1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
|
<!doctype html>
<html lang="en" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="SnpEff and SnpSift">
<meta name="author" content="Pablo Cingolani">
<link rel="prev" href="../download/">
<link rel="next" href="../about/">
<link rel="icon" href="../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.3, mkdocs-material-9.1.19">
<title>Examples - SnpEff & SnpSift</title>
<link rel="stylesheet" href="../assets/stylesheets/main.eebd395e.min.css">
<link rel="stylesheet" href="../assets/stylesheets/palette.ecc896b0.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
<link rel="stylesheet" href="../stylesheets/extra.css">
<script>__md_scope=new URL("..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="slate" data-md-color-primary="default" data-md-color-accent="indigo">
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#usage-examples" class="md-skip">
Skip to content
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="Header">
<a href=".." title="SnpEff & SnpSift" class="md-header__button md-logo" aria-label="SnpEff & SnpSift" data-md-component="logo">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z"/></svg>
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
SnpEff & SnpSift
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
Examples
</span>
</div>
</div>
</div>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="Search" placeholder="Search" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="Search">
<button type="reset" class="md-search__icon md-icon" title="Clear" aria-label="Clear" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
Initializing search
</div>
<ol class="md-search-result__list" role="presentation"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/pcingola/SnpEff" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg>
</div>
<div class="md-source__repository">
SnpEff
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<nav class="md-tabs" aria-label="Tabs" data-md-component="tabs">
<div class="md-grid">
<ul class="md-tabs__list">
<li class="md-tabs__item">
<a href=".." class="md-tabs__link">
Home
</a>
</li>
<li class="md-tabs__item">
<a href="../snpeff/introduction/" class="md-tabs__link">
SnpEff
</a>
</li>
<li class="md-tabs__item">
<a href="../snpsift/introduction/" class="md-tabs__link">
SnpSift
</a>
</li>
<li class="md-tabs__item">
<a href="../download/" class="md-tabs__link">
Download & Install
</a>
</li>
<li class="md-tabs__item">
<a href="./" class="md-tabs__link md-tabs__link--active">
Examples
</a>
</li>
<li class="md-tabs__item">
<a href="../about/" class="md-tabs__link">
About
</a>
</li>
</ul>
</div>
</nav>
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary md-nav--lifted md-nav--integrated" aria-label="Navigation" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href=".." title="SnpEff & SnpSift" class="md-nav__button md-logo" aria-label="SnpEff & SnpSift" data-md-component="logo">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 8a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3 3 3 0 0 0 3 3m0 3.54C9.64 9.35 6.5 8 3 8v11c3.5 0 6.64 1.35 9 3.54 2.36-2.19 5.5-3.54 9-3.54V8c-3.5 0-6.64 1.35-9 3.54Z"/></svg>
</a>
SnpEff & SnpSift
</label>
<div class="md-nav__source">
<a href="https://github.com/pcingola/SnpEff" title="Go to repository" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M439.55 236.05 244 40.45a28.87 28.87 0 0 0-40.81 0l-40.66 40.63 51.52 51.52c27.06-9.14 52.68 16.77 43.39 43.68l49.66 49.66c34.23-11.8 61.18 31 35.47 56.69-26.49 26.49-70.21-2.87-56-37.34L240.22 199v121.85c25.3 12.54 22.26 41.85 9.08 55a34.34 34.34 0 0 1-48.55 0c-17.57-17.6-11.07-46.91 11.25-56v-123c-20.8-8.51-24.6-30.74-18.64-45L142.57 101 8.45 235.14a28.86 28.86 0 0 0 0 40.81l195.61 195.6a28.86 28.86 0 0 0 40.8 0l194.69-194.69a28.86 28.86 0 0 0 0-40.81z"/></svg>
</div>
<div class="md-source__repository">
SnpEff
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_1" >
<label class="md-nav__link" for="__nav_1" id="__nav_1_label" tabindex="0">
Home
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_1_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
Home
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href=".." class="md-nav__link">
Home
</a>
</li>
<li class="md-nav__item">
<a href="./" class="md-nav__link">
Usage examples
</a>
</li>
<li class="md-nav__item">
<a href="../license/" class="md-nav__link">
License
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_2" >
<label class="md-nav__link" for="__nav_2" id="__nav_2_label" tabindex="0">
SnpEff
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_2_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
SnpEff
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../snpeff/introduction/" class="md-nav__link">
Introduction
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/running/" class="md-nav__link">
Running SnpEff
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/commandline/" class="md-nav__link">
Commands & command line options
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/inputoutput/" class="md-nav__link">
Input & output files
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/cansersamples/" class="md-nav__link">
Cancer samples
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/additionalann/" class="md-nav__link">
Additional annotations
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/outputsummary/" class="md-nav__link">
Output summary files
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/troubleshooting/" class="md-nav__link">
Troubleshooting
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/build_db/" class="md-nav__link">
Building databases
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/build_db_gff_gtf/" class="md-nav__link">
Build databses. GTF / GFF details
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/build_reg/" class="md-nav__link">
Building databases. Regulatory and Non-coding
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/build_pdb/" class="md-nav__link">
Building databases. PDB and AlphaFold
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/integration/" class="md-nav__link">
Integration. GATK and Galaxy
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/commands/" class="md-nav__link">
Commands and utilities
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/human_genomes/" class="md-nav__link">
Human Genomes
</a>
</li>
<li class="md-nav__item">
<a href="../snpeff/faq/" class="md-nav__link">
Frequently Asked Questions
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_3" >
<label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0">
SnpSift
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_3_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
SnpSift
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../snpsift/introduction/" class="md-nav__link">
Introduction
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/filter/" class="md-nav__link">
SnpSift Filter
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/annotate/" class="md-nav__link">
SnpSift Annotate
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/annotate_mem/" class="md-nav__link">
SnpSift Annotate Mem
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/casecontrol/" class="md-nav__link">
SnpSift CaseControl
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/intervals/" class="md-nav__link">
SnpSift Intervals
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/intervalsindex/" class="md-nav__link">
SnpSift Intervals Index
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/join/" class="md-nav__link">
SnpSift Join
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/rmrefgen/" class="md-nav__link">
SnpSift RmRefGen
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/tstv/" class="md-nav__link">
SnpSift TsTv
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/extractfields/" class="md-nav__link">
SnpSift Extract Fields
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/varianttype/" class="md-nav__link">
SnpSift Variant Type
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/gwascatalog/" class="md-nav__link">
SnpSift GWAS Catalog
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/dbnsfp/" class="md-nav__link">
SnpSift dbNSFP
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/split/" class="md-nav__link">
SnpSift Split
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/phastcons/" class="md-nav__link">
SnpSift PhastCons
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/concordance/" class="md-nav__link">
SnpSift Concordance
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/private/" class="md-nav__link">
SnpSift Private
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/vcf2ped/" class="md-nav__link">
SnpSift Vcf2Tped
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/intersect/" class="md-nav__link">
SnpSift Intersect
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/rminfo/" class="md-nav__link">
SnpSift RmInfo
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/genesets/" class="md-nav__link">
SnpSift GeneSets
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/gt/" class="md-nav__link">
SnpSift GT
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/vcfcheck/" class="md-nav__link">
SnpSift VcfCheck
</a>
</li>
<li class="md-nav__item">
<a href="../snpsift/faq/" class="md-nav__link">
Frequently asked questions
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_4" >
<label class="md-nav__link" for="__nav_4" id="__nav_4_label" tabindex="0">
Download & Install
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_4_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
Download & Install
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../download/" class="md-nav__link">
Download and install
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_5" checked>
<label class="md-nav__link" for="__nav_5" id="__nav_5_label" tabindex="0">
Examples
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_5_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
Examples
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
Examples
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
Examples
</a>
<nav class="md-nav md-nav--secondary" aria-label="Table of contents">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
Table of contents
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#materials" class="md-nav__link">
Materials
</a>
</li>
<li class="md-nav__item">
<a href="#example-1-coding-variants" class="md-nav__link">
Example 1: Coding variants
</a>
<nav class="md-nav" aria-label="Example 1: Coding variants">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#step-1-primary-variant-annotation-and-quality-control" class="md-nav__link">
Step 1: Primary variant annotation and quality control.
