File: ContinuousTriangleIntersection.cpp

package info (click to toggle)
sofa-framework 1.0~beta4-11
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 88,820 kB
  • ctags: 27,300
  • sloc: cpp: 151,126; ansic: 2,387; xml: 581; sh: 417; makefile: 68
file content (632 lines) | stat: -rw-r--r-- 22,145 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
#include <sofa/component/collision/ContinuousTriangleIntersection.h>
#include <sofa/helper/rmath.h>

namespace sofa
{

namespace component
{

namespace collision
{

bool ContinuousTriangleIntersection::isCollision(void)
{
	SReal t[3], u[3], v[3];
	double dt = 0.01; //Scene::getInstance()->getDt();
	//sout<<"Triangle 2  : " << tr2 << sendl;

//	getc(stdin);

	if (intersectPointTriangle(t[0], u[0], v[0], tr2.p1(), tr2.v1(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectPointTriangle(t[1], u[1], v[1], tr2.p2(), tr2.v2(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}
	
	if (intersectPointTriangle(t[2], u[2], v[2], tr2.p3(), tr2.v3(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectPointTriangle(t[0], u[0], v[0], tr1.p1(), tr1.v1(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;	
	}

	if (intersectPointTriangle(t[1], u[1], v[1], tr1.p2(), tr1.v2(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;	
		return true;
	}

	if (intersectPointTriangle(t[2], u[2], v[2], tr1.p3(), tr1.v3(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt))
	{
		 //sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}
	
	if (intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt))
	{
		//sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;
		return true;
	}

	if (intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;	
		return true;
	}

	if (intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt))
	{
		// sout<<"Triangle 1  : " << tr1 << sendl;	
		return true;
	}

	return false;

}

core::componentmodel::collision::DetectionOutput* ContinuousTriangleIntersection::computeDetectionOutput (void)
{
	SReal t[3], u[3], v[3];
	double dt = 0.01; //Scene::getInstance()->getDt();

	for (int i = 0; i < 3; i++)
		t[i] = u[i] = v[i] = 0.0;

	intersectPointTriangle(t[0], u[0], v[0], tr2.p1(), tr2.v1(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt);
	intersectPointTriangle(t[1], u[1], v[1], tr2.p2(), tr2.v2(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt);
	intersectPointTriangle(t[2], u[2], v[2], tr2.p3(), tr2.v3(), tr1.p1(), tr1.v1(), tr1.p2(), tr1.v2(), tr1.p3(), tr1.v3(), dt);
	
	// sout << "t = "  << t[0] << " " << t[1] << " " << t[2] << sendl;

	intersectPointTriangle(t[0], u[0], v[0], tr1.p1(), tr1.v1(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt);
	intersectPointTriangle(t[1], u[1], v[1], tr1.p2(), tr1.v2(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt);
	intersectPointTriangle(t[2], u[2], v[2], tr1.p3(), tr1.v3(), tr2.p1(), tr2.v1(), tr2.p2(), tr2.v2(), tr2.p3(), tr2.v3(), dt);
	
	// sout << "t = "  << t[0] << " " << t[1] << " " << t[2] << sendl;

	intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt);
	intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt);
	intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p1(), tr2.p2(), tr2.v1(), tr2.v2(), dt);
	
	// sout << "t = "  << t[0] << " " << t[1] << " " << t[2] << sendl;

	intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt);
	intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt);
	intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p1(), tr2.p3(), tr2.v1(), tr2.v3(), dt);
	
	// sout << "t = "  << t[0] << " " << t[1] << " " << t[2] << sendl;

	intersectEdgeEdge(t[0], u[0], v[0], tr1.p1(), tr1.p2(), tr1.v1(), tr1.v2(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt);
	intersectEdgeEdge(t[1], u[1], v[1], tr1.p1(), tr1.p3(), tr1.v1(), tr1.v3(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt);
	intersectEdgeEdge(t[2], u[2], v[2], tr1.p2(), tr1.p3(), tr1.v2(), tr1.v3(), tr2.p2(), tr2.p3(), tr2.v2(), tr2.v3(), dt);

	// compute the point and so on
	core::componentmodel::collision::DetectionOutput *detectionOutput = new core::componentmodel::collision::DetectionOutput();
	detectionOutput->elem = std::pair<core::CollisionElementIterator, core::CollisionElementIterator>(tr1, tr2);

	return detectionOutput;
}

ContinuousTriangleIntersection::ContinuousTriangleIntersection(Triangle& t1, Triangle &t2):tr1(t1), tr2(t2),m_tolerance((SReal)(1e-6))
{
    m_tolmin = -m_tolerance;
    m_tolmax = (SReal)1.0 + m_tolerance;
}

