1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#include <sofa/component/linearsolver/LapackOperations.h>
//Lapack
#include <blas3pp.h>
#include <blas2pp.h>
#include <laslv.h>
#include <lapackpp.h>
namespace sofa
{
namespace component
{
namespace linearsolver
{
//cblas_dgemm : double precision, general matrices, multiplication matrix-matrix
// alpha*op(A)*op(B) + beta*C : with op() meaning wether or not we transpose the matrix
void applyLapackDGEMM( double* A, bool isTransposeA, double* B, bool isTransposeB, double* C,
double alpha, double beta,
unsigned int rowsA, unsigned int columnsA, unsigned int rowsB, unsigned int columnsB)
{
LaGenMatDouble MA(A,rowsA, columnsA,true);
LaGenMatDouble MB(B,rowsB, columnsB,true);
LaGenMatDouble MC(C,rowsA, columnsB,true);
Blas_Mat_Mat_Mult(MA, MB, MC, isTransposeA, isTransposeB, alpha, beta);
}
void applyLapackDGEMM( FullMatrix<double> &A, bool isTransposeA, FullMatrix<double> &B, bool isTransposeB, FullMatrix<double> &C, double alpha, double beta)
{
unsigned int rowA,colA,rowB,colB;
if (isTransposeA) {rowA=A.colSize(); colA=A.rowSize();}
else {rowA=A.rowSize(); colA=A.colSize();}
if (isTransposeB) {rowB=B.colSize(); colB=B.rowSize();}
else {rowB=B.rowSize(); colB=B.colSize();}
LaGenMatDouble MA(A[0],rowA, colA,true);
LaGenMatDouble MB(B[0],rowB, colB,true);
LaGenMatDouble MC(C[0],rowA, colB,true);
Blas_Mat_Mat_Mult(MA, MB, MC, isTransposeA, isTransposeB, alpha, beta);
}
//cblas_dgemv : double precision, general matrices, multiplication matrix-vector
// alpha*op(A)*x + beta*y : with op() meaning wether or not we transpose the matrix
void applyLapackDGEMV( double* A, bool isTransposeA, double* x, double* y,
double alpha, double beta,
unsigned int rowsA, unsigned int columnsA)
{
LaGenMatDouble MA(A,rowsA, columnsA,true);
if (isTransposeA){
LaVectorDouble Vx(x,rowsA);
LaVectorDouble Vy(y,columnsA);
Blas_Mat_Trans_Vec_Mult(MA, Vx, Vy, alpha, beta);
}else{
LaVectorDouble Vx(x,columnsA);
LaVectorDouble Vy(y,rowsA);
Blas_Mat_Vec_Mult(MA, Vx, Vy, alpha, beta);
}
}
void applyLapackDGEMV( FullMatrix<double> &A, bool isTransposeA, FullVector<double> &x, FullVector<double> &y,
double alpha, double beta)
{
LaGenMatDouble MA(A[0],A.rowSize(),A.colSize(),true);
LaVectorDouble Vx(x.ptr(),x.size());
LaVectorDouble Vy(y.ptr(),y.size());
if (isTransposeA)
Blas_Mat_Trans_Vec_Mult(MA, Vx, Vy, alpha, beta);
else
Blas_Mat_Vec_Mult(MA, Vx, Vy, alpha, beta);
}
double applyLapackDDOT( const unsigned int N, double *X, double *Y)
{
LaVectorDouble Vx(X,N);
LaVectorDouble Vy(Y,N);
return Blas_Dot_Prod(Vx, Vy);
}
double applyLapackDDOT( FullVector<double> &X, FullVector<double> &Y)
{
return applyLapackDDOT(X.size(), X.ptr(), Y.ptr());
}
//Solve A.X=B
void applyLapackDGESV( double* A, double *X, double* B, int dimA, int columnsB)
{
LaGenMatDouble MA(A,dimA, dimA,true);
LaGenMatDouble MB(B,dimA, columnsB,true);
LaGenMatDouble MX(X,dimA, columnsB,true);
LaLULinearSolve(MA, MX, MB);
}
void applyLapackDGESV( FullMatrix<double>& A, FullMatrix<double>& X, FullMatrix<double>& B)
{
LaGenMatDouble MA(A[0],A.rowSize(), A.colSize(),true);
LaGenMatDouble MB(B[0],A.rowSize(), B.colSize(),true);
LaGenMatDouble MX(X[0],A.rowSize(), B.colSize(),true);
LaLULinearSolve(MA, MX, MB);
}
void printMatrix( FullMatrix<double> &M, unsigned int row,unsigned int col)
{
std::streamsize precisionSize = std::cout.precision();
std::cout.precision(6);
std::ios_base::fmtflags flagPrecision = std::cout.setf(std::ios::fixed);
for (unsigned int r=0;r<row;r++)
{
if (r!=0) std::cout << "|\n|";
else std::cout << "|";
for (unsigned int c=0;c<col;++c)
{
std::cout << M.element(r,c) << "\t";
}
}
std::cout << "|\n";
std::cout.precision(precisionSize);
std::cout.setf(flagPrecision);
}
void printMatrix( FullMatrix<double> &M)
{
printMatrix(M,M.rowSize(),M.colSize());
}
void printVector( FullVector<double> &V, unsigned int row)
{
std::streamsize precisionSize = std::cout.precision();
std::cout.precision(6);
std::ios_base::fmtflags flagPrecision = std::cout.setf(std::ios::fixed);
for (unsigned int r=0;r<row;r++)
{
if (r!=0) std::cout << "|\n|";
else std::cout << "|";
std::cout << V.element(r) << "\t";
}
std::cout << "|\n";
std::cout.precision(precisionSize);
std::cout.setf(flagPrecision);
}
void printVector( FullVector<double> &V)
{
printVector(V, V.size());
}
}
}
}
|