1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
|
/*
BWT.c BWT-Index
This module contains an implementation of BWT-index for alphabet size = 4.
The functions provided include:
Load functions for loading BWT to memory;
Core functions for accessing core Inverse Psi values;
Search functions for searching patterns from text;
Text retrieval functions for retrieving text from BWT.
Copyright (C) 2004, Wong Chi Kwong.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.L
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <emmintrin.h>
#include <mmintrin.h>
#include "BWT.h"
#include "MiscUtilities.h"
#include "DNACount.h"
#include "TextConverter.h"
#include "MemManager.h"
#include "r250.h"
#include "HSP.h"
// static functions
static INLINE unsigned int BWTOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit, const unsigned int character);
static INLINE void BWTAllOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit, unsigned int* __restrict occValueExplicit);
static INLINE unsigned int BWTSaIndexToChar(const BWT *bwt, const unsigned int saIndex);
static INLINE unsigned int BWTGetWordPackedText(const unsigned int *packedText, const unsigned int index, const unsigned int shift, const unsigned int numOfBit);
static INLINE void BWTPrefetchOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit);
static INLINE void BWTPrefetchBWT(const BWT *bwt, const unsigned int index);
int SaIndexGroupDPHitOrder1(const void *saIndexGroup, const int index1, const int index2);
int SaIndexGroupDPHitOrder2(const void *saIndexGroup, const int index1, const int index2);
static INLINE unsigned int BWTSaIndexToChar(const BWT *bwt, const unsigned int saIndex) {
return (saIndex > bwt->cumulativeFreq[1]) + (saIndex > bwt->cumulativeFreq[2])
+ (saIndex > bwt->cumulativeFreq[3]);
}
BWT *BWTCreate(MMPool *mmPool, const unsigned int textLength, unsigned int *decodeTable) {
BWT *bwt;
bwt = MMPoolDispatch(mmPool, sizeof(BWT));
bwt->textLength = 0;
bwt->inverseSa = 0;
bwt->cumulativeFreq = MMPoolDispatch(mmPool, (ALPHABET_SIZE + 1) * sizeof(unsigned int));
initializeVAL(bwt->cumulativeFreq, ALPHABET_SIZE + 1, 0);
bwt->bwtSizeInWord = 0;
bwt->saValueOnBoundary = NULL;
// Generate decode tables
if (decodeTable == NULL) {
bwt->decodeTable = MMPoolDispatch(mmPool, DNA_OCC_CNT_TABLE_SIZE_IN_WORD * sizeof(unsigned int));
GenerateDNAOccCountTable(bwt->decodeTable);
} else {
bwt->decodeTable = decodeTable;
}
bwt->occMajorSizeInWord = BWTOccValueMajorSizeInWord(textLength);
bwt->occValueMajor = MMPoolDispatch(mmPool, bwt->occMajorSizeInWord * sizeof(unsigned int));
bwt->occSizeInWord = 0;
bwt->occValue = NULL;
bwt->saInterval = ALL_ONE_MASK;
bwt->saValueSize = 0;
bwt->saValue = NULL;
bwt->inverseSaInterval = ALL_ONE_MASK;
bwt->inverseSaSize = 0;
bwt->inverseSa = NULL;
return bwt;
}
BWT *BWTLoad(MMPool *mmPool, const char *bwtCodeFileName, const char *occValueFileName,
const char *saValueFileName, const char *inverseSaFileName, const char *saIndexRangeFileName,
unsigned int *decodeTable) {
unsigned int i;
FILE *bwtCodeFile, *occValueFile, *saValueFile = NULL, *inverseSaFile = NULL, *saIndexRangeFile = NULL;
BWT *bwt;
unsigned int tmp;
unsigned int bwtCodeLengthInFile;
unsigned int numOfSaIndexRange;
bwtCodeFile = (FILE*)fopen64(bwtCodeFileName, "rb");
if (bwtCodeFile == NULL) {
fprintf(stderr, "BWTLoad() : cannot open bwtCodeFile!\n");
exit(1);
}
occValueFile = (FILE*)fopen64(occValueFileName, "rb");
if (occValueFile == NULL) {
fprintf(stderr, "BWTLoad() : cannot open occValueFile!\n");
exit(1);
}
if (saValueFileName != NULL && saValueFileName[0] != '\0' && saValueFileName[0] != '-') {
saValueFile = (FILE*)fopen64(saValueFileName, "rb");
if (saValueFile == NULL) {
fprintf(stderr, "BWTLoad() : cannot open saValueFile!\n");
exit(1);
}
}
if (inverseSaFileName != NULL && inverseSaFileName[0] != '\0' && inverseSaFileName[0] != '-') {
inverseSaFile = (FILE*)fopen64(inverseSaFileName, "rb");
if (inverseSaFile == NULL) {
fprintf(stderr, "BWTLoad() : cannot open inverseSaFile!\n");
exit(1);
}
}
if (saIndexRangeFileName != NULL && saIndexRangeFileName[0] != '\0' && saIndexRangeFileName[0] != '-') {
saIndexRangeFile = (FILE*)fopen64(saIndexRangeFileName, "rb");
if (saIndexRangeFile == NULL) {
fprintf(stderr, "BWTLoad() : cannot open saIndexRangeFile!\n");
exit(1);
}
}
bwt = MMPoolDispatch(mmPool, sizeof(BWT));
fread(&bwt->inverseSa0, sizeof(unsigned int), 1, bwtCodeFile);
bwt->cumulativeFreq = MMPoolDispatch(mmPool, (ALPHABET_SIZE + 1) * sizeof(unsigned int));
bwt->cumulativeFreq[0] = 0;
fread(bwt->cumulativeFreq + 1, sizeof(unsigned int), ALPHABET_SIZE, bwtCodeFile);
bwt->textLength = bwt->cumulativeFreq[ALPHABET_SIZE];
fread(&tmp, sizeof(unsigned int), 1, occValueFile);
if (tmp != bwt->inverseSa0) {
fprintf(stderr, "BWTLoad(): OccValue inverseSa0 not match!\n");
exit(1);
}
for (i=1; i<=ALPHABET_SIZE; i++) {
fread(&tmp, sizeof(unsigned int), 1, occValueFile);
if (tmp != bwt->cumulativeFreq[i]) {
fprintf(stderr, "BWTLoad(): OccValue cumulativeFreq not match!\n");
exit(1);
}
}
bwt->bwtSizeInWord = BWTResidentSizeInWord(bwt->textLength) + WORD_BETWEEN_OCC / 2; // + 8 words so that the 128 bits before and after an explicit occ are in the same aligned 64 byte
bwtCodeLengthInFile = BWTFileSizeInWord(bwt->textLength);
bwt->bwtCode = MMUnitAllocate(bwt->bwtSizeInWord * sizeof(unsigned int));
fread(bwt->bwtCode, sizeof(unsigned int), bwtCodeLengthInFile, bwtCodeFile);
fclose(bwtCodeFile);
BWTClearTrailingBwtCode(bwt);
bwt->occSizeInWord = BWTOccValueMinorSizeInWord(bwt->textLength) ;
bwt->occMajorSizeInWord = BWTOccValueMajorSizeInWord(bwt->textLength);
bwt->occValue = MMUnitAllocate(bwt->occSizeInWord * sizeof(unsigned int));