///////////////////////////////////////////////////////////////////////////////////////////////////
ContinuousTriangleIntersection::~ContinuousTriangleIntersection()
{

}

//////////////////////////////////////////////////////////////////////////////////////////////////
/// Method for calculating edge-edge collision
/// Given: edge (p1, p2) moving at velocity (v1, v2) intersecting with
///        edge (p3, p4) moving at velocity (v3, v4) 
///        dt is time step (in seconds)
/// Returns: 0 <= t <= 1 is the time of collision, actual time is t*dt
///          0 <= u, v <= 1 are the edge barycentric coordinates
/// Collision point: (1-u)*(p1 + t*dt*v1) + u*(p2 + t*dt*v2) = 
///		  or (1-v)*(p3 + t*dt*v3) + v*(p4 + t*dt*v4)
int ContinuousTriangleIntersection::intersectEdgeEdge (SReal& t, SReal& u, SReal& v,
													  const Vector3& p1, const Vector3& p2, 
													  const Vector3& v1, const Vector3& v2,
													  const Vector3& p3, const Vector3& p4,
													  const Vector3& v3, const Vector3& v4,
													  double dt)
{
    Vector3 d12, d13, d34, x12, x13, x34;
    SReal N1x, N1y, N1z, N2x, N2y, N2z, N3x, N3y, N3z;
    SReal C[4];
    Vector3 roots(-10,-10,-10);
    int numRoots;

    d12 = (v2 - v1)*dt;
    d34 = (v4 - v3)*dt;
    d13 = (v3 - v1)*dt;
    x12 = p2 - p1;
    x13 = p3 - p1;
    x34 = p4 - p3;

    /// Step1: Cross product x12(t) x x34(t)
    /// this represents the normal of triangle at t N(t)
    /// (x12 + t*dt*v12) x (x34 + t*dt*v34)
    /// Result: Quadratic equation in 't' in matrix form
    ///	   Vector N(t) { N3x + N2x*t + N1x*t*t,
    ///	     	         N3y + N2y*t + N1y*t*t,
    ///	     	         N3z + N2z*t + N1z*t*t}

    N1x = d12[1]*d34[2] - d12[2]*d34[1];
    N2x = x12[1]*d34[2] + d12[1]*x34[2] - x12[2]*d34[1] - x34[1]*d12[2];
    N3x = x12[1]*x34[2] - x12[2]*x34[1];

    N1y = d12[2]*d34[0] - d12[0]*d34[2];
    N2y = x12[2]*d34[0] + d12[2]*x34[0] - x12[0]*d34[2] - x34[2]*d12[0];
    N3y = x12[2]*x34[0] - x12[0]*x34[2];

    N1z = d12[0]*d34[1] - d12[1]*d34[0];
    N2z = x12[0]*d34[1] + d12[0]*x34[1] - x12[1]*d34[0] - x34[0]*d12[1];
    N3z = x12[0]*x34[1] - x12[1]*x34[0];

    /// Step 2: Compute the dot product with p01
    /// [N(t) . (p13 + t*dt*v13)] = 0
    /// compute coefficients of the resulting cubic equation
    /// C[0] + C[1]*t + C[2]*t*t + C[3]*t*t*t = 0

    C[3] = d13[0]*N1x + d13[1]*N1y + d13[2]*N1z;
    C[2] = x13[0]*N1x + d13[0]*N2x + x13[1]*N1y + d13[1]*N2y + x13[2]*N1z + d13[2]*N2z;
    C[1] = x13[0]*N2x + d13[0]*N3x + x13[1]*N2y + d13[1]*N3y + x13[2]*N2z + d13[2]*N3z;
    C[0] = x13[0]*N3x + x13[1]*N3y + x13[2]*N3z;

    /// Step 3: Determine roots of the cubic equation (for non-zero cubic term)
    if (C[3] < -EPSILON || C[3] > EPSILON)
        numRoots = solveCubic( roots, C );
    /// problem reduces to quadratic or linear (zero cubic term)
    else
        numRoots = solveQuadratic(roots[0], roots[1], C[2], C[1], C[0]);

    /// determing the valid root t [0,1] from upto three possible solutions
    bool isCorrectTime = checkValidRoots (t,
                                          numRoots,
                                          roots,
                                          m_tolmin,
                                          m_tolmax);

    if (!isCorrectTime)
        return 0;