</a>
</li>
<li class="md-nav__item">
<a href="#step-2-counting-variants-in-case-and-control-subjects" class="md-nav__link">
Step 2: Counting variants in case and control subjects.
</a>
</li>
<li class="md-nav__item">
<a href="#step-3-filtering-variants" class="md-nav__link">
Step 3: Filtering variants.
</a>
</li>
<li class="md-nav__item">
<a href="#step-4-using-clinical-databases" class="md-nav__link">
Step 4. Using clinical databases.
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#example-2-software-integration-gatk-galaxy" class="md-nav__link">
Example 2: Software Integration (GATK & Galaxy)
</a>
<nav class="md-nav" aria-label="Example 2: Software Integration (GATK & Galaxy)">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#gatk" class="md-nav__link">
GATK
</a>
</li>
<li class="md-nav__item">
<a href="#galaxy" class="md-nav__link">
Galaxy
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#example-3-non-coding-variants" class="md-nav__link">
Example 3: Non-Coding variants
</a>
<nav class="md-nav" aria-label="Example 3: Non-Coding variants">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#step-1-annotating-variants" class="md-nav__link">
Step 1. Annotating variants.
</a>
</li>
<li class="md-nav__item">
<a href="#step-2-adding-custom-regulatory-information" class="md-nav__link">
Step 2. Adding custom regulatory information.
</a>
</li>
<li class="md-nav__item">
<a href="#step-3-adding-conservation-information" class="md-nav__link">
Step 3. Adding conservation information.
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#example-4-sequencing-data-analysis" class="md-nav__link">
Example 4: Sequencing data analysis
</a>
<nav class="md-nav" aria-label="Example 4: Sequencing data analysis">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#sequencing-data-example" class="md-nav__link">
Sequencing data example
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#example-5-filter-out-variants-dbsnp" class="md-nav__link">
Example 5: Filter out variants (dbSnp)
</a>
</li>
<li class="md-nav__item">
<a href="#example-6-custom-annotations" class="md-nav__link">
Example 6: Custom annotations
</a>
<nav class="md-nav" aria-label="Example 6: Custom annotations">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#step-1-build-database" class="md-nav__link">
Step 1: Build database.
</a>
</li>
<li class="md-nav__item">
<a href="#step-2-create-custom-annotations-file" class="md-nav__link">
Step 2: Create custom annotations file.
</a>
</li>
<li class="md-nav__item">
<a href="#step-3-annotate" class="md-nav__link">
Step 3: Annotate.
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_6" >
<label class="md-nav__link" for="__nav_6" id="__nav_6_label" tabindex="0">
About
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_6_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
About
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../about/" class="md-nav__link">
About
</a>
</li>
<li class="md-nav__item">
<a href="../help/" class="md-nav__link">
Help and Bugs
</a>
</li>
<li class="md-nav__item">
<a href="../xiangyi_lu_donate/" class="md-nav__link">
In Memory
</a>
</li>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<h1 id="usage-examples">Usage examples</h1>
<h2 id="materials">Materials</h2>
<p>In this protocol we show how to analyze genomic variants using the SnpEff pipeline.</p>
<p><strong>Computer hardware:</strong> The materials required for this protocol are:</p>
<ul>
<li>a computer running a Unix operating system (Linux, OS.X),</li>
<li>at least 16GB of RAM</li>
<li>at least 8Gb of free disk space,</li>
<li>Java</li>
<li>a reasonably fast internet connection</li>
</ul>
<p>Users of Windows computers can install CygWin, a free Linux-like environment for Windows, although the precise commands listed in the protocol may need to adapted.</p>
<p><strong>Software:</strong> We use the SnpEff annotation program and its companion tool SnpSift. These programs can perform annotation, primary impact assessment and variants filtering,
as well as many other tasks beyond the scope of this protocol.
We highly recommend reading their comprehensive documentation available <a href="../adds/VCFannotationformat_v1.0.pdf">here</a>.</p>
<p>Before starting the protocol, it is necessary to download and install SnpEff. To do this, open a Unix, Linux or Cygwin shell and execute the following commands:
<div class="highlight"><pre><span></span><code># Move to home directory
cd
# Download and install SnpEff
curl -v -L 'https://snpeff.blob.core.windows.net/versions/snpEff_latest_core.zip' > snpEff_latest_core.zip
unzip snpEff_latest_core.zip
</code></pre></div></p>
<p><strong>Notes:</strong></p>
<ul>
<li>SnpEff & SnpSift annotation software used in this protocol are under very active development and some command line option may change in the future.</li>
<li>The standard installation is to add the package in the "$HOME/snpEff" directory (where $HOME is your home directory). To install SnpEff elsewhere, update the "data_dir" parameter in your "snpEff.config" file, as described in the SnpEff documentation.</li>
</ul>
<p>Once SnpEff is installed, we will enter the following commands to download the pre-built human database (GRCh37.75) that will be used to annotate our data.
