1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#define SOFA_COMPONENT_FORCEFIELD_TRIANGULARANISOTROPICFEMFORCEFIELD_CPP
#include <sofa/component/forcefield/TriangularAnisotropicFEMForceField.h>
#include <sofa/core/componentmodel/behavior/ForceField.inl>
#include <sofa/core/ObjectFactory.h>
#include <sofa/core/componentmodel/topology/BaseMeshTopology.h>
#include <sofa/helper/gl/template.h>
#include <sofa/component/topology/TriangleData.inl>
#include <sofa/component/topology/EdgeData.inl>
#include <sofa/component/topology/PointData.inl>
#include <sofa/helper/system/gl.h>
#include <fstream> // for reading the file
#include <iostream> //for debugging
#include <vector>
#include <algorithm>
#include <sofa/defaulttype/Vec3Types.h>
#include <assert.h>
#ifdef _WIN32
#include <windows.h>
#endif
// #define DEBUG_TRIANGLEFEM
namespace sofa
{
namespace component
{
namespace forcefield
{
using namespace sofa::defaulttype;
using namespace sofa::component::topology;
using namespace core::componentmodel::topology;
SOFA_DECL_CLASS(TriangularAnisotropicFEMForceField)
template <class DataTypes>
TriangularAnisotropicFEMForceField<DataTypes>::TriangularAnisotropicFEMForceField()
: f_young2(initData(&f_young2,(Real)(0.5*Inherited::f_young.getValue()),"transverseYoungModulus","Young modulus along transverse direction"))
, f_theta(initData(&f_theta,(Real)(0.0),"fiberAngle","Fiber angle in global reference frame (in degrees)"))
, f_fiberCenter(initData(&f_fiberCenter,"fiberCenter","Concentric fiber center in global reference frame"))
, showFiber(initData(&showFiber,true,"showFiber","Flag activating rendering of fiber directions within each triangle"))
{
this->_anisotropicMaterial = true;
}
template< class DataTypes>
void TriangularAnisotropicFEMForceField<DataTypes>::TRQSTriangleCreationFunction (int triangleIndex, void* param,
TriangleInformation &/*tinfo*/,
const Triangle& /*t*/,
const sofa::helper::vector< unsigned int > &,
const sofa::helper::vector< double >&)
{
TriangularAnisotropicFEMForceField<DataTypes> *ff= (TriangularAnisotropicFEMForceField<DataTypes> *)param;
if (ff) {
const Triangle &t = ff->_topology->getTriangle(triangleIndex);
Index a = t[0];
Index b = t[1];
Index c = t[2];
switch(ff->method)
{
case SMALL :
ff->initSmall(triangleIndex,a,b,c);
ff->computeMaterialStiffness(triangleIndex, a, b, c);
break;
case LARGE :
ff->initLarge(triangleIndex,a,b,c);
ff->computeMaterialStiffness(triangleIndex, a, b, c);
break;
}
}
}
template< class DataTypes>
void TriangularAnisotropicFEMForceField<DataTypes>::init()
{
_topology = getContext()->getMeshTopology();
Inherited::init();
//reinit();
}
template <class DataTypes>void TriangularAnisotropicFEMForceField<DataTypes>::reinit()
{
localFiberDirection.beginEdit();
f_poisson2.setValue(Inherited::f_poisson.getValue()*(f_young2.getValue()/Inherited::f_young.getValue()));
helper::vector<Deriv>& lfd = *(localFiberDirection.beginEdit());
lfd.resize(_topology->getNbTriangles());
localFiberDirection.endEdit();
Inherited::reinit();
}
template <class DataTypes>void TriangularAnisotropicFEMForceField<DataTypes>::handleTopologyChange()
{
std::list<const TopologyChange *>::const_iterator itBegin=_topology->firstChange();
std::list<const TopologyChange *>::const_iterator itEnd=_topology->lastChange();
localFiberDirection.handleTopologyEvents(itBegin,itEnd);
Inherited::handleTopologyChange();
}
template <class DataTypes>
void TriangularAnisotropicFEMForceField<DataTypes>::getFiberDir(int element, Deriv& dir)
{