    /// Step 4: determine exact points of collision within segments
    /// condition for intersection
    /// (1-u).x1(t) + u.x2(t) = (1-v).x3(t) + v.x4(t)
    x12 += d12*t;
    x34 += d34*t;
    x13 += d13*t;

    ///refer Bridson 2002 for calculating edge-edge

	SReal det = dot(x12, x12) * dot(x34, x34) - dot(x12, x34) * dot(x12, x34);

    if (det > -EPSILON && det < EPSILON)
    {
      std::cerr << "~ContinuousTriangleIntersection::intersectEdgeEdge: POSSIBLY PARALLEL EDGES, CANNOT FIND DETERMINANT" << std::endl;

        return 0;
    }

    SReal inv_det = (SReal)1.0/det;
    u = inv_det*(dot(x12, x13) * dot(x34,x34) - dot(x12, x34) * dot(x13, x34));

    if (u < m_tolmin || u > m_tolmax)
        return 0;

    v = inv_det*(dot(x12, x34) * dot(x12, x13) - dot(x12, x12) * dot(x13, x34) );

    if (v < m_tolmin || v > m_tolmax)
        return 0;

    return 1;
}

///////////////////////////////////////////////////////////////////////////////////////////////////
/// Method for calculating point-vertex collision
/// Given: Point p0 moving at velocity v0 intersecting with
///        Triangle (p1, p2, p3) moving at velocity (v1, v2, v3)
/// Returns: 0 <= t <= 1 is the time of collision, actual time is t*dt
///          0 <= u, v <= 1, u+v <= 1 are the triangle barycentric coordinates
/// Collision point: p0 + t*dt*v0 = 
///	             u*(p1 + t*dt*v1) + v*(p2 + t*dt*v2) + (1-u-v)*(p3 + t*dt*v3)
int ContinuousTriangleIntersection::intersectPointTriangle (SReal& t, SReal& u, SReal& v,
														    const Vector3& p0, const Vector3& v0,
														    const Vector3& p1, const Vector3& v1,
															const Vector3& p2, const Vector3& v2,
															const Vector3& p3, const Vector3& v3,
															double dt)
{
    Vector3 p12, v12, p13, v13, p01, v01;
    SReal N1x, N1y, N1z, N2x, N2y, N2z, N3x, N3y, N3z;
    SReal C[4];
    Vector3 roots(-10,-10,-10);

    /// Step 1: Compute the cross product p12 x p13
    /// this represents the normal of triangle at t N(t)
    /// (p12 + t*dt*v12) x (p13 + t*dt*v13)
    /// Result: Quadratic equation in 't' in matrix form
    ///	   Vector N(t) { N3x + N2x*t + N1x*t*t,
    ///	     	         N3y + N2y*t + N1y*t*t,
    ///	     	         N3z + N2z*t + N1z*t*t}

    p12 = p2 - p1;
    p13 = p3 - p1;
    p01 = p1 - p0;

    v12 = (v2 - v1) * dt;
    v13 = (v3 - v1) * dt;
    v01 = (v1 - v0) * dt;

    N1x = v12[1]*v13[2] - v12[2]*v13[1];
    N2x = p12[1]*v13[2] + v12[1]*p13[2] - p12[2]*v13[1] - p13[1]*v12[2];
    N3x = p12[1]*p13[2] - p12[2]*p13[1];

    N1y = v12[2]*v13[0] - v12[0]*v13[2];
    N2y = p12[2]*v13[0] + v12[2]*p13[0] - p12[0]*v13[2] - p13[2]*v12[0];
    N3y = p12[2]*p13[0] - p12[0]*p13[2];

    N1z = v12[0]*v13[1] - v12[1]*v13[0];
    N2z = p12[0]*v13[1] + v12[0]*p13[1] - p12[1]*v13[0] - p13[0]*v12[1];
    N3z = p12[0]*p13[1] - p12[1]*p13[0];

    /// Step 2: Compute the dot product with p01
    /// [N(t) . (p01 + t*v01)] = 0
    /// compute coefficients of the resulting cubic equation
    /// C[0] + C[1]*t + C[2]*t*t + C[3]*t*t*t = 0