<div class="highlight"><pre><span></span><code>cd snpEff
java -jar snpEff.jar download -v GRCh37.75
</code></pre></div></p>
<p>A list of pre-built databases for all other species is available by running the following command:</p>
<div class="codehilite"><pre><span></span><code>java -jar snpEff.jar databases
</code></pre></div>
<h2 id="example-1-coding-variants">Example 1: Coding variants</h2>
<p>We show how to use SnpEff & SnpSift to annotate, prioritize and filter coding variants.</p>
<p><strong>Dataset:</strong> In this genomic annotation example, we use a simulated dataset to show how to find genetic variants of a Mendelian recessive disease, Cystic fibrosis, caused by a high impact coding variant, a nonsense mutation in CFTR gene (G542*).<br />
The data files come from the publicly available "CEPH_1463" dataset, sequenced by <a href="http://www.completegenomics.com/public-data/">Complete Genomics</a>, and contains sequencing information for a family consisting of 4 grandparents, 2 parents and 11 siblings.</p>
<p><img alt="figure2" class="center" src="../images/Cingolani_Figure2.png" /></p>
<p>Although these are healthy individuals, we artificially introduced a known Cystic fibrosis mutation on three siblings (cases) in a manner that was consistent with the underlying haplotype structure.</p>
<p>We now download and un-compress the example data used in this protocol, which, for reasons of space and time, is limited to only chromosome 7 and 17:
<div class="highlight"><pre><span></span><code># Go to SnpEff's dir
cd ~/snpEff
# Download sample data
curl -v -L `https://datasetsnpeff.blob.core.windows.net/dataset/protocols.zip?sv=2019-10-10&st=2020-09-01T00%3A00%3A00Z&se=2050-09-01T00%3A00%3A00Z&si=prod&sr=c&sig=isafOa9tGnYBAvsXFUMDGMTbsG2z%2FShaihzp7JE5dHw%3D` > protocols.zip
unzip protocols.zip
</code></pre></div></p>
<p>The goal in this example is to use SnpEff to find a mutation causing a Mendelian recessive trait. This will be done using a dataset of variant calls for chromosome 7 from a pedigree of 17 healthy individuals, sequenced by Complete Genomics, in which a coding variant causing cystic fibrosis was artificially introduced in three siblings (see Materials). For the purpose of this example, we assume that we do not know the causative variant, but that we know that we are dealing with a Mendelian recessive disorder, where the three siblings are affected (cases), but the 14 parents and grandparents are not (controls).</p>
<p>Genomic variants are usually provided in a VCF file containing variant information of all the samples; storing the variant data in a single VCF file is the standard practice, not only because variant calling algorithms have better accuracy when run on all samples simultaneously, but also because it is much easier to annotate, manipulate and compare individuals when the data is stored and transferred together.
A caveat of this approach is that VCF files can become very large when performing experiments with thousands of samples (from several Gigabytes to Terabytes in size).</p>
<p>In the following protocol, SnpEff will add annotation fields to each variant record in the input VCF file.
We will then use SnpSift, a filtering program to extract the most significant variants having annotations meeting certain criteria.</p>
<h3 id="step-1-primary-variant-annotation-and-quality-control">Step 1: Primary variant annotation and quality control.</h3>
<p>Our first step is to annotate each of the ~500,000 variants contained in the VCF file.
By default, SnpEff adds primary annotations and basic impact assessment for coding and non-coding variants as described above.
SnpEff has several command line options that can be used in this annotation stage and which are described in detail in the <a href="../snpeff/commandline/">online manual</a>.</p>
<p>In this example, we annotate (all these annotations are activated by default when using SnpEff):</p>
<ul>
<li>loss of function and nonsense mediated decay predictions;</li>
<li>protein domain annotations from the curated NextProt database;</li>
<li>putative transcription factor binding sites from the ENSEMBL 'Regulatory Build' and Jaspar database;</li>
<li>use HGVS notation for amino acid changes; and</li>
<li>to create a web page summarizing the annotation results in "ex1.html" (option <code>-stats</code>):<div class="codehilite"><pre><span></span><code>java -Xmx8g -jar snpEff.jar -v -stats ex1.html GRCh37.75 protocols/ex1.vcf > protocols/ex1.ann.vcf
</code></pre></div>
</li>
</ul>
<p>SnpEff produces three output files :</p>
<ul>
<li>the HTML file containing summary statistics about the variants and their annotations;</li>
<li>an annotated VCF file; and</li>
<li>a text file summarizing the number of variant types per gene.</li>
</ul>
<p>Creation of the summary files can be de-activated to speed up the program (for example, when the application is used together with Galaxy).
By default, the statistics file "ex1.html" is a standard HTML file that can be opened in any web browser to view quality control (QC) metrics.
It can also be created in comma-separated values format (CSV) to be used by downstream processing programs as part of an automated pipeline.
In our example, the summary file contains basic quality control statistics calculated from the variant file: for our data, the Ts/Ts ratio is close to 2.0 (Figure 1c) and missense / silent ratio is around 1.0 (Figure 1d), both of which are expected for human data (but these numbers may differ for other species).</p>
<p><img alt="figure1" class="center" src="../images/Cingolani_Figure1.png" /></p>
<p>Large deviations from the expected values for the organism being sequenced might indicate problems with either the sequencing or variant calling pipelines.
The summary file also contains QC information for the gene annotation used as input.
In this example, 829 warnings (Figure 1a) were identified as a result of possible genomic annotation errors or small inconsistencies identified in the reference genome so we have to be careful analyzing those genes/transcripts.
Other summary statistics are available, such as variant types (Figure 1e), variants effects (Figure 1d and 1g), and primary impacts (Figure 1b and 1g).</p>
<h3 id="step-2-counting-variants-in-case-and-control-subjects">Step 2: Counting variants in case and control subjects.</h3>
<p>In the first step of our protocol, SnpEff created a VCF file with half million annotated variants.
Rather than scanning each annotation manually, we will use the SnpSift program to create a filter that will identify a small subset of variants with interesting functional properties.
Since the VCF files used in most sequencing studies are even larger than the one in this example, our overall approach is to start by creating a filter using a very restrictive set of criteria.
If no relevant variant is found using this stringent filter, we will relax the criteria to include variants with lower predicted impact.</p>
<p>In our example, since the pedigree is consistent with a Mendelian recessive disease, so we will first use SnpEff to find high impact variants that are homozygous in cases and either absent or heterozygous in controls.
This provides a very strong genetic argument to select the promising variants and will be used as the first step in our filter.
To do this, we will identify the case and control samples by providing SnpEff with pedigree information using a "TFAM" file (a standard file format used to describe pedigrees).
In our example, the TFAM file ("pedigree.tfam") identifies the three cases (NA12879, NA12885, NA12886), and lists the other family members as controls.
The "caseControl" command instructs the SnpSift program to count the number homozygous non-reference, heterozygous and allele count (number of non-reference alleles in each DNA sample) for both cases and controls groups (running time: ~60 minutes):</p>
<div class="highlight"><pre><span></span><code>java -Xmx1g -jar SnpSift.jar \
caseControl \
-v \
-tfam protocols/pedigree.tfam \
protocols/ex1.ann.vcf \
> protocols/ex1.ann.cc.vcf
</code></pre></div>
<p>This analysis creates an output VCF file ("ex1.ann.cc.vcf") by adding new information to the INFO field for each variant: this includes information such as <code>Cases=1,1,3</code> and <code>Controls=8,6,22</code> which correspond to the number of homozygous non-reference, heterozygous and total allele counts in cases and controls for each variant.