helper::vector<Deriv>& lfd = *(localFiberDirection.beginEdit());
if ((unsigned)element < lfd.size())
{
const Deriv& ref = lfd[element];
const VecCoord& x = *this->mstate->getX();
topology::Triangle t = _topology->getTriangle(element);
dir = (x[t[1]]-x[t[0]])*ref[0] + (x[t[2]]-x[t[0]])*ref[1];
}
else
{
dir.clear();
}
localFiberDirection.endEdit();
}
template <class DataTypes>
void TriangularAnisotropicFEMForceField<DataTypes>::computeMaterialStiffness(int i, Index& v1, Index& v2, Index& v3)
{
Real Q11, Q12, Q22, Q66;
Coord fiberDirGlobal; // orientation of the fiber in the global frame of reference
Coord fiberDirLocalOrtho; // // orientation of the fiber in the local orthonormal frame of the element
Mat<3,3,Real> T, Tinv;
helper::vector<TriangleInformation>& triangleInf = *(Inherited::triangleInfo.beginEdit());
TriangleInformation *tinfo = &triangleInf[i];
Q11 = Inherited::f_young.getValue()/(1-Inherited::f_poisson.getValue()*f_poisson2.getValue());
Q12 = Inherited::f_poisson.getValue()*f_young2.getValue()/(1-Inherited::f_poisson.getValue()*f_poisson2.getValue());
Q22 = f_young2.getValue()/(1-Inherited::f_poisson.getValue()*f_poisson2.getValue());
Q66 = (Real)(Inherited::f_young.getValue() / (2.0*(1 + Inherited::f_poisson.getValue())));
//if (i >= (int) localFiberDirection.size())
// localFiberDirection.resize(i+1);
T[0] = (*Inherited::_initialPoints)[v2]-(*Inherited::_initialPoints)[v1];
T[1] = (*Inherited::_initialPoints)[v3]-(*Inherited::_initialPoints)[v1];
T[2] = cross(T[0], T[1]);
if (!f_fiberCenter.getValue().empty()) // in case we have concentric fibers
{
Coord tcenter = ((*Inherited::_initialPoints)[v1]+(*Inherited::_initialPoints)[v2]+(*Inherited::_initialPoints)[v3])*(Real)(1.0/3.0);
Coord fcenter = f_fiberCenter.getValue()[0];
fiberDirGlobal = cross(T[2], fcenter-tcenter); // was fiberDir
}
else // for unidirectional fibers
{
double theta = (double)f_theta.getValue()*M_PI/180.0;
fiberDirGlobal = Coord((Real)cos(theta), (Real)sin(theta), 0); // was fiberDir
}
helper::vector<Deriv>& lfd = *(localFiberDirection.beginEdit());
Deriv& fiberDirLocal = lfd[i]; // orientation of the fiber in the local frame of the element (orthonormal frame)
//[1] = cross(T[2], T[0]);
//T[0].normalize();
//T[1].normalize();
//T[2].normalize();
T.transpose();
Tinv.invert(T);
fiberDirLocal = Tinv * fiberDirGlobal;
fiberDirLocal[2] = 0;
fiberDirLocal.normalize();
T[0] = (*Inherited::_initialPoints)[v2]-(*Inherited::_initialPoints)[v1];
T[1] = (*Inherited::_initialPoints)[v3]-(*Inherited::_initialPoints)[v1];
T[2] = cross(T[0], T[1]);
T[1] = cross(T[2], T[0]);
T[0].normalize();
T[1].normalize();
T[2].normalize();
T.transpose();
Tinv.invert(T);
fiberDirLocalOrtho = Tinv * fiberDirGlobal;
fiberDirLocalOrtho[2] = 0;
fiberDirLocalOrtho.normalize();
Real c, s, c2, s2, c3, s3,c4, s4;
c = fiberDirLocalOrtho[0];
s = fiberDirLocalOrtho[1];
c2 = c*c;
s2 = s*s;
c3 = c2*c;
s3 = s2*s;
s4 = s2*s2;
c4 = c2*c2;
// K(1,1)=Q11*COS(THETA)^4 * + 2.0*(Q12+2*Q66)*SIN(THETA)^2*COS(THETA)^2 + Q22*SIN(THETA)^4 => c4*Q11+2*s2*c2*(Q12+2*Q66)+s4*Q22
// K(1,2)=(Q11+Q22-4*Q66)*SIN(THETA)^2*COS(THETA)^2 + Q12*(SIN(THETA)^4+COS(THETA)^4) => s2*c2*(Q11+Q22-4*Q66) + (s4+c4)*Q12
// K(2,1)=K(1,2)
// K(2,2)=Q11*SIN(THETA)^4 + 2.0*(Q12+2*Q66)*SIN(THETA)^2*COS(THETA)^2 + Q22*COS(THETA)^4 => s4*Q11 + 2.0*s2*c2*(Q12+2*Q66) + c4*Q22
// K(6,1)=(Q11-Q12-2*Q66)*SIN(THETA)*COS(THETA)^3 + (Q12-Q22+2*Q66)*SIN(THETA)^3*COS(THETA) => s*c3*(Q11-Q12-2*Q66)+s3*c*(Q12-Q22+2*Q66)
// K(1,6)=K(6,1)