    C[3] = v01[0]*N1x + v01[1]*N1y + v01[2]*N1z;
    C[2] = p01[0]*N1x + v01[0]*N2x + p01[1]*N1y + v01[1]*N2y + p01[2]*N1z + v01[2]*N2z;
    C[1] = p01[0]*N2x + v01[0]*N3x + p01[1]*N2y + v01[1]*N3y + p01[2]*N2z + v01[2]*N3z;
    C[0] = p01[0]*N3x + p01[1]*N3y + p01[2]*N3z;

    int numRoots;

    /// Step 3: determine roots of the cubic equation (for non-zero cubic term)
    if (C[3] < -EPSILON || C[3] > EPSILON)
        numRoots = solveCubic (roots, C);
    /// problem reduces to quadratic or linear (zero cubic term)
    else
        numRoots = solveQuadratic (roots[0], roots[1], C[2], C[1], C[0]);

    /// determing the valid root t [0,1] from upto three possible solutions
    bool isCorrectTime = checkValidRoots (t, numRoots, roots, m_tolmin, m_tolmax);

    if (!isCorrectTime)
        return 0;

    /// Step 4: determine exact points of collision within segments
    /// condition for intersection
    ///p0 + t*dt*v0 = u*(p1 + t*dt*v1) + v*(p2 + t*dt*v2) + (1-u-v)*(p3 + t*dt*v3)

    Vector3 x4 = p0 + v0*t*dt;
    Vector3 x1 = p1 + v1*t*dt;
    Vector3 x2 = p2 + v2*t*dt;
    Vector3 x3 = p3 + v3*t*dt;

    Vector3 x43 = x3 - x4;
    Vector3 x13 = x3 - x1;
    Vector3 x23 = x3 - x2;

    ///Ref. Bridson 2002
	SReal det = dot (x13, x13) * dot(x23, x23) - dot(x13, x23) * dot(x13, x23);

    if (det > -EPSILON && det < EPSILON)
    {
      std::cerr << "ContinousTriangleIntersection::intersectPointTriangle: POSSIBLY POINT IS PARALLEL TO PLANE, CANNOT FIND DETERMINANT" << std::endl;
        return 0;
    }

    ///find valid barycentric parameters
    SReal inv_det = (SReal)1./det;
	u = inv_det * ( dot (x13, x43) * dot(x23, x23) - dot(x13, x23) * dot (x23, x43) );

    if (u < m_tolmin || u > m_tolmax)
	{
		t = -10;
        return 0;
	}

	v = inv_det * ( dot(x13, x13) * dot(x23, x43) - dot(x13, x23) * dot(x13, x43) );

    if (v < m_tolmin || u + v > m_tolmax)
	{
		t = -10;
        return 0;
	}

    return 1;
}

///////////////////////////////////////////////////////////////////////////////////////////////////
/// Method used internally
///Solves cubic equation: c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 = 0
///upto three possible solution, make sure c[3] is non-zero
///Ref Graphics Gems I, Schwarze, Jochen, Cubic and Quartic Roots, p. 404-407
int ContinuousTriangleIntersection::solveCubic (Vector3& s, SReal c[4] )
{
    int   i, num;
    SReal sub;
    SReal A, B, C;
    SReal sq_A, p, q;
    SReal cb_p, D;

    ///normal form: x^3 + Ax^2 + Bx + C = 0

    A = c[ 2 ] / c[ 3 ];
    B = c[ 1 ] / c[ 3 ];
    C = c[ 0 ] / c[ 3 ];

    ///  substitute x = y - A/3 to eliminate quadric term:
    ///  x^3 +px + q = 0

    sq_A = A * A;
    p = (SReal)1.0/3 * ((SReal)(-1.0/3) * sq_A + B);
    q = (SReal)1.0/2 * ((SReal)(2.0/27) * A * sq_A - (SReal)(1.0/3) * A * B + C);

    ///use Cardano's formula

    cb_p = p * p * p;
    D = q * q + cb_p;

    if (IsZero(D))
    {
        if (IsZero(q)) /// one triple solution
        {
            s[ 0 ] = 0;
            num = 1;
        }
        else /// one single and one SReal solution
        {
            SReal u = cbrt(-q);
            s[ 0 ] = 2 * u;
            s[ 1 ] = - u;
            num = 2;
        }
    }
    else if (D < 0) /// Casus irreducibilis: three SReal solutions
    {
        SReal phi = (SReal)1.0/3 * acos(-q / sqrt(-cb_p));
        SReal t = 2 * sqrt(-p);