The program also calculates basic statistics for each variant based on the allele frequencies in the two groups using different models, which can be useful as a starting point for more in-depth statistical analysis.</p>
<h3 id="step-3-filtering-variants">Step 3: Filtering variants.</h3>
<p>We can use the <code>SnpSift filter</code> command to reduce the number of candidate loci base on alleles in cases and controls.
SnpSift filter allows users to create powerful filters that select variants using Boolean expressions containing data from the VCF fields.
The expression we use to filter the VCF file "ex1.ann.vcf" is developed as follows.</p>
<p>We expect all the three cases and none of the controls to be homozygous for the mutation.
This is expressed using the following filter: <code>(Cases[0] = 3) & (Controls[0] = 0)</code>
The full command line is:</p>
<div class="highlight"><pre><span></span><code>cat protocols/ex1.ann.cc.vcf | java -jar SnpSift.jar filter \
"(Cases[0] = 3) & (Controls[0] = 0)" \
> protocols/ex1.filtered.hom.vcf
</code></pre></div>
<p>The filtered output file, filtered.hom_cases.vcf, contains over 400 variants satisfying our criteria.
This is still too large to analyze by hand, so can we can add another filter to see if any of these variants is expected to have a high impact.
To identify variants where any of these impacts is classified as either <code>HIGH</code> or <code>MODERATE</code> we add the condition <code>(ANN[*].IMPACT = 'HIGH') | (ANN[*].IMPACT = 'MODERATE')</code>.
The new filtering commands become:</p>
<p><div class="highlight"><pre><span></span><code>cat protocols/ex1.ann.cc.vcf \
| java -jar SnpSift.jar filter \
"(Cases[0] = 3) & (Controls[0] = 0) & ((ANN[*].IMPACT = 'HIGH') | (ANN[*].IMPACT = 'MODERATE'))" \
> protocols/ex1.filtered.vcf
</code></pre></div>
After filtering, only two variants satisfy our criteria, one of them is a <code>stop_gained</code> loss of function variant, whereas the other one is a <code>missense_variant</code> amino acid change.
The first one is a known Cystic fibrosis variant.
<div class="highlight"><pre><span></span><code>$ cat protocols/ex1.filtered.vcf | ./scripts/vcfInfoOnePerLine.pl
7 117227832 . G T . .
AC 14
AN 22
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000003084|protein_coding|12/27|c.1624G>T|p.Gly542*|1756/6128|1624/4443|542/1480||
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000454343|protein_coding|11/26|c.1441G>T|p.Gly481*|1573/5949|1441/4260|481/1419||
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000426809|protein_coding|11/26|c.1534G>T|p.Gly512*|1534/4316|1534/4316|512/1437||WARNING_TRANSCRIPT_INCOMPLETE
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|topological_domain:Cytoplasmic|ENST00000003084|protein_coding||c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|domain:ABC_transporter_1|ENST00000003084|protein_coding||c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|beta_strand|ENST00000003084|protein_coding|12/27|c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|beta_strand|ENST00000454343|protein_coding|11/26|c.1441G>T||||||
ANN T|upstream_gene_variant|MODIFIER|AC000111.5|ENSG00000234001|transcript|ENST00000448200|processed_pseudogene||n.-1C>A|||||1362|
ANN T|downstream_gene_variant|MODIFIER|CFTR|ENSG00000001626|transcript|ENST00000472848|processed_transcript||n.*148G>T|||||29|
LOF (CFTR|ENSG00000001626|11|0.27)
NMD (CFTR|ENSG00000001626|11|0.27)
Cases 3
Cases 0
Cases 6
Controls 0
Controls 8
Controls 8
CC_TREND 9.111e-04
CC_GENO NaN
CC_ALL 4.025e-02
CC_DOM 6.061e-03
CC_REC 1.000e+00
17 39135205 . ACA GCA,GCG . .
AC 16
AC 8
AN 31
ANN GCG|missense_variant|MODERATE|KRT40|ENSG00000204889|transcript|ENST00000377755|protein_coding||c.1045_1047delTGTinsCGC|p.Cys349Arg|1082/1812|1045/1296|349/431||
ANN GCG|missense_variant|MODERATE|KRT40|ENSG00000204889|transcript|ENST00000398486|protein_coding||c.1045_1047delTGTinsCGC|p.Cys349Arg|1208/1772|1045/1296|349/431||
ANN GCA|synonymous_variant|LOW|KRT40|ENSG00000204889|transcript|ENST00000377755|protein_coding|6/7|c.1047T>C|p.Cys349Cys|1082/1812|1047/1296|349/431||
ANN GCA|synonymous_variant|LOW|KRT40|ENSG00000204889|transcript|ENST00000398486|protein_coding|8/9|c.1047T>C|p.Cys349Cys|1208/1772|1047/1296|349/431||
ANN GCA|sequence_feature|LOW|KRT40|ENSG00000204889|region_of_interest:Coil_2|ENST00000398486|protein_coding|6/9|c.1047T>C||||||
ANN GCG|sequence_feature|LOW|KRT40|ENSG00000204889|region_of_interest:Coil_2|ENST00000398486|protein_coding|7/9|c.1045_1047delTGTinsCGC||||||
ANN GCA|sequence_feature|LOW|KRT40|ENSG00000204889|region_of_interest:Rod|ENST00000398486|protein_coding|3/9|c.1047T>C||||||
ANN GCG|sequence_feature|LOW|KRT40|ENSG00000204889|region_of_interest:Rod|ENST00000398486|protein_coding|3/9|c.1045_1047delTGTinsCGC||||||
ANN GCA|3_prime_UTR_variant|MODIFIER|KRT40|ENSG00000204889|transcript|ENST00000461923|nonsense_mediated_decay|8/9|n.*509T>C|||||2348|
ANN GCG|3_prime_UTR_variant|MODIFIER|KRT40|ENSG00000204889|transcript|ENST00000461923|nonsense_mediated_decay|8/9|n.*507_*509delTGTinsCGC|||||2346|
ANN GCA|downstream_gene_variant|MODIFIER|AC004231.2|ENSG00000234477|transcript|ENST00000418393|antisense||n.*815A>G|||||3027|
ANN GCG|downstream_gene_variant|MODIFIER|AC004231.2|ENSG00000234477|transcript|ENST00000418393|antisense||n.*815_*815delACAinsGCG|||||3027|
ANN GCA|non_coding_exon_variant|MODIFIER|KRT40|ENSG00000204889|transcript|ENST00000461923|nonsense_mediated_decay|8/9|n.*509T>C||||||
ANN GCG|non_coding_exon_variant|MODIFIER|KRT40|ENSG00000204889|transcript|ENST00000461923|nonsense_mediated_decay|8/9|n.*507_*509delTGTinsCGC||||||
Cases 3
Cases 0
Cases 6
Controls 0
Controls 12
Controls 18
CC_TREND 7.008e-02
CC_GENO NaN
CC_ALL 1.700e-01
CC_DOM 1.231e-01
CC_REC 1.000e+00
</code></pre></div>
A chart showing how the variant propagates across the pedigree structure can be created as follows:
<div class="highlight"><pre><span></span><code>java -jar SnpSift.jar pedShow \
protocols/pedigree.tfam \
protocols/ex1.filtered.vcf \
protocols/chart
</code></pre></div></p>
<h3 id="step-4-using-clinical-databases">Step 4. Using clinical databases.</h3>
<p>So far, since the purpose of the example was to show how annotations and filtering are performed to uncover new variants, we assumed that the causative variant was not known.