fread(bwt->occValue, sizeof(unsigned int), bwt->occSizeInWord, occValueFile);
bwt->occValueMajor = MMUnitAllocate(bwt->occMajorSizeInWord * sizeof(unsigned int));
fread(bwt->occValueMajor, sizeof(unsigned int), bwt->occMajorSizeInWord, occValueFile);
fclose(occValueFile);
if (decodeTable == NULL) {
bwt->decodeTable = MMUnitAllocate(DNA_OCC_CNT_TABLE_SIZE_IN_WORD * sizeof(unsigned int));
GenerateDNAOccCountTable(bwt->decodeTable);
bwt->decodeTableGenerated = TRUE;
} else {
bwt->decodeTable = decodeTable;
bwt->decodeTableGenerated = FALSE;
}
bwt->saValueOnBoundary = NULL;
if (saValueFile == NULL) {
bwt->saInterval = ALL_ONE_MASK;
bwt->saValueSize = 0;
bwt->saValue = NULL;
} else {
fread(&tmp, sizeof(unsigned int), 1, saValueFile);
if (tmp != bwt->inverseSa0) {
fprintf(stderr, "BWTLoad(): SaValue inverseSa0 not match!\n");
exit(1);
}
for (i=1; i<=ALPHABET_SIZE; i++) {
fread(&tmp, sizeof(unsigned int), 1, saValueFile);
if (tmp != bwt->cumulativeFreq[i]) {
fprintf(stderr, "BWTLoad(): SaValue cumulativeFreq not match!\n");
exit(1);
}
}
fread(&bwt->saInterval, sizeof(unsigned int), 1, saValueFile);
bwt->saValueSize = (bwt->textLength + bwt->saInterval) / bwt->saInterval * sizeof(unsigned int);
bwt->saValue = MMUnitAllocate(bwt->saValueSize);
fread(bwt->saValue, 1, bwt->saValueSize, saValueFile);
bwt->saValue[0] = (unsigned int)-1; // Special handling for bwt
fclose(saValueFile);
BWTGenerateSaValueOnBoundary(mmPool, bwt);
}
if (inverseSaFile == NULL) {
bwt->inverseSaInterval = ALL_ONE_MASK;
bwt->inverseSaSize = 0;
bwt->inverseSa = NULL;
} else {
fread(&tmp, sizeof(unsigned int), 1, inverseSaFile);
if (tmp != bwt->inverseSa0) {
fprintf(stderr, "BWTLoad(): InverseSaValue inverseSa0 not match!\n");
exit(1);
}
for (i=1; i<=ALPHABET_SIZE; i++) {
fread(&tmp, sizeof(unsigned int), 1, inverseSaFile);
if (tmp != bwt->cumulativeFreq[i]) {
fprintf(stderr, "BWTLoad(): InverseSaValue cumulativeFreq not match!\n");
exit(1);
}
}
fread(&bwt->inverseSaInterval, sizeof(unsigned int), 1, inverseSaFile);
bwt->inverseSaSize = (bwt->textLength + bwt->inverseSaInterval) / bwt->inverseSaInterval * sizeof(unsigned int);
bwt->inverseSa = MMUnitAllocate(bwt->inverseSaSize);
fread(bwt->inverseSa, 1, bwt->inverseSaSize, inverseSaFile);
fclose(inverseSaFile);
}
// Load Sa index range
if (saIndexRangeFile == NULL) {
bwt->saIndexRange = NULL;
bwt->saIndexRangeNumOfChar = 0;
bwt->saIndexRangeSize = 0;
} else {
fread(&tmp, sizeof(unsigned int), 1, saIndexRangeFile);
if (tmp != bwt->inverseSa0) {
fprintf(stderr, "BWTLoad(): SaIndex inverseSa0 not match!\n");
exit(1);
}
for (i=1; i<=ALPHABET_SIZE; i++) {
fread(&tmp, sizeof(unsigned int), 1, saIndexRangeFile);
if (tmp != bwt->cumulativeFreq[i]) {
fprintf(stderr, "BWTLoad(): SaIndex cumulativeFreq not match!\n");
exit(1);
}
}
fread(&bwt->saIndexRangeNumOfChar, sizeof(unsigned int), 1, saIndexRangeFile);
numOfSaIndexRange = 1 << (bwt->saIndexRangeNumOfChar * 2); // 4^saIndexRangeNumOfChar
bwt->saIndexRange = MMUnitAllocate(numOfSaIndexRange * sizeof(SaIndexRange));
fread(bwt->saIndexRange, sizeof(SaIndexRange), numOfSaIndexRange, saIndexRangeFile);
bwt->saIndexRangeSize = numOfSaIndexRange * sizeof(SaIndexRange);
fclose(saIndexRangeFile);
}
return bwt;
}
void BWTFree(MMPool *mmPool, BWT *bwt) {
MMPoolReturn(mmPool, bwt->cumulativeFreq, ALPHABET_SIZE * sizeof(unsigned int));
MMUnitFree(bwt->bwtCode, bwt->bwtSizeInWord * sizeof(unsigned int));
if (bwt->occValue != NULL) {
MMUnitFree(bwt->occValue, bwt->occSizeInWord * sizeof(unsigned int));
}
if (bwt->occValueMajor != NULL) {
MMUnitFree(bwt->occValueMajor, bwt->occMajorSizeInWord * sizeof(unsigned int));
}
if (bwt->saValue != NULL) {
MMUnitFree(bwt->saValue, bwt->saValueSize);
}
if (bwt->inverseSa != NULL) {
MMUnitFree(bwt->inverseSa, bwt->inverseSaSize);
}
if (bwt->decodeTableGenerated == TRUE) {
MMUnitFree(bwt->decodeTable, DNA_OCC_CNT_TABLE_SIZE_IN_WORD * sizeof(unsigned int));
}
if (bwt->saIndexRange != NULL) {
MMUnitFree(bwt->saIndexRange, bwt->saIndexRangeSize);
}
if (bwt->saValueOnBoundary != NULL) {
MMPoolReturn(mmPool, bwt->saValueOnBoundary, sizeof(unsigned int) * 2 * ALPHABET_SIZE);
}
MMPoolReturn(mmPool, bwt, sizeof(BWT));
}
/*
void BWTPrintMemoryUsage(const BWT *bwt, FILE *output, const unsigned int packedDNASize) {
unsigned int totalMemorySize;
fprintf(output, "BWT code size : %u\n", bwt->bwtSizeInWord * sizeof(unsigned int));
fprintf(output, "Occ value size : %u\n", (bwt->occSizeInWord + bwt->occMajorSizeInWord) * sizeof(unsigned int));
if (bwt->saValueSize > 0) {
fprintf(output, "SA value size : %u\n", bwt->saValueSize);
}
if (bwt->inverseSaSize > 0) {
fprintf(output, "Inverse SA size : %u\n", bwt->inverseSaSize);
}
if (bwt->saIndexRange > 0) {
fprintf(output, "SA index rangee : %u\n", bwt->saIndexRangeSize);
}
if (packedDNASize > 0) {
fprintf(output, "Packed DNA size : %u\n", packedDNASize);
}
totalMemorySize = (bwt->bwtSizeInWord + bwt->occSizeInWord + bwt->occMajorSizeInWord) * sizeof(unsigned int)
+ bwt->saValueSize + bwt->inverseSaSize + bwt->saIndexRangeSize + packedDNASize;
fprintf(output, "Total memory : %u\n", totalMemorySize);
fprintf(output, "Bit per char : %.2f\n",
(float)totalMemorySize / ((float)bwt->textLength / BITS_IN_BYTE));
}
//*/
void BWTGenerateSaValueOnBoundary(MMPool *mmPool, BWT *bwt) {
unsigned int i;
if (bwt->saValueOnBoundary == NULL) {
bwt->saValueOnBoundary = MMPoolDispatch(mmPool, sizeof(unsigned int) * 2 * ALPHABET_SIZE);
}
for (i=0; i<ALPHABET_SIZE; i++) {
bwt->saValueOnBoundary[i * 2 + 1] = BWTSaValue(bwt, bwt->cumulativeFreq[i + 1]);
if (bwt->cumulativeFreq[i] < bwt->textLength) {
bwt->saValueOnBoundary[i * 2] = BWTSaValue(bwt, bwt->cumulativeFreq[i] + 1);
