1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#include <sofa/component/odesolver/NewmarkImplicitSolver.h>
#include <sofa/simulation/common/MechanicalVisitor.h>
#include <sofa/core/ObjectFactory.h>
#include <math.h>
#include <iostream>
#include "sofa/helper/system/thread/CTime.h"
namespace sofa
{
namespace component
{
namespace odesolver
{
using namespace sofa::defaulttype;
using namespace core::componentmodel::behavior;
NewmarkImplicitSolver::NewmarkImplicitSolver()
: f_rayleighStiffness( initData(&f_rayleighStiffness,0.1,"rayleighStiffness","Rayleigh damping coefficient related to stiffness") )
, f_rayleighMass( initData(&f_rayleighMass,0.1,"rayleighMass","Rayleigh damping coefficient related to mass"))
, f_velocityDamping( initData(&f_velocityDamping,0.,"vdamping","Velocity decay coefficient (no decay if null)") )
, f_verbose( initData(&f_verbose,false,"verbose","Dump system state at each iteration") )
, f_gamma( initData(&f_gamma, 0.5, "gamma", "Newmark scheme gamma coefficient") )
, f_beta( initData(&f_beta, 0.25, "beta", "Newmark scheme beta coefficient") )
{
}
void NewmarkImplicitSolver::solve(double dt, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId xResult, sofa::core::componentmodel::behavior::BaseMechanicalState::VecId vResult)
{
MultiVector pos(this, VecId::position());
MultiVector vel(this, VecId::velocity());
MultiVector f(this, VecId::force());
MultiVector b(this, VecId::V_DERIV);
MultiVector a(this, VecId::V_DERIV);
MultiVector aResult(this, VecId::V_DERIV);
const double h = dt;
const double gamma = f_gamma.getValue();
const double beta = f_beta.getValue();
const double rM = f_rayleighMass.getValue();
const double rK = f_rayleighStiffness.getValue();
const bool verbose = f_verbose.getValue();
/* This integration scheme is based on the following equations:
*
* $x_{t+h} = x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} )$
* $v_{t+h} = v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} )$
*
* Applied to a mechanical system where $ M a_t + (r_M M + r_K K) v_t + K x_t = f_ext$, we need to solve the following system:
*
* $ M a_{t+h} + (r_M M + r_K K) v_{t+h} + K x_{t+h} = f_ext $
* $ M a_{t+h} + (r_M M + r_K K) ( v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} ) ) + K ( x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} ) ) = f_ext $
* $ ( M + h \gamma (r_M M + r_K K) + h^2 \beta K ) a_{t+h} = f_ext - (r_M M + r_K K) ( v_t + h (1-\gamma) a_t ) - K ( x_t + h v_t + h^2/2 (1-2\beta) a_t ) $
* $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = f_ext - (r_M M + r_K K) v_t - K x_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
* $ ( (1 + h \gamma r_M) M + (h^2 \beta + h \gamma r_K) K ) a_{t+h} = a_t - (r_M M + r_K K) ( h (1-\gamma) a_t ) - K ( h v_t + h^2/2 (1-2\beta) a_t ) $
*
* The current implementation first computes $a_t$ directly (as in the explicit solvers), then solves the previous system to compute $a_{t+dt}$, and finally computes the new position and velocity.