In reality the variant is known and databases, such as ClinVar, have this information in convenient VCF format that can be used for annotations.</p>
<p>We can annotate using ClinVar by using the following command:
<div class="highlight"><pre><span></span><code>java -Xmx1g -jar SnpSift.jar \
annotate \
-v \
protocols/db/clinvar_00-latest.vcf \
protocols/ex1.ann.cc.vcf \
> protocols/ex1.ann.cc.clinvar.vcf
</code></pre></div></p>
<p>Our variant of interest is then annotated as "Cystic Fibrosis" (to find the variant, we filter for variants having ClinVar annotation "CLNDBN" that are in CFTR gene and have a <code>stop_gained</code> annotation):
<div class="highlight"><pre><span></span><code>$ cat protocols/ex1.ann.cc.clinvar.vcf \
| java -jar SnpSift.jar filter \
"(exists CLNDBN) & (ANN[*].EFFECT has 'stop_gained') & (ANN[*].GENE = 'CFTR')" \
> protocols/ex1.ann.cc.clinvar.filtered.vcf
$ cat protocols/ex1.ann.cc.clinvar.filtered.vcf | ./scripts/vcfInfoOnePerLine.pl
7 117227832 rs113993959 G T . .
AC 14
AN 22
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000003084|protein_coding|12/27|c.1624G>T|p.Gly542*|1756/6128|1624/4443|542/1480||
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000454343|protein_coding|11/26|c.1441G>T|p.Gly481*|1573/5949|1441/4260|481/1419||
ANN T|stop_gained|HIGH|CFTR|ENSG00000001626|transcript|ENST00000426809|protein_coding|11/26|c.1534G>T|p.Gly512*|1534/4316|1534/4316|512/1437||WARNING_TRANSCRIPT_INCOMPLETE
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|topological_domain:Cytoplasmic|ENST00000003084|protein_coding||c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|domain:ABC_transporter_1|ENST00000003084|protein_coding||c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|beta_strand|ENST00000003084|protein_coding||c.1624G>T||||||
ANN T|sequence_feature|LOW|CFTR|ENSG00000001626|beta_strand|ENST00000454343|protein_coding||c.1441G>T||||||
ANN T|upstream_gene_variant|MODIFIER|AC000111.5|ENSG00000234001|transcript|ENST00000448200|processed_pseudogene||n.-1C>A|||||1362|
ANN T|downstream_gene_variant|MODIFIER|CFTR|ENSG00000001626|transcript|ENST00000472848|processed_transcript||n.*148G>T|||||29|
LOF (CFTR|ENSG00000001626|11|0.27)
NMD (CFTR|ENSG00000001626|11|0.27)
Cases 3
Cases 0
Cases 6
Controls 0
Controls 8
Controls 8
CC_TREND 9.111e-04
CC_GENO NaN
CC_ALL 4.025e-02
CC_DOM 6.061e-03
CC_REC 1.000e+00
ASP true
CLNACC RCV000007535.6|RCV000058931.3|RCV000119041.1
CLNALLE 1
CLNDBN Cystic_fibrosis|not_provided|Hereditary_pancreatitis
CLNDSDB GeneReviews:MedGen:OMIM:Orphanet:SNOMED_CT|MedGen|GeneReviews:MedGen:OMIM:Orphanet:SNOMED_CT
CLNDSDBID NBK1250:C0010674:219700:ORPHA586:190905008|CN221809|NBK84399:C0238339:167800:ORPHA676:68072000
CLNHGVS NC_000007.13:g.117227832G>T
CLNORIGIN 1
CLNREVSTAT prof|single|single
CLNSIG 5|5|5
CLNSRC CFTR2|HGMD|OMIM_Allelic_Variant|OMIM_Allelic_Variant
CLNSRCID G542X|CM900049|602421.0009|602421.0095
GENEINFO CFTR:1080
LSD true
NSN true
OM true
PM true
PMC true
REF true
RS 113993959
RSPOS 117227832
S3D true
SAO 1
SSR 0
VC SNV
VLD true
VP 0x050268000605040002110100
WGT 1
dbSNPBuildID 132
</code></pre></div></p>
<h2 id="example-2-software-integration-gatk-galaxy">Example 2: Software Integration (GATK & Galaxy)</h2>
<p>Software Integration (Optional): Sequence analysis software is often run in high performance computers combining several programs into processing pipelines.
Annotations and impact assessment software needs to provide integration points with other analysis steps of the pipeline.</p>
<p>In the following paragraphs we describe how to integrate SnpEff with two programs commonly used in sequencing analysis pipelines:</p>
<ul>
<li>Genome Analysis toolkit (GATK 2), a command-line driven software;</li>
<li>Galaxy 3, a web based software.</li>
</ul>
<h3 id="gatk">GATK</h3>
<p>The Genome Analysis Toolkit 2 is one of the most popular programs for bioinformatics pipelines.</p>
<p>Annotations can be easily integrated into GATK using SnpEff and GATK's VariantAnnotator module.
Here we show how to annotate a file using SnpEff and GATK, as an alternative way of performing step 1.
You should perform this step only if your processing pipeline is based on GATK: compared to running SnpEff from the command line, the results obtained when using GATK will only contain the highest impact annotation for each variant.