} else {
bwt->saValueOnBoundary[i * 2] = bwt->saValueOnBoundary[i * 2 + 1];
}
}
}
// Ordering of index1 and index2 is not important; this module will handle the ordering
// index1 and index2 can be on the same aligned 128 bit region or can be on adjacant aligned 128 bit region
// If index1 and index2 are in the same aligned 128 bit region, one of them must be on the boundary
// These requirements are to reduce the no. of branches in the program flow
unsigned int BWTDecode(const BWT *bwt, const unsigned int index1, const unsigned int index2, const unsigned int character) {
unsigned int numChar1, numChar2, minIndex, maxIndex, minIndex128, maxIndex128;
unsigned int r;
const static unsigned int ALIGN_16 partitionOne1[4] = { 47, 31, 15, 0 };
const static unsigned int ALIGN_16 partitionOne2[4] = { 0, 15, 31, 47 };
const static unsigned int ALIGN_16 partitionZero1[4] = { 63, 47, 31, 15 };
const static unsigned int ALIGN_16 partitionZero2[4] = { 15, 31, 47, 63 };
// SSE registers
__m128i r1e, r2e;
__m128i mcl;
__m128i m0, m1;
__m128i r1a, r1b, r1c;
__m128i r2a, r2b, r2c;
// Sort index1 and index2
r = (index1 - index2) & -(index1 < index2);
minIndex = index2 + r;
maxIndex = index1 - r;
// Locate 128 bit boundary
minIndex128 = lastAlignedBoundary(minIndex, CHAR_PER_128);
maxIndex128 = lastAlignedBoundary(maxIndex - (maxIndex - minIndex > CHAR_PER_128), CHAR_PER_128);
// Determine no.of characters to count
numChar1 = maxIndex128 - minIndex;
numChar2 = maxIndex - maxIndex128;
// Load encoding into register here in the hope of hiding some memory latency
r1e = _mm_load_si128((__m128i *)(bwt->bwtCode + minIndex128 / CHAR_PER_WORD)); // Load encoding into register
r2e = _mm_load_si128((__m128i *)(bwt->bwtCode + maxIndex128 / CHAR_PER_WORD)); // Load encoding into register
// Set character extraction masks
m0 = _mm_set1_epi32(0xFFFFFFFF + (character & 1)); // Character selection mask for even bits
m1 = _mm_set1_epi32(0xFFFFFFFF + (character >> 1)); // Character selection mask for odd bits
mcl = _mm_set1_epi32(0x55555555); // Set bit-clearing mask to 0x55555555....(alternate 1-bit)
// Set counting mask for 2 x 128 bits
r1a = _mm_set1_epi32(numChar1); // Load number of characters into register
r2a = _mm_set1_epi32(numChar2); // Load number of characters into register
r1b = _mm_load_si128((__m128i*)partitionOne1); // Load partition into register
r2b = _mm_load_si128((__m128i*)partitionOne2); // Load partition into register
r1c = _mm_load_si128((__m128i*)partitionZero1); // Load partition into register
r2c = _mm_load_si128((__m128i*)partitionZero2); // Load partition into register
r1b = _mm_cmpgt_epi32(r1a, r1b); // Compare to generate 4x32 bit mask; the word with counting boundary is all ones
r2b = _mm_cmpgt_epi32(r2a, r2b); // Compare to generate 4x32 bit mask; the word with counting boundary is all ones
r1c = _mm_cmpgt_epi32(r1a, r1c); // Compare to generate 4x32 bit mask; the word with counting boundary is all zeros
r2c = _mm_cmpgt_epi32(r2a, r2c); // Compare to generate 4x32 bit mask; the word with counting boundary is all zeros
r1b = _mm_srli_epi32(r1b, (16 - numChar1 % 16) * 2); // Shift bits so that all word comform to the requirement of counting the word with counting boundary
r2b = _mm_slli_epi32(r2b, (16 - numChar2 % 16) * 2); // Shift bits so that all word comform to the requirement of counting the word with counting boundary
r1c = _mm_or_si128(r1b, r1c); // Combine two masks
r2c = _mm_or_si128(r2b, r2c); // Combine two masks
r1c = _mm_and_si128(r1c, mcl); // Combine with bit-clearing mask (now = 0x55555555....)
r2c = _mm_and_si128(r2c, mcl); // Combine with bit-clearing mask (now = 0x55555555....)
// Start counting; encoding has been loaded into register earlier
r1b = _mm_srli_epi32(r1e, 1); // Shift encoding to right by 1 bit
r2b = _mm_srli_epi32(r2e, 1); // Shift encoding to right by 1 bit
r1a = _mm_xor_si128(r1e, m0); // Check even-bits with mask
r2a = _mm_xor_si128(r2e, m0); // Check even-bits with mask
r1b = _mm_xor_si128(r1b, m1); // Check odd-bits with mask
r2b = _mm_xor_si128(r2b, m1); // Check odd-bits with mask
r1a = _mm_and_si128(r1a, r1b); // Combine even and odd bits
r2a = _mm_and_si128(r2a, r2b); // Combine even and odd bits
r1a = _mm_and_si128(r1a, r1c); // Combine with counting mask, which has been combined with bit-clearing mask of 0x55555555....
r2a = _mm_and_si128(r2a, r2c); // Combine with counting mask, which has been combined with bit-clearing mask of 0x55555555....
// Combine 2 x 128 bits and continue counting
r1a = _mm_add_epi32(r1a, r2a); // Combine 2 x 128 bits by adding them together
mcl = _mm_set1_epi32(0x33333333); // Set bit-clearing mask to 0x33333333....(alternate 2-bits)
r1b = _mm_srli_epi32(r1a, 2); // Shift intermediate result to right by 2 bit
r1a = _mm_and_si128(r1a, mcl); // Clear alternate 2-bits of intermediate result by combining with bit-clearing mask (now = 0x33333333....)
r1b = _mm_and_si128(r1b, mcl); // Clear alternate 2-bits of shifted intermediate result by combining with bit-clearing mask (now = 0x33333333....)
r1a = _mm_add_epi32(r1a, r1b); // Combine shifted and non-shifted intermediate results by adding them together
mcl = _mm_set1_epi32(0x0F0F0F0F); // Set bit-clearing mask to 0x0F0F0F0F....(alternate 4-bits)
m0 = _mm_setzero_si128(); // Set an all-zero mask
r1b = _mm_srli_epi32(r1a, 4); // Shift intermediate result to right by 2 bit
r1a = _mm_add_epi32(r1a, r1b); // Combine shifted and non-shifted intermediate results by adding them together
r1a = _mm_and_si128(r1a, mcl); // Clear alternate 4-bits of intermediate result by combining with bit-clearing mask (now = 0xOFOFOFOF....)
