certificate manager for the server's domain name and then create a new
Transport as follows:
// The snowflake server runs a websocket server. To run this securely, you will
// need a valid certificate.
certManager := &autocert.Manager{
Prompt: autocert.AcceptTOS,
HostPolicy: autocert.HostWhitelist("snowflake.yourdomain.com"),
Email: "you@yourdomain.com",
}
transport := snowflake_server.NewSnowflakeServer(certManager.GetCertificate)
The Listen function starts a new listener, and Accept will return incoming Snowflake connections:
ln, err := transport.Listen(addr)
if err != nil {
// handle error
}
for {
conn, err := ln.Accept()
if err != nil {
// handle error
}
// handle conn
}
*/
package snowflake_server
import (
"crypto/tls"
"errors"
"fmt"
"io"
"log"
"net"
"net/http"
"sync"
"time"
"github.com/xtaci/kcp-go/v5"
"github.com/xtaci/smux"
"golang.org/x/net/http2"
"gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/v2/common/turbotunnel"
)
const (
// WindowSize is the number of packets in the send and receive window of a KCP connection.
WindowSize = 65535
// StreamSize controls the maximum amount of in flight data between a client and server.
StreamSize = 1048576 // 1MB
)
// Transport is a structure with methods that conform to the Go PT v2.1 API
// https://github.com/Pluggable-Transports/Pluggable-Transports-spec/blob/master/releases/PTSpecV2.1/Pluggable%20Transport%20Specification%20v2.1%20-%20Go%20Transport%20API.pdf
type Transport struct {
getCertificate func(*tls.ClientHelloInfo) (*tls.Certificate, error)
}
// NewSnowflakeServer returns a new server-side Transport for Snowflake.
func NewSnowflakeServer(getCertificate func(*tls.ClientHelloInfo) (*tls.Certificate, error)) *Transport {
return &Transport{getCertificate: getCertificate}
}
// Listen starts a listener on addr that will accept both turbotunnel
// and legacy Snowflake connections.
func (t *Transport) Listen(addr net.Addr, numKCPInstances int) (*SnowflakeListener, error) {
listener := &SnowflakeListener{
addr: addr,
queue: make(chan net.Conn, 65534),
closed: make(chan struct{}),
ln: make([]*kcp.Listener, 0, numKCPInstances),
}
// kcp-go doesn't provide an accessor for the current MTU setting (and
// anyway we could not create a kcp.Listener without creating a
// net.PacketConn for it first), so assume the default kcp.IKCP_MTU_DEF
// (1400 bytes) and don't increase it elsewhere.
handler := newHTTPHandler(addr, numKCPInstances, kcp.IKCP_MTU_DEF)
server := &http.Server{
Addr: addr.String(),
Handler: handler,
ReadTimeout: requestTimeout,
}
// We need to override server.TLSConfig.GetCertificate--but first
// server.TLSConfig needs to be non-nil. If we just create our own new
// &tls.Config, it will lack the default settings that the net/http
// package sets up for things like HTTP/2. Therefore we first call
// http2.ConfigureServer for its side effect of initializing
// server.TLSConfig properly. An alternative would be to make a dummy
// net.Listener, call Serve on it, and let it return.
// https://github.com/golang/go/issues/16588#issuecomment-237386446
err := http2.ConfigureServer(server, nil)
if err != nil {
return nil, err
}
server.TLSConfig.GetCertificate = t.getCertificate
// Another unfortunate effect of the inseparable net/http ListenAndServe
// is that we can't check for Listen errors like "permission denied" and
// "address already in use" without potentially entering the infinite
// loop of Serve. The hack we apply here is to wait a short time,
// listenAndServeErrorTimeout, to see if an error is returned (because
// it's better if the error message goes to the tor log through
// SMETHOD-ERROR than if it only goes to the snowflake log).
errChan := make(chan error)
go func() {
if t.getCertificate == nil {
// TLS is disabled
log.Printf("listening with plain HTTP on %s", addr)
err := server.ListenAndServe()
if err != nil {
log.Printf("error in ListenAndServe: %s", err)
}
errChan <- err
} else {
log.Printf("listening with HTTPS on %s", addr)
err := server.ListenAndServeTLS("", "")
if err != nil {
log.Printf("error in ListenAndServeTLS: %s", err)
}
errChan <- err
}
}()
select {
case err = <-errChan:
break
case <-time.After(listenAndServeErrorTimeout):
break
}
if err != nil {
return nil, err
}
listener.server = server
// Start the KCP engines, set up to read and write its packets over the
// WebSocket connections that arrive at the web server.
// handler.ServeHTTP is responsible for encapsulation/decapsulation of
// packets on behalf of KCP. KCP takes those packets and turns them into
// sessions which appear in the acceptSessions function.
for i, pconn := range handler.pconns {
ln, err := kcp.ServeConn(nil, 0, 0, pconn)
if err != nil {
server.Close()
return nil, err
}
go func() {
defer ln.Close()
err := listener.acceptSessions(ln)
if err != nil {
log.Printf("acceptSessions %d: %v", i, err)
}
}()
listener.ln = append(listener.ln, ln)
}
return listener, nil
}
type SnowflakeListener struct {
addr net.Addr
queue chan net.Conn
server *http.Server
ln []*kcp.Listener
closed chan struct{}
closeOnce sync.Once
}
// Accept allows the caller to accept incoming Snowflake connections.