This was a conscious trade-off made by the designers of GATK, partly because most biologists do this implicitly when reading a list of variants, but also to improve the readability and reduce the size of the annotation results.</p>
<p>The method requires two steps:</p>
<ol>
<li>Annotating a VCF file using SnpEff</li>
<li>Using GATK's VariantAnnotator to incorporate those annotations into the final VCF file.</li>
</ol>
<p>When using SnpEff for GATK compatibility, we must use the <code>-o gatk</code> command line option:
<div class="highlight"><pre><span></span><code>java -Xmx8g -jar snpEff.jar \
-v \
-o gatk \
GRCh37.75 \
protocols/ex1.vcf \
> protocols/ex1.ann.gatk.vcf
</code></pre></div></p>
<p>Next, we process these variants using GATK. For this step to work correctly, we need to make sure that our data files are compatible with the requirements GATK places on reference genomes (see GATK's documentation for more details):</p>
<ul>
<li>in the fasta file, chromosomes are expected to be sorted in karyotypic order;</li>
<li>a genome fasta-index file must be available; and</li>
<li>a dictionary file must be pre-computed.</li>
</ul>
<p>Assuming these requirements are satisfied, we can run the following command, which will produce a GATK annotated file ("ex1.gatk.vcf"):
<div class="highlight"><pre><span></span><code>java -Xmx8g -jar $HOME/tools/gatk/GenomeAnalysisTK.jar \
-T VariantAnnotator \
-R $HOME/genomes/GRCh37.75.fa \
-A SnpEff \
--variant protocols/ex1.vcf \
--snpEffFile protocols/ex1.ann.gatk.vcf \
-L protocols/ex1.vcf \
-o protocols/ex1.gatk.vcf
</code></pre></div></p>
<p>Note: We assumed GATK is installed in "$HOME/tools/gatk/" and the reference genome is contained in "$HOME/genomes/GRCh37.75.fa" These file locations should be adapted to the actual path in your computer.</p>
<h3 id="galaxy">Galaxy</h3>
<p>Anther popular tool in bioinformatics is Galaxy 3, which allows pipelines to be created in a web environment using graphical interface, making it flexible and straightforward to use.
SnpEff provides <a href="../snpeff/integration/#integration-galaxy">Galaxy modules</a>.</p>
<p>Once these modules are installed, we can run our sample annotation pipeline in Galaxy.</p>
<p><img alt="figure3" class="center" src="../images/Cingolani_Figure3.png" /></p>
<h2 id="example-3-non-coding-variants">Example 3: Non-Coding variants</h2>
<p>We show how to use SnpEff & SnpSift to annotate, prioritize and filter non-coding variants.</p>
<p><strong>Dataset:</strong> This example shows how to perform basic annotation of non-coding variants.
It is based on a short list of 20 non-coding that were identified by sequencing a 700 kb region surrounding the gene T-box transcription factor (TBX5) in 260 patients with congenital heart disease 67.
TBX5 is a transcription factor that plays a well-established dosage-dependent role in heart and limb development.
Coding mutations in TBX5 have been frequently identified in patients with Holt-Oram syndrome, which is associated with abnormal hand, forearm and cardiac development.</p>
<p><strong>Data source</strong>: <a href="http://www.ncbi.nlm.nih.gov/pubmed/22543974">Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease</a>.</p>
<h3 id="step-1-annotating-variants">Step 1. Annotating variants.</h3>
<p>We will perform non-coding variant annotation using SnpEff following a similar approach to Procedure I.
In this case, we construct a command line that instructs SnpEff to include motif information ("-motif") and putative transcription factor binding sites (TFBS) identified in the ENSEMBL Regulatory Build and the Jaspar database:</p>
<div class="highlight"><pre><span></span><code>java -Xmx8g -jar snpEff.jar \
-v \
-motif \
GRCh37.75 \
protocols/ex2.vcf \
> protocols/ex2.ann.basic.vcf
</code></pre></div>
<h3 id="step-2-adding-custom-regulatory-information">Step 2. Adding custom regulatory information.</h3>
<p>A quick scan through the results shows that most variants are catalogued as "INTERGENIC", and none of them is associated with a known TFBS.
This is not surprising since TFBS are small and also because regulatory elements involved in cardiac or limb development may not be widely active in commonly studied adult tissues.
In this case, basic annotations did not provide additional information that can be used to narrow down the list of candidate SNVs.</p>
<p>To solve this, the authors examined data from other sources, including ChIP-seq data for H3K4me1 (a post-translationally modified histone protein found in transcriptionally active genome regions, including enhancers and promoters).
Data produced from ChIP-Seq analysis are frequently published in BED, BigBed or similar formats, which can be used directly by SnpEff by adding the <code>-interval</code> command line option.</p>
<p>This command line option can be used to add annotations using ChIP-Seq experiments from the ENCODE and Epigenome Roadmap projects: since multiple <code>-interval</code> options are allowed in each command line, it is a simple way to combine several annotations:</p>
<p><div class="highlight"><pre><span></span><code>java -Xmx8g -jar snpEff.jar \
-v \
-motif \
-interval protocols/ex2_regulatory.bed \
GRCh37.75 \
protocols/ex2.vcf \
> protocols/ex2.ann.vcf
</code></pre></div>
In the output VCF file, variants intersecting genomic regions from the <code>-interval</code> command line option are annotated as <code>"CUSTOM[ex2_regulatory]"</code> : the name in brackets identifies the file name provided to distinguish multiple annotation files.</p>
<h3 id="step-3-adding-conservation-information">Step 3. Adding conservation information.</h3>
<p>In order to refine our search, we can also look for variants in highly conserved non-coding bases.
SnpEff natively supports PhastCons scores, but can also add annotations based on any other user-defined score provided as a Wig or VCF file.</p>
<p>The command line for annotating using the PhastCons score is:
<div class="highlight"><pre><span></span><code>java -Xmx1g -jar SnpSift.jar \
phastCons \
-v \
protocols/phastcons \
protocols/ex2.ann.vcf \
> protocols/ex2.ann.cons.vcf
</code></pre></div></p>
<p>Now we can filter our results looking for a highly conserved SNP in the regulatory region.
We do this by using a "SnpSift filter" command and the appropriate Boolean expression:
<div class="highlight"><pre><span></span><code>cat protocols/ex2.ann.cons.vcf \
| java -jar SnpSift.jar filter \
"(ANN[*].EFFECT = 'CUSTOM[ex2_regulatory]') & (exists PhastCons) & (PhastCons > 0.9)" \
> protocols/ex2.filtered.vcf
</code></pre></div></p>
<p>SnpSift filter supports a flexible syntax to create Boolean expressions using the annotation data that provides a versatile way to prioritize shorter lists of SNPs for subsequent validation.
This syntax is described in detail in the <a href="../snpsift/filter/">online manual</a>.
In this example, our filter results in only two candidate SNPs, one of which was extensively validated in the original study and is assumed to be causative.</p>
<p>The principles illustrated in our example for a small set of SNVs can be applied to millions of variants from whole genome sequencing experiments. Similarly, although we filtered the SNVs using "custom" ChIP-seq data that provided in the original study, regulatory information from public Encode or Epigenome Roadmap datasets could be used in a first line investigation before generating our own Chip-seq or RNA-seq data using disease-relevant cells and tissues.</p>
<h2 id="example-4-sequencing-data-analysis">Example 4: Sequencing data analysis</h2>
<p>Here we show an example on how to get from Sequencing data to an annotated variants file.</p>
<h3 id="sequencing-data-example">Sequencing data example</h3>
<div class="admonition warning">
<p class="admonition-title">Warning</p>
<p>This is an extremely simplified version on how to analyze the data from scratch.