r1a = _mm_sad_epu8(r1a, m0); // Treating the 128 bit as 16 x 8 bit; summing up the 1st 8 x 8 bit into 1st 64-bit and 2nd 8 x 8 bit into 2nd 64-bit
return _mm_extract_epi16(r1a, 0) + _mm_extract_epi16(r1a, 4); // Extract and return result from register
}
// Ordering of index1 and index2 is not important; this module will handle the ordering
// index1 and index2 can be on the same aligned 128 bit region or can be on adjacant aligned 128 bit region
// If index1 and index2 are in the same aligned 128 bit region, one of them must be on the boundary
// These requirements are to reduce the no. of branches in the program flow
void BWTDecodeAll(const BWT *bwt, const unsigned int index1, const unsigned int index2, unsigned int* __restrict occValue) {
unsigned int numChar1, numChar2, minIndex, maxIndex, minIndex128, maxIndex128;
unsigned int r;
const static unsigned int ALIGN_16 partitionOne1[4] = { 47, 31, 15, 0 };
const static unsigned int ALIGN_16 partitionOne2[4] = { 0, 15, 31, 47 };
const static unsigned int ALIGN_16 partitionZero1[4] = { 63, 47, 31, 15 };
const static unsigned int ALIGN_16 partitionZero2[4] = { 15, 31, 47, 63 };
// SSE registers
__m128i r1e, r2e;
__m128i mcl;
__m128i rc, rg, rt;
__m128i ra1, ra2;
__m128i rc1, rc2;
__m128i rg1, rg2;
__m128i rt1, rt2;
// Sort index1 and index2
r = (index1 - index2) & -(index1 < index2);
minIndex = index2 + r;
maxIndex = index1 - r;
// Locate 128 bit boundary
minIndex128 = lastAlignedBoundary(minIndex, CHAR_PER_128);
maxIndex128 = lastAlignedBoundary(maxIndex - (maxIndex - minIndex > CHAR_PER_128), CHAR_PER_128);
// Determine no.of characters to count
numChar1 = maxIndex128 - minIndex;
numChar2 = maxIndex - maxIndex128;
// Load encoding into register here in the hope of hiding some memory latency
r1e = _mm_load_si128((__m128i *)(bwt->bwtCode + minIndex128 / CHAR_PER_WORD)); // Load encoding into register
r2e = _mm_load_si128((__m128i *)(bwt->bwtCode + maxIndex128 / CHAR_PER_WORD)); // Load encoding into register
// Set character extraction masks
mcl = _mm_set1_epi32(0x55555555); // Set bit-clearing mask to 0x55555555....(alternate 1-bit)
// Set counting mask for 2 x 128 bits
ra1 = _mm_set1_epi32(numChar1); // Load number of characters into register
ra2 = _mm_set1_epi32(numChar2); // Load number of characters into register
rc1 = _mm_load_si128((__m128i*)partitionOne1); // Load partition into register
rc2 = _mm_load_si128((__m128i*)partitionOne2); // Load partition into register
rg1 = _mm_load_si128((__m128i*)partitionZero1); // Load partition into register
rg2 = _mm_load_si128((__m128i*)partitionZero2); // Load partition into register
rc1 = _mm_cmpgt_epi32(ra1, rc1); // Compare to generate 4x32 bit mask; the word with counting boundary is all ones
rc2 = _mm_cmpgt_epi32(ra2, rc2); // Compare to generate 4x32 bit mask; the word with counting boundary is all ones
rg1 = _mm_cmpgt_epi32(ra1, rg1); // Compare to generate 4x32 bit mask; the word with counting boundary is all zeros
rg2 = _mm_cmpgt_epi32(ra2, rg2); // Compare to generate 4x32 bit mask; the word with counting boundary is all zeros
rc1 = _mm_srli_epi32(rc1, (16 - numChar1 % 16) * 2); // Shift bits so that all word comform to the requirement of counting the word with counting boundary
rc2 = _mm_slli_epi32(rc2, (16 - numChar2 % 16) * 2); // Shift bits so that all word comform to the requirement of counting the word with counting boundary
ra1 = _mm_or_si128(rc1, rg1); // Combine two masks
ra2 = _mm_or_si128(rc2, rg2); // Combine two masks
// Start counting; encoding has been loaded into register earlier
r1e = _mm_and_si128(r1e, ra1); // Combine encoding with counting mask
r2e = _mm_and_si128(r2e, ra2); // Combine encoding with counting mask
// ra1, ra2, rc1, rc2, rg1, rg2, rt1, rt2 all retired
// Shift and combine with character selection mask
ra1 = _mm_srli_epi32(r1e, 1); // Shift encoding to right by 1 bit
ra2 = _mm_srli_epi32(r2e, 1); // Shift encoding to right by 1 bit
rt1 = _mm_and_si128(r1e, mcl); // Check even-bits = '1'
rt2 = _mm_and_si128(r2e, mcl); // Check even-bits = '1'
rg1 = _mm_and_si128(ra1, mcl); // Check odd-bits = '1'
rg2 = _mm_and_si128(ra2, mcl); // Check odd-bits = '1'
rc1 = _mm_andnot_si128(r1e, mcl); // Check even-bits = '0'
rc2 = _mm_andnot_si128(r2e, mcl); // Check even-bits = '0'
ra1 = _mm_andnot_si128(ra1, mcl); // Check odd-bits = '0'
ra2 = _mm_andnot_si128(ra2, mcl); // Check odd-bits = '0'
// r1e, r2e retired
// Count for 'c' 'g' 't'
r1e = _mm_and_si128(ra1, rt1); // Combine even and odd bits
r2e = _mm_and_si128(ra2, rt2); // Combine even and odd bits
ra1 = _mm_and_si128(rg1, rc1); // Combine even and odd bits
ra2 = _mm_and_si128(rg2, rc2); // Combine even and odd bits
rc1 = _mm_and_si128(rg1, rt1); // Combine even and odd bits
rc2 = _mm_and_si128(rg2, rt2); // Combine even and odd bits
rc = _mm_add_epi32(r1e, r2e); // Combine 2 x 128 bits by adding them together
rg = _mm_add_epi32(ra1, ra2); // Combine 2 x 128 bits by adding them together
rt = _mm_add_epi32(rc1, rc2); // Combine 2 x 128 bits by adding them together
// All except rc, rg, rt retired
// Continue counting rc, rg, rt
mcl = _mm_set1_epi32(0x33333333); // Set bit-clearing mask to 0x33333333....(alternate 2-bits)
rc1 = _mm_srli_epi32(rc, 2); // Shift intermediate result to right by 2 bit
rg1 = _mm_srli_epi32(rg, 2); // Shift intermediate result to right by 2 bit
rt1 = _mm_srli_epi32(rt, 2); // Shift intermediate result to right by 2 bit
rc2 = _mm_and_si128(rc, mcl); // Clear alternate 2-bits of intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rg2 = _mm_and_si128(rg, mcl); // Clear alternate 2-bits of intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rt2 = _mm_and_si128(rt, mcl); // Clear alternate 2-bits of intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rc1 = _mm_and_si128(rc1, mcl); // Clear alternate 2-bits of shifted intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rg1 = _mm_and_si128(rg1, mcl); // Clear alternate 2-bits of shifted intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rt1 = _mm_and_si128(rt1, mcl); // Clear alternate 2-bits of shifted intermediate result by combining with bit-clearing mask (now = 0x33333333....)
rc = _mm_add_epi32(rc1, rc2); // Combine shifted and non-shifted intermediate results by adding them together
rg = _mm_add_epi32(rg1, rg2); // Combine shifted and non-shifted intermediate results by adding them together
rt = _mm_add_epi32(rt1, rt2); // Combine shifted and non-shifted intermediate results by adding them together
mcl = _mm_set1_epi32(0x0F0F0F0F); // Set bit-clearing mask to 0x0F0F0F0F....(alternate 4-bits)
r1e = _mm_setzero_si128(); // Set an all-zero mask
rc1 = _mm_srli_epi32(rc, 4); // Shift intermediate result to right by 2 bit
rg1 = _mm_srli_epi32(rg, 4); // Shift intermediate result to right by 2 bit
rt1 = _mm_srli_epi32(rt, 4); // Shift intermediate result to right by 2 bit
rc2 = _mm_add_epi32(rc, rc1); // Combine shifted and non-shifted intermediate results by adding them together
rg2 = _mm_add_epi32(rg, rg1); // Combine shifted and non-shifted intermediate results by adding them together
rt2 = _mm_add_epi32(rt, rt1); // Combine shifted and non-shifted intermediate results by adding them together
rc = _mm_and_si128(rc2, mcl); // Clear alternate 4-bits of intermediate result by combining with bit-clearing mask (now = 0xOFOFOFOF....)
rg = _mm_and_si128(rg2, mcl); // Clear alternate 4-bits of intermediate result by combining with bit-clearing mask (now = 0xOFOFOFOF....)
rt = _mm_and_si128(rt2, mcl); // Clear alternate 4-bits of intermediate result by combining with bit-clearing mask (now = 0xOFOFOFOF....)