// We accept connections from a queue to accommodate both incoming
// smux Streams and legacy non-turbotunnel connections.
func (l *SnowflakeListener) Accept() (net.Conn, error) {
select {
case <-l.closed:
// channel has been closed, no longer accepting connections
return nil, io.ErrClosedPipe
case conn := <-l.queue:
return conn, nil
}
}
// Addr returns the address of the SnowflakeListener
func (l *SnowflakeListener) Addr() net.Addr {
return l.addr
}
// Close closes the Snowflake connection.
func (l *SnowflakeListener) Close() error {
// Close our HTTP server and our KCP listener
l.closeOnce.Do(func() {
close(l.closed)
l.server.Close()
for _, ln := range l.ln {
ln.Close()
}
})
return nil
}
// acceptStreams layers an smux.Session on the KCP connection and awaits streams
// on it. Passes each stream to our SnowflakeListener accept queue.
func (l *SnowflakeListener) acceptStreams(conn *kcp.UDPSession) error {
// Look up the IP address associated with this KCP session, via the
// ClientID that is returned by the session's RemoteAddr method.
addr, ok := clientIDAddrMap.Get(conn.RemoteAddr().(turbotunnel.ClientID))
if !ok {
// This means that the map is tending to run over capacity, not
// just that there was not client_ip on the incoming connection.
// We store "" in the map in the absence of client_ip. This log
// message means you should increase clientIDAddrMapCapacity.
log.Printf("no address in clientID-to-IP map (capacity %d)", clientIDAddrMapCapacity)
}
smuxConfig := smux.DefaultConfig()
smuxConfig.Version = 2
smuxConfig.KeepAliveTimeout = 4 * time.Minute
smuxConfig.MaxStreamBuffer = StreamSize
sess, err := smux.Server(conn, smuxConfig)
if err != nil {
return err
}
for {
stream, err := sess.AcceptStream()
if err != nil {
if err, ok := err.(net.Error); ok && err.Temporary() {
continue
}
return err
}
l.queueConn(&SnowflakeClientConn{stream: stream, address: addr})
}
}
// acceptSessions listens for incoming KCP connections and passes them to
// acceptStreams. It is handler.ServeHTTP that provides the network interface
// that drives this function.
func (l *SnowflakeListener) acceptSessions(ln *kcp.Listener) error {
for {
conn, err := ln.AcceptKCP()
if err != nil {
if err, ok := err.(net.Error); ok && err.Temporary() {
continue
}
return err
}
// Permit coalescing the payloads of consecutive sends.
conn.SetStreamMode(true)
// Set the maximum send and receive window sizes to a high number
// Removes KCP bottlenecks: https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/40026
conn.SetWindowSize(WindowSize, WindowSize)
// Disable the dynamic congestion window (limit only by the
// maximum of local and remote static windows).
conn.SetNoDelay(
0, // default nodelay
0, // default interval
0, // default resend
1, // nc=1 => congestion window off
)
go func() {
defer conn.Close()
err := l.acceptStreams(conn)
if err != nil && !errors.Is(err, io.ErrClosedPipe) {
log.Printf("acceptStreams: %v", err)
}
}()
}
}
func (l *SnowflakeListener) queueConn(conn net.Conn) error {
select {
case <-l.closed:
return fmt.Errorf("accepted connection on closed listener")
case l.queue <- conn:
return nil
}
}
// SnowflakeClientConn is a wrapper for the underlying turbotunnel conn
// (smux.Stream). It implements the net.Conn and io.WriterTo interfaces. The
// RemoteAddr method is overridden to refer to a real IP address, looked up from
// the client address map, rather than an abstract client ID.
type SnowflakeClientConn struct {
stream *smux.Stream
address net.Addr
}
// Forward net.Conn methods, other than RemoteAddr, to the inner stream.
func (conn *SnowflakeClientConn) Read(b []byte) (int, error) { return conn.stream.Read(b) }
func (conn *SnowflakeClientConn) Write(b []byte) (int, error) { return conn.stream.Write(b) }
func (conn *SnowflakeClientConn) Close() error { return conn.stream.Close() }
func (conn *SnowflakeClientConn) LocalAddr() net.Addr { return conn.stream.LocalAddr() }
func (conn *SnowflakeClientConn) SetDeadline(t time.Time) error { return conn.stream.SetDeadline(t) }
func (conn *SnowflakeClientConn) SetReadDeadline(t time.Time) error {
return conn.stream.SetReadDeadline(t)
}
func (conn *SnowflakeClientConn) SetWriteDeadline(t time.Time) error {
return conn.stream.SetWriteDeadline(t)
}
// RemoteAddr returns the mapped client address of the Snowflake connection.
func (conn *SnowflakeClientConn) RemoteAddr() net.Addr {
return conn.address
}
// WriteTo implements the io.WriterTo interface by passing the call to the
// underlying smux.Stream.
func (conn *SnowflakeClientConn) WriteTo(w io.Writer) (int64, error) {
return conn.stream.WriteTo(w)
}
|