This is not meant to be a tutorial on sequencing analysis as it would be way beyond the scope of this handbook.</p>
</div>
<p>Let's assume you have sequence data in FASTQ format (file "s.fastq") and your reference genome is dm5.34 (fly genome)
<div class="highlight"><pre><span></span><code># Download the genome, uncompress and rename file
wget ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r5.34_FB2011_02/fasta/dmel-all-chromosome-r5.34.fasta.gz
gunzip dmel-all-chromosome-r5.34.fasta.gz
mv dmel-all-chromosome-r5.34.fasta dm5.34.fasta
# Create a genome index (we assume you installed BWA)
bwa index -bwtsw dm5.34.fasta
# Map sequences to the genome: Create SAI file
bwa aln -bwtsw dm5.34.fasta s.fastq > s.sai
# Map sequences to the genome: Create SAM file
bwa samse dm5.34.fasta s.sai s.fastq > s.sam
# Create BAM file (we assume you installed SamTools)
samtools view -S -b s.sam > s.bam
# Sort BAM file (will create s_sort.bam)
samtools sort s.bam s_sort
# Create VCF file (BcfTools is part of samtools distribution)
samtools mpileup -uf dm5.34.fasta s_sort.bam | bcftools view -vcg - > s.vcf
# Analyze variants using snpEff
java -Xmx8g -jar snpEff.jar dm5.34 s.vcf > s.ann.vcf
</code></pre></div></p>
<p>This highly simplified sequencing data analysis pipeline, has these basic steps:</p>
<ol>
<li>Index the reference genome (bwa)</li>
<li>Map reads to reference genome (bwa)</li>
<li>Call variants (bcftools)</li>
<li>Annotate variants (SnpEff)</li>
</ol>
<h2 id="example-5-filter-out-variants-dbsnp">Example 5: Filter out variants (dbSnp)</h2>
<p>Here we show an example on how to get from Sequencing data to an annotated variants file.</p>
<p>These are slightly more advanced examples.
Here we'll try to show how to perform specific tasks.</p>
<p>If you want to filter out SNPs from dbSnp, you can do it using SnpSift.
You can download SnpSift from the "Downloads" page.</p>
<p>You can download the file for this example <a href="../adds/file.vcf">here</a>.</p>
<p>Here is how to do it:</p>
<ol>
<li>
<p>Annotate ID fields using <code>SnpSift annotate</code> and DbSnp.</p>
<div class="codehilite"><pre><span></span><code><span class="c1"># Annotate ID field using dbSnp</span>
<span class="c1"># Note: SnpSift will automatically download and uncompress dbSnp database if not locally available.</span>
<span class="n">java</span><span class="w"> </span><span class="o">-</span><span class="n">jar</span><span class="w"> </span><span class="n">SnpSift</span><span class="o">.</span><span class="n">jar</span><span class="w"> </span><span class="n">annotate</span><span class="w"> </span><span class="o">-</span><span class="n">dbsnp</span><span class="w"> </span><span class="n">file</span><span class="o">.</span><span class="n">vcf</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="n">file</span><span class="o">.</span><span class="n">dbSnp</span><span class="o">.</span><span class="n">vcf</span>
</code></pre></div>
<div class="admonition info">
<p class="admonition-title">Info</p>
<p>We annotate using dbSnp before using SnpEff in order to have 'known' and 'unknown' statistics in SnpEff's summary page.
Those stats are based on the presence of an ID field. If the ID is non-empty, then it is assumed to be a 'known variant'.</p>
</div>
</li>
<li>
<p>Annotate using SnpEff:</p>
<div class="codehilite"><pre><span></span><code>java -Xmx8g -jar snpEff.jar eff -v GRCh37.75 file.dbSnp.vcf > file.ann.vcf
</code></pre></div>
</li>
<li>
<p>Filter out variants that have a non-empty ID field.
These variants are the ones that are NOT in dbSnp, since we annotated the ID field using rs-numbers from dbSnp in step 1.</p>
<div class="codehilite"><pre><span></span><code>java -jar SnpSift.jar filter -f file.ann.vcf "! exists ID" > file.ann.not_in_dbSnp.vcf
</code></pre></div>
<div class="admonition info">
<p class="admonition-title">Info</p>
<p>The expression using to filter the file is "! exists ID".
This means that the ID field does not exists (i.e. the value is empty) which is represented as a dot (".") in a VCF file.</p>
</div>
</li>
</ol>
<p><strong>Pipes</strong></p>
<p>Obviously you can perform the three previous commands, pipeling the out from one command to the next, thus avoiding the creation of intermediate files (for very large projects, this can be a significant amount of time).</p>
<div class="admonition info">
<p class="admonition-title">Info</p>
<p>In SnpEff & SnpSift the STDIN is denoted by file name <code>"-"</code></p>
</div>
<p>So the previous commands would be:
<div class="highlight"><pre><span></span><code>java -jar SnpSif.jar annotate -dbsnp file.vcf \
| java -Xmx8g -jar snpEff.jar eff -v GRCh37.75 - \
| java -jar SnpSift.jar filter "! exists ID" \
> file.ann.not_in_dbSnp.vcf
</code></pre></div></p>
<p>Here is an example of some entries in the annotated output file.
You can see the 'ANN' field was added, predicting STOP_GAINED protein changes:
<div class="highlight"><pre><span></span><code>$ cat demo.1kg.snpeff.vcf | grep stop_gained
1 889455 . G A 100.0 PASS ...;ANN=A|stop_gained|HIGH|...
1 897062 . C T 100.0 PASS ...;ANN=T|stop_gained|HIGH|...
1 900375 . G A 100.0 PASS ...;ANN=A|stop_gained|HIGH|...
</code></pre></div>
Note: The real output was edited for readability reasons.</p>
<h2 id="example-6-custom-annotations">Example 6: Custom annotations</h2>
<p>SnpEff can annotate using user specified (custom) genomic intervals, allowing you to add any kind of annotations you want.</p>
<p>In this example, we are analyzing using a specific version of the Yeast genome (we will assume that the database is not available, just to show a more complete example).
We also want to add annotations of genomic regions known as 'ARS', which are defined in a GFF file.
This turns out to be quite easy, thanks to SnpEff's "custom intervals" feature.
SnpEff allows you to add "custom" annotations from intervals in several formats: TXT, BED, BigBed, VCF, GFF.</p>
<p>So, for this example, we need to:</p>
<ul>
<li>Build the database: For the sake of this example, we are assuming that SnpEff doesn't have this database (which is not true in most real life situations).</li>
<li>Create a file with the features we want to analyze (ARS)</li>
<li>Annotate using the ARS features</li>
</ul>
<h3 id="step-1-build-database">Step 1: Build database.</h3>
<p>Once more, this is done for the sake of the example, in real life Yeast databases are available and you don't need to build the database yourself.