rc = _mm_sad_epu8(rc, r1e); // Treating the 128 bit as 16 x 8 bit; summing up the 1st 8 x 8 bit into 1st 64-bit and 2nd 8 x 8 bit into 2nd 64-bit
rg = _mm_sad_epu8(rg, r1e); // Treating the 128 bit as 16 x 8 bit; summing up the 1st 8 x 8 bit into 1st 64-bit and 2nd 8 x 8 bit into 2nd 64-bit
rt = _mm_sad_epu8(rt, r1e); // Treating the 128 bit as 16 x 8 bit; summing up the 1st 8 x 8 bit into 1st 64-bit and 2nd 8 x 8 bit into 2nd 64-bit
occValue[1] = _mm_extract_epi16(rc, 0) + _mm_extract_epi16(rc, 4); // Extract result from register and store into variable
occValue[2] = _mm_extract_epi16(rg, 0) + _mm_extract_epi16(rg, 4); // Extract result from register and store into variable
occValue[3] = _mm_extract_epi16(rt, 0) + _mm_extract_epi16(rt, 4); // Extract result from register and store into variable
occValue[0] = maxIndex - minIndex - occValue[1] - occValue[2] - occValue[3];
}
unsigned int BWTOccValue(const BWT *bwt, unsigned int index, const unsigned int character) {
unsigned int occValue, decodeValue;
unsigned int occExplicitIndex, occIndex;
unsigned int r;
// $ is supposed to be positioned at inverseSa0 but it is not encoded
// therefore index is subtracted by 1 for adjustment
index -= (index > bwt->inverseSa0);
#ifdef DEBUG
if (index > bwt->textLength) {
fprintf(stderr, "BWTOccValue() : index > textLength!\n");
exit(1);
}
#endif
occExplicitIndex = (index + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex = occExplicitIndex * OCC_INTERVAL;
//_mm_prefetch((char*)(memory + address[j+1]), _MM_HINT_NTA);
occValue = BWTOccValueExplicit(bwt, occExplicitIndex, character);
#ifdef DEBUG
if (occValue > occIndex) {
fprintf(stderr, "BWTOccValue() : occValueExplicit > occIndex!\n");
exit(1);
}
#endif
if (occIndex != index) {
decodeValue = BWTDecode(bwt, occIndex, index, character);
r = -(occIndex > index);
return occValue + (decodeValue & ~r) - (decodeValue & r);
} else {
return occValue;
}
}
void BWTOccValueTwoIndex(const BWT *bwt, unsigned int index1, unsigned int index2, const unsigned int character, unsigned int* __restrict occValue) {
unsigned int decodeValue, tempExplicit1, tempExplicit2, tempOccValue1, tempOccValue2;
unsigned int occExplicitIndex1, occIndex1;
unsigned int occExplicitIndex2, occIndex2;
unsigned int r;
// $ is supposed to be positioned at inverseSa0 but it is not encoded
// therefore index is subtracted by 1 for adjustment
index1 -= (index1 > bwt->inverseSa0);
index2 -= (index2 > bwt->inverseSa0);
#ifdef DEBUG
if (index1 > bwt->textLength) {
fprintf(stderr, "BWTOccValueTwoIndex() : index1 > textLength!\n");
exit(1);
}
if (index2 > bwt->textLength) {
fprintf(stderr, "BWTOccValueTwoIndex() : index2 > textLength!\n");
exit(1);
}
#endif
// Pre-fetch memory to be accessed
BWTPrefetchBWT(bwt, index1);
BWTPrefetchBWT(bwt, index2);
occExplicitIndex1 = (index1 + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex1 = occExplicitIndex1 * OCC_INTERVAL;
occExplicitIndex2 = (index2 + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex2 = occExplicitIndex2 * OCC_INTERVAL;
// Pre-fetch memory to be accessed
BWTPrefetchOccValueExplicit(bwt, occExplicitIndex1);
BWTPrefetchOccValueExplicit(bwt, occExplicitIndex2);
if (occIndex1 != index1) {
decodeValue = BWTDecode(bwt, occIndex1, index1, character);
r = -(occIndex1 > index1);
tempOccValue1 = (decodeValue & ~r) - (decodeValue & r);
} else {
tempOccValue1 = 0;
}
if (occIndex2 != index2) {
decodeValue = BWTDecode(bwt, occIndex2, index2, character);
r = -(occIndex2 > index2);
tempOccValue2 = (decodeValue & ~r) - (decodeValue & r);
} else {
tempOccValue2 = 0;
}
tempExplicit1 = BWTOccValueExplicit(bwt, occExplicitIndex1, character);
tempExplicit2 = BWTOccValueExplicit(bwt, occExplicitIndex2, character);
#ifdef DEBUG
if (tempExplicit1 > occIndex1) {
fprintf(stderr, "BWTOccValueTwoIndex() : occValueExplicit1 > occIndex1!\n");
exit(1);
}
if (tempExplicit2 > occIndex2) {
fprintf(stderr, "BWTOccValueTwoIndex() : occValueExplicit2 > occIndex2!\n");
exit(1);
}
#endif
occValue[0] = tempOccValue1 + tempExplicit1;
occValue[1] = tempOccValue2 + tempExplicit2;
}
void BWTAllOccValue(const BWT *bwt, unsigned int index, unsigned int* __restrict occValue) {
unsigned int occExplicitIndex, occIndex;
unsigned int ALIGN_16 tempOccValue[ALPHABET_SIZE];
unsigned int r;
// SSE registers
__m128i rtov, rov, rc, t1, t2;
// $ is supposed to be positioned at inverseSa0 but it is not encoded
// therefore index is subtracted by 1 for adjustment
index -= (index > bwt->inverseSa0);
#ifdef DEBUG
if (index > bwt->textLength) {
fprintf(stderr, "BWTOccValue() : index > textLength!\n");
exit(1);
}
#endif
occExplicitIndex = (index + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex = occExplicitIndex * OCC_INTERVAL;
BWTAllOccValueExplicit(bwt, occExplicitIndex, occValue);
if (occIndex != index) {
BWTDecodeAll(bwt, occIndex, index, tempOccValue);
// The following code add tempOccvalue to occValue if index > occIndex and subtract tempOccValue from occValue if occIndex > index
r = -(occIndex > index);
rc = _mm_set1_epi32(r); // Set rc = r r r r
rtov = _mm_load_si128((__m128i*)tempOccValue);
rov = _mm_load_si128((__m128i*)occValue);
t1 = _mm_andnot_si128(rc, rtov);
t2 = _mm_and_si128(rc, rtov);
rov = _mm_add_epi32(rov, t1);
rov = _mm_sub_epi32(rov, t2);
_mm_store_si128((__m128i*)occValue, rov);
} else {
return;
}
}
void BWTAllOccValueTwoIndex(const BWT *bwt, unsigned int index1, unsigned int index2, unsigned int* __restrict occValue1, unsigned int* __restrict occValue2) {
unsigned int occExplicitIndex1, occIndex1;
unsigned int occExplicitIndex2, occIndex2;
unsigned int ALIGN_16 tempOccValue1[ALPHABET_SIZE];
unsigned int ALIGN_16 tempOccValue2[ALPHABET_SIZE];
unsigned int r;
// SSE registers
__m128i rtov, rc, t1, t2, o1, o2;
// $ is supposed to be positioned at inverseSa0 but it is not encoded
// therefore index is subtracted by 1 for adjustment
index1 -= (index1 > bwt->inverseSa0);
index2 -= (index2 > bwt->inverseSa0);
#ifdef DEBUG
if (index1 > index2) {
fprintf(stderr, "BWTAllOccValueTwoIndex() : index1 > index2!\n");
exit(1);
}