// K(6,2)=(Q11-Q12-2*Q66)*SIN(THETA)^3*COS(THETA)+(Q12-Q22+2*Q66)*SIN(THETA)*COS(THETA)^3 => (Q11-Q12-2*Q66)*s3*c + (Q12-Q22+2*Q66)*s*c3
// K(2,6)=K(6,2)
// K(6,6)=(Q11+Q22-2*Q12-2*Q66)*SIN(THETA)^2 * COS(THETA)^2+ Q66*(SIN(THETA)^4+COS(THETA)^4) => (Q11+Q22-2*Q12-2*Q66)*s2*c2+ Q66*(s4+c4)
Real K11= c4 * Q11 + 2 * c2 * s2 * (Q12+2*Q66) + s4 * Q22;
Real K12 = c2 * s2 * (Q11+Q22-4*Q66) + (c4+s4) * Q12;
Real K22 = s4* Q11 + 2 * c2 * s2 * (Q12+2*Q66) + c4 * Q22;
Real K16 = s * c3 * (Q11-Q12-2*Q66) + s3 * c * (Q12-Q22+2*Q66);
Real K26 = s3 * c * (Q11-Q12-2*Q66) + s * c3 * (Q12-Q22+2*Q66);
Real K66 = c2 * s2 * (Q11+Q22-2*Q12-2*Q66) + (c4+s4) * Q66;
tinfo->materialMatrix[0][0] = K11;
tinfo->materialMatrix[0][1] = K12;
tinfo->materialMatrix[0][2] = K16;
tinfo->materialMatrix[1][0] = K12;
tinfo->materialMatrix[1][1] = K22;
tinfo->materialMatrix[1][2] = K26;
tinfo->materialMatrix[2][0] = K16;
tinfo->materialMatrix[2][1] = K26;
tinfo->materialMatrix[2][2] = K66;
tinfo->materialMatrix *= (Real)(1.0/12.0);
//sout << "Young1=" << Inherited::f_young.getValue() << endl;
//sout << "Young2=" << f_young2.getValue() << endl;
//sout << "Poisson1=" << Inherited::f_poisson.getValue() << endl;
//sout << "Poisson2=" << f_poisson2.getValue() << endl;
localFiberDirection.endEdit();
Inherited::triangleInfo.endEdit();
}
// ----------------------------------------------------------------
// --- Display
// ----------------------------------------------------------------
template <class DataTypes>
void TriangularAnisotropicFEMForceField<DataTypes>::draw()
{
glPolygonOffset(1.0, 2.0);
glEnable(GL_POLYGON_OFFSET_FILL);
Inherited::draw();
glDisable(GL_POLYGON_OFFSET_FILL);
if (!getContext()->getShowForceFields())
return;
helper::vector<Deriv>& lfd = *(localFiberDirection.beginEdit());
if (showFiber.getValue() && lfd.size() >= (unsigned)_topology->getNbTriangles()) {
const VecCoord& x = *this->mstate->getX();
int nbTriangles=_topology->getNbTriangles();
glColor3f(0,0,0);
glBegin(GL_LINES);
for(int i=0;i<nbTriangles; ++i) {
Index a = _topology->getTriangle(i)[0];
Index b = _topology->getTriangle(i)[1];
Index c = _topology->getTriangle(i)[2];
/*
Mat<3,3,Real> T;
T[0] = (*Inherited::_initialPoints)[b]-(*Inherited::_initialPoints)[a];
T[1] = (*Inherited::_initialPoints)[c]-(*Inherited::_initialPoints)[a];
T[2] = cross(T[0], T[1]);
T[1] = cross(T[2], T[0]);
T[1].normalize();
Coord y = T[1];
Coord ab = (*Inherited::_initialPoints)[b]-(*Inherited::_initialPoints)[a];
y *= ab.norm();*/
Coord center = (x[a]+x[b]+x[c])/3;
//Coord d = (x[b]-x[a])*localFiberDirection[i][0] + y*localFiberDirection[i][1];
Coord d = (x[b]-x[a])*lfd[i][0] + (x[c]-x[a])*lfd[i][1];
d*=0.25;
helper::gl::glVertexT(center-d);
helper::gl::glVertexT(center+d);
//Coord testDir(1, 0, 0);
//Real s;
//computeStressAlongDirection(s, i, testDir, Inherited::triangleInfo[i].stress);
}
glEnd();
}
localFiberDirection.endEdit();
}
// Register in the Factory
int TriangularAnisotropicFEMForceFieldClass = core::RegisterObject("Triangular finite element model using anisotropic material")
#ifndef SOFA_FLOAT
.add< TriangularAnisotropicFEMForceField<Vec3dTypes> >()
#endif
#ifndef SOFA_DOUBLE
.add< TriangularAnisotropicFEMForceField<Vec3fTypes> >()
#endif
;
#ifndef SOFA_FLOAT
template class SOFA_COMPONENT_FORCEFIELD_API TriangularAnisotropicFEMForceField<Vec3dTypes>;
#endif
#ifndef SOFA_DOUBLE
template class SOFA_COMPONENT_FORCEFIELD_API TriangularAnisotropicFEMForceField<Vec3fTypes>;
#endif
} // namespace forcefield
} // namespace component
} // namespace sofa
|