<div class="highlight"><pre><span></span><code>#---
# Download data
#---
$ cd ~/snpEff
$ mkdir data/sacCer
$ cd data/sacCer
$ wget http://downloads.yeastgenome.org/curation/chromosomal_feature/saccharomyces_cerevisiae.gff
$ mv saccharomyces_cerevisiae.gff genes.gff
</code></pre></div></p>
<p>Now that we've downloaded the reference genome, we can build the database:
<div class="highlight"><pre><span></span><code>#---
# Build
#---
$ cd ../..
# Add entry to config file
$ echo "sacCer.genome : Yeast" >> snpEff.config
# Build database
$ java -Xmx1G -jar snpEff.jar build -gff3 sacCer
</code></pre></div></p>
<h3 id="step-2-create-custom-annotations-file">Step 2: Create custom annotations file.</h3>
<p>We need a file that has our features of interest (in this case, the "ARS" features).
Since those features ara available in the original GFF (saccharomyces_cerevisiae.gff) file, we can filter the file to create our "custom" annotations file.</p>
<div class="highlight"><pre><span></span><code>#---
# Create a features file
#---
# GFF files have both genomic records and sequences, we need to know
# where the 'records' section ends (it is delimited by a "##FASTA" line)
$ grep -n "^#" data/sacCer/genes.gff | tail -n 1
22994:##FASTA
# Note that I'm cutting the INFO column (only for readability reasons)
$ head -n 22994 data/sacCer/genes.gff \
| grep -v "^#" \
| grep ARS \
| cut -f 1 -d ";" \
> sacCer_ARS_features.gff
</code></pre></div>
<p>So now we have a custom file ready to be used.</p>
<h3 id="step-3-annotate">Step 3: Annotate.</h3>
<p>We built the database and we have the ARS features file, so we are ready to annotate:
<div class="highlight"><pre><span></span><code>#---
# Features annotations example
#---
# Create a fake VCF file (one line), this is just an example to show that it works
$ echo -e "chrI\t700\t.\tA\tT\t.\t.\t." > my.vcf
$ java -jar snpEff.jar -interval sacCer_features.gff sacCer my.vcf > my.ann.vcf
</code></pre></div></p>
<p>If we take a look at the results, we can see that the "ARS" feature is annotates (see last line)
<div class="highlight"><pre><span></span><code>$ cat my.ann.vcf | grep -v "^#" | cut -f 8 | tr ",;" "\n\n"
EFF=missense_variant(LOW|MISSENSE|Cca/Tca|p.Pro55Ser/c.163A>T|84|YAL068W-A|protein_coding|CODING|YAL068W-A_mRNA|1|1|WARNING_REF_DOES_NOT_MATCH_GENOME)
upstream_gene_variant(MODIFIER||1780||75|YAL067W-A|protein_coding|CODING|YAL067W-A_mRNA||1)
downstream_gene_variant(MODIFIER||1107||120|YAL068C|protein_coding|CODING|YAL068C_mRNA||1)
downstream_gene_variant(MODIFIER||51||104|YAL069W|protein_coding|CODING|YAL069W_mRNA||1)
custom[sacCer_features](MODIFIER||||||ARS102||||1)
</code></pre></div></p>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
</main>
<footer class="md-footer">
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Pablo Cingolani
</div>
Made with
<a href="https://squidfunk.github.io/mkdocs-material/" target="_blank" rel="noopener">
Material for MkDocs
</a>
</div>
<div class="md-social">
<a href="http://www.linkedin.com/in/pablocingolani" target="_blank" rel="noopener" title="www.linkedin.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M416 32H31.9C14.3 32 0 46.5 0 64.3v383.4C0 465.5 14.3 480 31.9 480H416c17.6 0 32-14.5 32-32.3V64.3c0-17.8-14.4-32.3-32-32.3zM135.4 416H69V202.2h66.5V416zm-33.2-243c-21.3 0-38.5-17.3-38.5-38.5S80.9 96 102.2 96c21.2 0 38.5 17.3 38.5 38.5 0 21.3-17.2 38.5-38.5 38.5zm282.1 243h-66.4V312c0-24.8-.5-56.7-34.5-56.7-34.6 0-39.9 27-39.9 54.9V416h-66.4V202.2h63.7v29.2h.9c8.9-16.8 30.6-34.5 62.9-34.5 67.2 0 79.7 44.3 79.7 101.9V416z"/></svg>
</a>
<a href="https://github.com/pcingola/SnpEff" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 480 512"><!--! Font Awesome Free 6.4.0 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2023 Fonticons, Inc.--><path d="M186.1 328.7c0 20.9-10.9 55.1-36.7 55.1s-36.7-34.2-36.7-55.1 10.9-55.1 36.7-55.1 36.7 34.2 36.7 55.1zM480 278.2c0 31.9-3.2 65.7-17.5 95-37.9 76.6-142.1 74.8-216.7 74.8-75.8 0-186.2 2.7-225.6-74.8-14.6-29-20.2-63.1-20.2-95 0-41.9 13.9-81.5 41.5-113.6-5.2-15.8-7.7-32.4-7.7-48.8 0-21.5 4.9-32.3 14.6-51.8 45.3 0 74.3 9 108.8 36 29-6.9 58.8-10 88.7-10 27 0 54.2 2.9 80.4 9.2 34-26.7 63-35.2 107.8-35.2 9.8 19.5 14.6 30.3 14.6 51.8 0 16.4-2.6 32.7-7.7 48.2 27.5 32.4 39 72.3 39 114.2zm-64.3 50.5c0-43.9-26.7-82.6-73.5-82.6-18.9 0-37 3.4-56 6-14.9 2.3-29.8 3.2-45.1 3.2-15.2 0-30.1-.9-45.1-3.2-18.7-2.6-37-6-56-6-46.8 0-73.5 38.7-73.5 82.6 0 87.8 80.4 101.3 150.4 101.3h48.2c70.3 0 150.6-13.4 150.6-101.3zm-82.6-55.1c-25.8 0-36.7 34.2-36.7 55.1s10.9 55.1 36.7 55.1 36.7-34.2 36.7-55.1-10.9-55.1-36.7-55.1z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "..", "features": ["navigation.tabs", "navigation.sections", "search.highlight", "search.suggest", "toc.integrate", "content.tabs.link", "content.code.annotate", "content.code.copy"], "search": "../assets/javascripts/workers/search.74e28a9f.min.js", "translations": {"clipboard.copied": "Copied to clipboard", "clipboard.copy": "Copy to clipboard", "search.result.more.one": "1 more on this page", "search.result.more.other": "# more on this page", "search.result.none": "No matching documents", "search.result.one": "1 matching document", "search.result.other": "# matching documents", "search.result.placeholder": "Type to start searching", "search.result.term.missing": "Missing", "select.version": "Select version"}}</script>
<script src="../assets/javascripts/bundle.220ee61c.min.js"></script>
</body>
</html>
|