if (index2 > bwt->textLength) {
fprintf(stderr, "BWTAllOccValueTwoIndex() : index2 > textLength!\n");
exit(1);
}
#endif
// Pre-fetch memory to be accessed
BWTPrefetchBWT(bwt, index1);
BWTPrefetchBWT(bwt, index2);
occExplicitIndex1 = (index1 + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex1 = occExplicitIndex1 * OCC_INTERVAL;
occExplicitIndex2 = (index2 + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL; // Bidirectional encoding
occIndex2 = occExplicitIndex2 * OCC_INTERVAL;
// Pre-fetch memory to be accessed
BWTPrefetchOccValueExplicit(bwt, occExplicitIndex1);
BWTPrefetchOccValueExplicit(bwt, occExplicitIndex2);
if (occIndex1 != index1) {
BWTDecodeAll(bwt, occIndex1, index1, tempOccValue1);
// The following code add tempOccvalue to occValue if index > occIndex and subtract tempOccValue from occValue if occIndex > index
r = -(occIndex1 > index1);
rtov = _mm_load_si128((__m128i*)tempOccValue1);
rc = _mm_set1_epi32(r); // Set rc = r r r r
t1 = _mm_andnot_si128(rc, rtov);
t2 = _mm_and_si128(rc, rtov);
o1 = _mm_sub_epi32(t1, t2);
} else {
o1 = _mm_setzero_si128();
}
/*
if (occIndex1 != index1) {
if (occIndex1 < index1) {
ForwardDNAAllOccCount(bwt->bwtCode + occIndex1 / CHAR_PER_WORD, index1 - occIndex1, tempOccValue, bwt->decodeTable);
occValue1[0] += tempOccValue[0];
occValue1[1] += tempOccValue[1];
occValue1[2] += tempOccValue[2];
occValue1[3] += tempOccValue[3];
} else {
BackwardDNAAllOccCount(bwt->bwtCode + occIndex1 / CHAR_PER_WORD, occIndex1 - index1, tempOccValue, bwt->decodeTable);
occValue1[0] -= tempOccValue[0];
occValue1[1] -= tempOccValue[1];
occValue1[2] -= tempOccValue[2];
occValue1[3] -= tempOccValue[3];
}
}
*/
if (occIndex2 != index2) {
BWTDecodeAll(bwt, occIndex2, index2, tempOccValue2);
// The following code add tempOccvalue to occValue if index > occIndex and subtract tempOccValue from occValue if occIndex > index
r = -(occIndex1 > index2);
rc = _mm_set1_epi32(r); // Set rc = r r r r
rtov = _mm_load_si128((__m128i*)tempOccValue2);
t1 = _mm_andnot_si128(rc, rtov);
t2 = _mm_and_si128(rc, rtov);
o2 = _mm_sub_epi32(t1, t2);
} else {
o2 = _mm_setzero_si128();
}
BWTAllOccValueExplicit(bwt, occExplicitIndex1, occValue1);
BWTAllOccValueExplicit(bwt, occExplicitIndex2, occValue2);
t1 = _mm_load_si128((__m128i*)occValue1);
t2 = _mm_load_si128((__m128i*)occValue2);
t1 = _mm_add_epi32(t1, o1);
t2 = _mm_add_epi32(t2, o2);
_mm_store_si128((__m128i*)occValue1, t1);
_mm_store_si128((__m128i*)occValue2, t2);
/*
if (occIndex2 != index2) {
if (occIndex2 < index2) {
ForwardDNAAllOccCount(bwt->bwtCode + occIndex2 / CHAR_PER_WORD, index2 - occIndex2, tempOccValue, bwt->decodeTable);
occValue2[0] += tempOccValue[0];
occValue2[1] += tempOccValue[1];
occValue2[2] += tempOccValue[2];
occValue2[3] += tempOccValue[3];
} else {
BackwardDNAAllOccCount(bwt->bwtCode + occIndex2 / CHAR_PER_WORD, occIndex2 - index2, tempOccValue, bwt->decodeTable);
occValue2[0] -= tempOccValue[0];
occValue2[1] -= tempOccValue[1];
occValue2[2] -= tempOccValue[2];
occValue2[3] -= tempOccValue[3];
}
}
*/
}
unsigned int BWTOccValueOnSpot(const BWT *bwt, unsigned int index, unsigned int* __restrict character) {
unsigned int occExplicitIndex, occIndex;
unsigned int occValue, decodeValue;
unsigned int r;
// The bwt character before index will be returned and the count will be up to that bwt character
#ifdef DEBUG
if (index == bwt->inverseSa0 + 1) {
fprintf(stderr, "BWTOccValueOnSpot(): index = inverseSa0 + 1!\n");
exit(1);
}
if (index > bwt->textLength + 1) {
fprintf(stderr, "BWTOccValueOnSpot() : index > textLength!\n");
exit(1);
}
if (index == 0) {
fprintf(stderr, "BWTOccValueOnSpot() : index = 0!\n");
exit(1);
}
#endif
// $ is supposed to be positioned at inverseSa0 but it is not encoded
// therefore index is incremented for adjustment
index -= (index > bwt->inverseSa0);
// Bidirectional encoding
occExplicitIndex = (index + OCC_INTERVAL / 2 - 1) / OCC_INTERVAL;
occIndex = occExplicitIndex * OCC_INTERVAL;
*character = bwt->bwtCode[(index - 1) / CHAR_PER_WORD] << (((index - 1) % CHAR_PER_WORD) * BIT_PER_CHAR) >> (BITS_IN_WORD - BIT_PER_CHAR);
occValue = BWTOccValueExplicit(bwt, occExplicitIndex, *character);
if (occIndex != index) {
decodeValue = BWTDecode(bwt, occIndex, index, *character);
r = -(occIndex > index);
return occValue + (decodeValue & ~r) - (decodeValue & r);
} else {
return occValue;
}
}
unsigned int BWTSearchOccValue(const BWT *bwt, const unsigned int character, const unsigned int searchOccValue) {
unsigned int occValue;
unsigned int i,j;
unsigned int c;
unsigned int bwtPos;
unsigned int occExplicitIndexLeft, occExplicitIndexRight, occExplicitIndexMiddle;
#ifdef DEBUG
if (searchOccValue == 0 || searchOccValue > bwt->textLength) {
fprintf(stderr, "BWTSearchOccValue() : searchOccValue out of bound!\n");
exit(1);
}
#endif
// Search Occurrence value
occExplicitIndexLeft = 0;
occExplicitIndexRight = (bwt->textLength + OCC_INTERVAL - 1) / OCC_INTERVAL;
while (occExplicitIndexLeft + 1 < occExplicitIndexRight) {
occExplicitIndexMiddle = average(occExplicitIndexLeft, occExplicitIndexRight);
if (searchOccValue > BWTOccValueExplicit(bwt, occExplicitIndexMiddle, character)) {
occExplicitIndexLeft = occExplicitIndexMiddle;
} else {
occExplicitIndexRight = occExplicitIndexMiddle;
}
}
// Not tuned for DNA
occValue = BWTOccValueExplicit(bwt, occExplicitIndexLeft, character);
bwtPos = occExplicitIndexLeft * OCC_INTERVAL / CHAR_PER_WORD;
for (i=0; i < OCC_INTERVAL / CHAR_PER_WORD; i++) {
c = bwt->bwtCode[bwtPos + i];
for (j=0; j < CHAR_PER_WORD && occValue < searchOccValue; j++) {
if (c >> (BITS_IN_WORD - BIT_PER_CHAR) == character) {
occValue++;
if (occValue >= searchOccValue) {
return occExplicitIndexLeft * OCC_INTERVAL + i * CHAR_PER_WORD + j;
}
}
c <<= BIT_PER_CHAR;
}
}
fprintf(stderr, "BWTSearchOccValue() : unexpected error!\n");
exit(1);
}
static INLINE unsigned int BWTOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit, const unsigned int character) {
unsigned int occIndexMajor;
unsigned int compareMask, shift, mask;
occIndexMajor = occIndexExplicit * OCC_INTERVAL / OCC_INTERVAL_MAJOR;