        s[ 0 ] =   t * cos(phi);
        s[ 1 ] = - t * cos(phi + (SReal)R_PI / 3);
        s[ 2 ] = - t * cos(phi - (SReal)R_PI / 3);
        num = 3;
    }
    else /// one SReal solution
    {
        SReal sqrt_D = sqrt(D);
        SReal u = cbrt(sqrt_D - q);
        SReal v = - cbrt(sqrt_D + q);

        s[ 0 ] = u + v;
        num = 1;
    }

    /// resubstitute

    sub = (SReal)1.0/3 * A;

    for (i = 0; i < num; ++i)
        s[ i ] -= sub;

    return num;
}


///////////////////////////////////////////////////////////////////////////////////////////////////
/// Method used internally
/// Solves quadratic equation: a*X + b*X + c = 0
/// x1 = q/a; x2 = c/q;
/// where q = -1/2[b + sgn(b)*sqrt(b^2 -4ac)]
/// Ref. Numerical Recipes
int ContinuousTriangleIntersection::solveQuadratic (SReal& t1, SReal& t2, const SReal& a,
												   const SReal& b, const SReal& c)
{
    int numRoots=0;
    SReal delta = b*b - (SReal)4.0*a*c;
    if (delta < 0.0)
        return 0;

    SReal sqrt_delta = sqrt(delta);

    SReal sgn_b;
    if (b<0.0)
        sgn_b=-1.0;
    else
        sgn_b=1.0;

    SReal q = (SReal)(-0.5)*(b+sgn_b*sqrt_delta);

    if (a < -EPSILON || a > EPSILON)
    {
        t2 = q/a;
        numRoots++;
    }

    if (q < -EPSILON || q > EPSILON)
    {
        t1 = c/q;

        numRoots++;
    }
    //else
    //    serr << "ContinousTriangleIntersection::solveQuadratic: UNSOLVABLE QUADRATIC EQUATION" << sendl;


    return numRoots;
}

///////////////////////////////////////////////////////////////////////////////////////////////////
/// Method used internally
/// method computes valid root within range of [rootMin, rootMax]
/// returns the smallest root if there are more than one valid root.
bool ContinuousTriangleIntersection::checkValidRoots(SReal& validRoot,
													const int& numRoots,
													const Vector3& roots,
													const SReal& rootMin,
													const SReal& rootMax)
{
    validRoot=-10;
    
    /// when numRoots equals 1
    if ((numRoots == 1) && checkRange (roots[0], rootMin, rootMax))
    {
        validRoot = roots[0];
        return true;
    }
    /// when numRoots equals 2
    else if (numRoots == 2)
    {
        if (checkRange(roots[0], rootMin, rootMax) && checkRange(roots[1], rootMin, rootMax))
        {
            validRoot = getMinVal(roots[0], roots[1]);
            return true;
        }
        else if (checkRange (roots[0], rootMin, rootMax))
        {
            validRoot = roots[0];
            return true;
        }
        else if (checkRange (roots[1], rootMin, rootMax))
        {
            validRoot = roots[1];
            return true;
        }
        else
            return false;
    }
    /// when numRoots equals 3
    else if (numRoots == 3)
    {
        if (checkRange (roots[0], rootMin, rootMax) &&
            checkRange (roots[1], rootMin, rootMax) &&
            checkRange (roots[2], rootMin, rootMax))
        {
            validRoot = getMinVal(roots[0], roots[1], roots[2]);
            return true;
        }
        else if (checkRange (roots[0], rootMin, rootMax) &&
                 checkRange (roots[1], rootMin, rootMax))
        {
            validRoot = getMinVal(roots[0], roots[1]);
            return true;
        }
        else if (checkRange (roots[1], rootMin, rootMax) &&
                 checkRange (roots[2], rootMin, rootMax))
        {
            validRoot = getMinVal(roots[1], roots[2]);
            return true;
        }
        else if (checkRange (roots[0], rootMin, rootMax) &&
                 checkRange (roots[2], rootMin, rootMax))
        {
            validRoot = getMinVal(roots[0], roots[2]);
            return true;
        }
        else if (checkRange (roots[0], rootMin, rootMax))
        {
            validRoot = roots[0];
            return true;
        }
        else if (checkRange (roots[1], rootMin, rootMax))
        {
            validRoot = roots[1];
            return true;
        }
        else if (checkRange (roots[2], rootMin, rootMax))
        {
            validRoot = roots[2];
            return true;
        }
        else
            return false;
    }
    else
        return false;
}

} // namespace collision

} // namespace component

} // namespace sofa