*/
// 1. Compute a_t (stored in a)
if (rM == 0.0 && rK == 0.0)
{
computeForce(f); // f = f_ext - K x
}
else
{
// accumulation through mappings is disabled as it will be done by
// addMBKv after all factors are computed
computeForce(f, true, false); // f = f_ext - K x
// values are not cleared so that contributions from computeForce
// are kept and accumulated through mappings once at the end
addMBKv(f, -rM, 0, rK, false, true); // f -= (r_M M + r_K K) v
}
accFromF(a, f);
projectResponse(a); // b is projected to the constrained space
if( verbose )
serr<<"NewmarkImplicitSolver, a0 = "<< a <<sendl;
// 2. Compute right hand term of equation on a_{t+h}
b = a; // b = a
if (rM != 0.0 || rK != 0.0 || beta != 0.5)
{
propagateDx(a);
addMBKdx(b, -h*(1-gamma)*rM, 0, h*(1-gamma)*rK + h*h*(1-2*beta)/2); // b += ( -h (1-\gamma)(r_M M + r_K K) - h^2/2 (1-2\beta) K ) a
}
addMBKv(b, 0, 0, h); // b += -h K v
if( verbose )
serr<<"NewmarkImplicitSolver, b = "<< b <<sendl;
projectResponse(b); // b is projected to the constrained space
if( verbose )
serr<<"NewmarkImplicitSolver, projected b = "<< b <<sendl;
// 3. Solve system of equations on a_{t+h}
MultiMatrix matrix(this);
matrix = MechanicalMatrix::K * (-h*h*beta - h*rK) + MechanicalMatrix::M * (1 + h*gamma*rM);
//if( verbose )
// serr<<"NewmarkImplicitSolver, matrix = "<< MechanicalMatrix::K * (h*h*beta + h*rK) + MechanicalMatrix::M * (1 + h*gamma*rM) << " = " << matrix <<sendl;
matrix.solve(aResult, b);
projectResponse(aResult);
if( verbose )
serr<<"NewmarkImplicitSolver, a1 = "<< aResult <<sendl;
// 4. Compute the new position and velocity
MultiVector newPos(this, xResult);
MultiVector newVel(this, vResult);
#ifdef SOFA_NO_VMULTIOP // unoptimized version
// x_{t+h} = x_t + h v_t + h^2/2 ( (1-2\beta) a_t + 2\beta a_{t+h} )
b.eq(vel, a, h*(0.5-beta));
b.peq(aResult, h*beta);
newPos.eq(pos, b, h);
// v_{t+h} = v_t + h ( (1-\gamma) a_t + \gamma a_{t+h} )
newVel.eq(vel, a, h*(1-gamma));
newVel.peq(aResult, h*gamma);
#else // single-operation optimization
typedef core::componentmodel::behavior::BaseMechanicalState::VMultiOp VMultiOp;
VMultiOp ops;
ops.resize(3);
ops[0].first = (VecId)b;
ops[0].second.push_back(std::make_pair((VecId)vel,1.0));
ops[0].second.push_back(std::make_pair((VecId)a, h*(0.5-beta)));
ops[0].second.push_back(std::make_pair((VecId)aResult, h*beta));
ops[1].first = (VecId)newPos;
ops[1].second.push_back(std::make_pair((VecId)pos,1.0));
ops[1].second.push_back(std::make_pair((VecId)b,h));
ops[2].first = (VecId)newVel;
ops[2].second.push_back(std::make_pair((VecId)vel,1.0));
ops[2].second.push_back(std::make_pair((VecId)a, h*(1-gamma)));
ops[2].second.push_back(std::make_pair((VecId)aResult, h*gamma));
simulation::MechanicalVMultiOpVisitor vmop(ops);
vmop.execute(this->getContext());
#endif
addSeparateGravity(dt, newVel); // v += dt*g . Used if mass wants to added G separately from the other forces to v.
if (f_velocityDamping.getValue()!=0.0)
newVel *= exp(-h*f_velocityDamping.getValue());
if( verbose )
{
serr<<"NewmarkImplicitSolver, final x = "<< newPos <<sendl;
serr<<"NewmarkImplicitSolver, final v = "<< newVel <<sendl;
}
#ifdef SOFA_HAVE_LAPACK
applyConstraints();
#endif
}
SOFA_DECL_CLASS(NewmarkImplicitSolver)
int NewmarkImplicitSolverClass = core::RegisterObject("Implicit time integrator using Newmark scheme")
.add< NewmarkImplicitSolver >()
.addAlias("Newmark");
;
} // namespace odesolver
} // namespace component
} // namespace sofa
|