compareMask = (-(occIndexExplicit % OCC_VALUE_PER_WORD == 0));
shift = 16 & compareMask;
mask = 0x0000FFFF | compareMask;
return bwt->occValueMajor[occIndexMajor * ALPHABET_SIZE + character] +
((bwt->occValue[occIndexExplicit / OCC_VALUE_PER_WORD * ALPHABET_SIZE + character] >> shift) & mask);
}
static INLINE void BWTAllOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit, unsigned int* __restrict occValueExplicit) {
unsigned int occIndexMajor;
unsigned int compareMask, shift, mask;
__m128i v1, v2, m;
occIndexMajor = occIndexExplicit * OCC_INTERVAL / OCC_INTERVAL_MAJOR;
compareMask = (-(occIndexExplicit % OCC_VALUE_PER_WORD == 0));
shift = 16 & compareMask;
mask = 0x0000FFFF | compareMask;
v2 = _mm_load_si128((__m128i *)(bwt->occValue + occIndexExplicit / OCC_VALUE_PER_WORD * ALPHABET_SIZE));
v1 = _mm_load_si128((__m128i *)(bwt->occValueMajor + occIndexMajor * ALPHABET_SIZE));
m = _mm_set1_epi32(mask);
v2 = _mm_srli_epi32(v2, shift);
v2 = _mm_and_si128(v2, m);
v1 = _mm_add_epi32(v1, v2);
_mm_store_si128((__m128i*)occValueExplicit, v1);
}
static INLINE void BWTPrefetchOccValueExplicit(const BWT *bwt, const unsigned int occIndexExplicit) {
unsigned int occIndexMajor;
occIndexMajor = occIndexExplicit * OCC_INTERVAL / OCC_INTERVAL_MAJOR;
_mm_prefetch((char*)(bwt->occValueMajor + occIndexMajor * ALPHABET_SIZE), _MM_HINT_T0);
_mm_prefetch((char*)(bwt->occValue + occIndexExplicit / OCC_VALUE_PER_WORD * ALPHABET_SIZE), _MM_HINT_NTA);
}
static INLINE void BWTPrefetchBWT(const BWT *bwt, const unsigned int index) {
_mm_prefetch((char*)(bwt->bwtCode + index / CHAR_PER_WORD), _MM_HINT_NTA);
}
unsigned int BWTResidentSizeInWord(const unsigned int numChar) {
unsigned int numCharRoundUpToOccInterval;
// The $ in BWT at the position of inverseSa0 is not encoded
numCharRoundUpToOccInterval = (numChar + OCC_INTERVAL - 1) / OCC_INTERVAL * OCC_INTERVAL;
return (numCharRoundUpToOccInterval + CHAR_PER_WORD - 1) / CHAR_PER_WORD;
}
unsigned int BWTFileSizeInWord(const unsigned int numChar) {
// The $ in BWT at the position of inverseSa0 is not encoded
return (numChar + CHAR_PER_WORD - 1) / CHAR_PER_WORD;
}
unsigned int BWTOccValueMinorSizeInWord(const unsigned int numChar) {
unsigned int numOfOccValue;
numOfOccValue = (numChar + OCC_INTERVAL - 1) / OCC_INTERVAL + 1; // Value at both end for bi-directional encoding
return (numOfOccValue + OCC_VALUE_PER_WORD - 1) / OCC_VALUE_PER_WORD * ALPHABET_SIZE;
}
unsigned int BWTOccValueMajorSizeInWord(const unsigned int numChar) {
unsigned int numOfOccValue;
unsigned int numOfOccIntervalPerMajor;
numOfOccValue = (numChar + OCC_INTERVAL - 1) / OCC_INTERVAL + 1; // Value at both end for bi-directional encoding
numOfOccIntervalPerMajor = OCC_INTERVAL_MAJOR / OCC_INTERVAL;
return (numOfOccValue + numOfOccIntervalPerMajor - 1) / numOfOccIntervalPerMajor * ALPHABET_SIZE;
}
void BWTClearTrailingBwtCode(BWT *bwt) {
unsigned int bwtResidentSizeInWord;
unsigned int wordIndex, offset;
unsigned int i;
bwtResidentSizeInWord = BWTResidentSizeInWord(bwt->textLength);
wordIndex = bwt->textLength / CHAR_PER_WORD;
offset = (bwt->textLength - wordIndex * CHAR_PER_WORD) * BIT_PER_CHAR;
if (offset > 0) {
bwt->bwtCode[wordIndex] = truncateRight(bwt->bwtCode[wordIndex], BITS_IN_WORD - offset);
} else {
if (wordIndex < bwtResidentSizeInWord) {
bwt->bwtCode[wordIndex] = 0;
}
}
for (i=wordIndex+1; i<bwtResidentSizeInWord; i++) {
bwt->bwtCode[i] = 0;
}
}
unsigned int BWTPsiMinusValue(const BWT *bwt, const unsigned int index) {
unsigned int c;
unsigned int occValue;
#ifdef DEBUG
if (index > bwt->textLength) {
fprintf(stderr, "BWTPsiMinusValue() : index out of range!\n");
exit(1);
}
#endif
if (index != bwt->inverseSa0) {
occValue = BWTOccValueOnSpot(bwt, index + 1, &c);
occValue += bwt->cumulativeFreq[c];
return occValue;
} else {
return 0;
}
}
unsigned int BWTPsiPlusValue(const BWT *bwt, const unsigned int index) {
unsigned int c;
unsigned int psiPlusValue;
#ifdef DEBUG
if (index > bwt->textLength) {
fprintf(stderr, "BWTPsiPlusValue() : index out of range!\n");
exit(1);
}
#endif
if (index == 0) {
return bwt->inverseSa0;
}
// Find the BWT of PSI+
c = (index > bwt->cumulativeFreq[1]) + (index > bwt->cumulativeFreq[2])
+ (index > bwt->cumulativeFreq[3]);
psiPlusValue = BWTSearchOccValue(bwt, c, index - bwt->cumulativeFreq[c]);
if (psiPlusValue >= bwt->inverseSa0) {
psiPlusValue++;
}
return psiPlusValue;
}
unsigned int BWTSaValue(const BWT *bwt, unsigned int saIndex) {
unsigned int saValueSkipped = 0;
#ifdef DEBUG
if (saIndex > bwt->textLength) {
fprintf(stderr, "BWTSaValue() : Index out of range!\n");
exit(1);
}
if (bwt->saValue == NULL) {
fprintf(stderr, "BWTSaValue() : Explicit SA value is not loaded!\n");
exit(1);
}
#endif
while (saIndex % bwt->saInterval != 0) {
saValueSkipped++;
saIndex = BWTPsiMinusValue(bwt, saIndex);
}
#ifdef DEBUG
if (bwt->saValue[saIndex/bwt->saInterval] + saValueSkipped > bwt->textLength) {
fprintf(stderr, "BWTSaValue() : saValue out of range!\n");
exit(1);
}
#endif
// SA[0] stores -1 although it should be textLength
// PsiMinusValue returns 0 on inverseSa0
return bwt->saValue[saIndex/bwt->saInterval] + saValueSkipped;
}
unsigned int BWTInverseSa(const BWT *bwt, unsigned int saValue) {
unsigned int i;
unsigned int saIndex;
unsigned int inverseSaExplicitIndex;
unsigned int saValueToSkip;
#ifdef DEBUG
if (saValue > bwt->textLength) {
fprintf(stderr, "BWTInverseSa() : Index out of range!\n");
exit(1);
}
if (bwt->inverseSa == NULL) {
fprintf(stderr, "BWTInverseSa() : Explicit inverse SA is not loaded!\n");
exit(1);
}
#endif
inverseSaExplicitIndex = (saValue + bwt->inverseSaInterval - 1) / bwt->inverseSaInterval;
if (inverseSaExplicitIndex * bwt->inverseSaInterval > bwt->textLength) {
saIndex = 0;
saValueToSkip = bwt->textLength - saValue;
} else {
saIndex = bwt->inverseSa[inverseSaExplicitIndex];
saValueToSkip = inverseSaExplicitIndex * bwt->inverseSaInterval - saValue;
}
for (i=0; i<saValueToSkip; i++) {
saIndex = BWTPsiMinusValue(bwt, saIndex);
}
return saIndex;
}
static INLINE unsigned int BWTGetWordPackedText(const unsigned int *packedText, const unsigned int index, const unsigned int shift, const unsigned int numOfBit) {
unsigned int text;
const static unsigned int mask[32] = { 0x00000000, 0x80000000, 0xC0000000, 0xE0000000,
0xF0000000, 0xF8000000, 0xFC000000, 0xFE000000,
0xFF000000, 0xFF800000, 0xFFC00000, 0xFFE00000,
0xFFF00000, 0xFFF80000, 0xFFFC0000, 0xFFFE0000,
0xFFFF0000, 0xFFFF8000, 0xFFFFC000, 0xFFFFE000,
0xFFFFF000, 0xFFFFF800, 0xFFFFFC00, 0xFFFFFE00,
0xFFFFFF00, 0xFFFFFF80, 0xFFFFFFC0, 0xFFFFFFE0,
0xFFFFFFF0, 0xFFFFFFF8, 0xFFFFFFFC, 0xFFFFFFFE };
if (shift > 0) {
// packedText should be allocated with at least 1 Word buffer initialized to zero
text = (packedText[index] << shift) | (packedText[index + 1] >> (BITS_IN_WORD - shift));
} else {
text = packedText[index];
}
if (numOfBit < BITS_IN_WORD) {
// Fill unused bit with zero
text &= mask[numOfBit];
}
return text;
}
int BWTForwardSearch(const unsigned int *packedKey, const unsigned int keyLength, const BWT *bwt, const unsigned int *packedText) {
unsigned int startSaIndex, endSaIndex, saIndexMiddle;
unsigned int saExplicitIndexLeft, saExplicitIndexRight, saExplicitIndexMiddle;
unsigned int saValue;
unsigned int firstChar;
unsigned int index, shift;
unsigned int packedKeyLength, keyLengthInBit;
unsigned int llcp, rlcp, mlcp, maxlcp;
unsigned int p = 0; // to avoid compiler warning only
if (keyLength % CHAR_PER_WORD == 0) {
packedKeyLength = keyLength / CHAR_PER_WORD;
keyLengthInBit = packedKeyLength * BITS_IN_WORD;
} else {
packedKeyLength = keyLength / CHAR_PER_WORD + 1;
keyLengthInBit = (keyLength / CHAR_PER_WORD) * BITS_IN_WORD +
(keyLength % CHAR_PER_WORD) * BIT_PER_CHAR;
}
// Get the SA index initial range by retrieving cumulative frequency
firstChar = packedKey[0] >> (BITS_IN_WORD - BIT_PER_CHAR);
startSaIndex = bwt->cumulativeFreq[firstChar] + 1;
endSaIndex = bwt->cumulativeFreq[firstChar + 1];
if (startSaIndex > endSaIndex) {
// The first character of search pattern does not exists in text
return 0;
}
// Find lcp for left boundary
saValue = bwt->saValueOnBoundary[firstChar * 2]; // Pre-calculated
// restriction for positions near the end of text
maxlcp = min(packedKeyLength, (bwt->textLength - saValue + CHAR_PER_WORD - 1) / CHAR_PER_WORD);
shift = BIT_PER_CHAR * (saValue % CHAR_PER_WORD);
index = saValue / CHAR_PER_WORD;
llcp = 0;
while (llcp < maxlcp && packedKey[llcp] ==
BWTGetWordPackedText(packedText, index + llcp, shift, keyLengthInBit - llcp * BITS_IN_WORD)) {
llcp++;
}
if ((saValue + keyLength > bwt->textLength) && llcp == maxlcp) {
llcp--;
}
if (llcp == packedKeyLength) {
return 1;
}
// Find lcp for right boundary
saValue = bwt->saValueOnBoundary[firstChar * 2 + 1]; // Pre-calculated
// restriction for positions near the end of text
maxlcp = min(packedKeyLength, (bwt->textLength - saValue + CHAR_PER_WORD - 1) / CHAR_PER_WORD);
shift = BIT_PER_CHAR * (saValue % CHAR_PER_WORD);
index = saValue / CHAR_PER_WORD;
rlcp = 0;
while (rlcp < maxlcp && packedKey[rlcp] ==
BWTGetWordPackedText(packedText, index + rlcp, shift, keyLengthInBit - rlcp * BITS_IN_WORD)) {
rlcp++;
}
if ((saValue + keyLength > bwt->textLength) && rlcp == maxlcp) {
rlcp--;
}
if (rlcp == packedKeyLength) {
return 1;
}
// Locate in SA index explicitly stored
saExplicitIndexLeft = startSaIndex / bwt->saInterval;
saExplicitIndexRight = (endSaIndex - 1) / bwt->saInterval + 1;
// loop until two adjacent SA explicit index is found
while (saExplicitIndexLeft + 1 < saExplicitIndexRight) {
saExplicitIndexMiddle = average(saExplicitIndexLeft, saExplicitIndexRight);
saValue = bwt->saValue[saExplicitIndexMiddle];
shift = BIT_PER_CHAR * (saValue % CHAR_PER_WORD);
index = saValue / CHAR_PER_WORD;
// Try to increase mlcp
mlcp = min(llcp, rlcp); // mlcp = the characters (in unit of 16 for DNA) matched so far
// restriction for positions near the end of text
maxlcp = min(packedKeyLength, (bwt->textLength - saValue + CHAR_PER_WORD - 1) / CHAR_PER_WORD);
while (mlcp < maxlcp) {
p = BWTGetWordPackedText(packedText, index + mlcp, shift, keyLengthInBit - mlcp * BITS_IN_WORD);
if (packedKey[mlcp] != p) {
break;
}
mlcp++;
}
if ((saValue + keyLength <= bwt->textLength) || mlcp != maxlcp) {
if (mlcp == packedKeyLength) {
return 1;
}
if (packedKey[mlcp] > p) {
llcp = mlcp;
saExplicitIndexLeft = saExplicitIndexMiddle;
} else {
rlcp = mlcp;
saExplicitIndexRight = saExplicitIndexMiddle;
}
} else {
if (packedKey[mlcp-1] >= p) {
llcp = mlcp - 1;
saExplicitIndexLeft = saExplicitIndexMiddle;
} else {
rlcp = mlcp - 1;
saExplicitIndexRight = saExplicitIndexMiddle;
}
}
}
// Two adjacent SA explicit index is found, convert back to SA index
if (saExplicitIndexLeft == startSaIndex / bwt->saInterval) {
startSaIndex = bwt->cumulativeFreq[firstChar] + 1;
} else {
startSaIndex = saExplicitIndexLeft * bwt->saInterval;
}
if (saExplicitIndexRight == (endSaIndex - 1) / bwt->saInterval + 1) {
endSaIndex = bwt->cumulativeFreq[firstChar + 1];
} else {
endSaIndex = saExplicitIndexRight * bwt->saInterval;
}
// binary search by decoding bwt
while (startSaIndex < endSaIndex) {
saIndexMiddle = average(startSaIndex, endSaIndex);
saValue = BWTSaValue(bwt, saIndexMiddle);
shift = BIT_PER_CHAR * (saValue % CHAR_PER_WORD);
index = saValue / CHAR_PER_WORD;
// Try to increase mlcp
mlcp = min(llcp, rlcp); // mlcp = the characters (in unit of 16 for DNA) matched so far
// restriction for positions near the end of text
maxlcp = min(packedKeyLength, (bwt->textLength - saValue + CHAR_PER_WORD - 1) / CHAR_PER_WORD);
while (mlcp < maxlcp) {
p = BWTGetWordPackedText(packedText, index + mlcp, shift, keyLengthInBit - mlcp * BITS_IN_WORD);
if (packedKey[mlcp] != p) {
break;
}
mlcp++;
}
if ((saValue + keyLength <= bwt->textLength) || mlcp != maxlcp) {
if (mlcp == packedKeyLength) {
return 1;
}
if (packedKey[mlcp] > p) {
llcp = mlcp;
startSaIndex = saIndexMiddle + 1;
} else {
rlcp = mlcp;
endSaIndex = saIndexMiddle;
}
} else {
if (packedKey[mlcp-1] >= p) {
llcp = mlcp - 1;
startSaIndex = saIndexMiddle + 1;
} else {
rlcp = mlcp - 1;
endSaIndex = saIndexMiddle;
}
}
}
// no match found
return 0;
}
|