1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Framework *
* *
* Authors: M. Adam, J. Allard, B. Andre, P-J. Bensoussan, S. Cotin, C. Duriez,*
* H. Delingette, F. Falipou, F. Faure, S. Fonteneau, L. Heigeas, C. Mendoza, *
* M. Nesme, P. Neumann, J-P. de la Plata Alcade, F. Poyer and F. Roy *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
/*
* polygon_intersects_cube()
* by Don Hatch
* January 1994
*
* Algorithm:
* 1. If any edge intersects the cube, return true.
* Testing whether a line segment intersects the cube
* is equivalent to testing whether the origin is contained
* in the rhombic dodecahedron obtained by dragging
* a unit cube from (being centered at) one segment endpoint
* to the other.
* 2. If the polygon interior intersects the cube, return true.
* Since we know no vertex or edge intersects the cube,
* this amounts to testing whether any of the four cube diagonals
* intersects the interior of the polygon. (Same as voorhies's test).
* 3. Return false.
*/
#include "polygon_cube_intersection.h"
#include "vec.h"
namespace sofa
{
namespace helper
{
namespace polygon_cube_intersection
{
#define FOR(i,n) for ((i) = 0; (i) < (n); ++(i))
#define MAXDIM2(v) ((v)[0] > (v)[1] ? 0 : 1)
#define MAXDIM3(v) ((v)[0] > (v)[2] ? MAXDIM2(v) : MAXDIM2((v)+1)+1)
#define ABS(x) ((x)<0 ? -(x) : (x))
#define SQR(x) ((x)*(x))
#define SIGN_NONZERO(x) ((x) < 0 ? -1 : 1)
/* note a and b can be in the reverse order and it still works! */
#define IN_CLOSED_INTERVAL(a,x,b) (((x)-(a)) * ((x)-(b)) <= 0)
#define IN_OPEN_INTERVAL(a,x,b) (((x)-(a)) * ((x)-(b)) < 0)
#define seg_contains_point(a,b,x) (((b)>(x)) - ((a)>(x)))
/*
* Tells whether a given polygon with nonzero area
* contains a point which is assumed to lie in the plane of the polygon.
* Actually returns the multiplicity of containment.
* This will always be 1 or 0 for non-self-intersecting planar
* polygons with the normal in the standard direction
* (towards the eye when looking at the polygon so that it's CCW).
*/
extern int
polygon_contains_point_3d(int nverts, const float verts[/* nverts */][3],
const float polynormal[3],
float point[3])
{
float abspolynormal[3];
int zaxis, xaxis, yaxis, i, count;
int xdirection;
const float *v, *w;
/*
* Determine which axis to ignore
* (the one in which the polygon normal is largest)
*/
FOR(i,3)
abspolynormal[i] = ABS(polynormal[i]);
zaxis = MAXDIM3(abspolynormal);
if (polynormal[zaxis] < 0) {
xaxis = (zaxis+2)%3;
yaxis = (zaxis+1)%3;
} else {
xaxis = (zaxis+1)%3;
yaxis = (zaxis+2)%3;
}
count = 0;
FOR(i,nverts) {
v = verts[i];
w = verts[(i+1)%nverts];
if ((xdirection = seg_contains_point(v[xaxis], w[xaxis], point[xaxis]))) {
if (seg_contains_point(v[yaxis], w[yaxis], point[yaxis])) {
if (xdirection * (point[xaxis]-v[xaxis])*(w[yaxis]-v[yaxis]) <=
xdirection * (point[yaxis]-v[yaxis])*(w[xaxis]-v[xaxis]))
count += xdirection;
} else {
if (v[yaxis] <= point[yaxis])
count += xdirection;
}
}
}
return count;
}
/*
* A segment intersects the unit cube centered at the origin
* iff the origin is contained in the solid obtained
* by dragging a unit cube from one segment endpoint to the other.
* (This solid is a warped rhombic dodecahedron.)
* This amounts to 12 sidedness tests.
* Also, this test works even if one or both of the segment endpoints is
* inside the cube.
*/
extern int
segment_intersects_cube(const float v0[3], const float v1[3])
{
int i, iplus1, iplus2, edgevec_signs[3];
float edgevec[3];
VMV3(edgevec, v1, v0);
FOR(i,3)
edgevec_signs[i] = SIGN_NONZERO(edgevec[i]);
/*
* Test the three cube faces on the v1-ward side of the cube--
* if v0 is outside any of their planes then there is no intersection.
* Also test the three cube faces on the v0-ward side of the cube--
* if v1 is outside any of their planes then there is no intersection.
*/
FOR(i,3) {
if (v0[i] * edgevec_signs[i] > .5) return 0;
if (v1[i] * edgevec_signs[i] < -.5) return 0;
}
/*
* Okay, that's the six easy faces of the rhombic dodecahedron
* out of the way. Six more to go.
* The remaining six planes bound an infinite hexagonal prism
* joining the petrie polygons (skew hexagons) of the two cubes
* centered at the endpoints.
*/
FOR(i,3) {
float rhomb_normal_dot_v0, rhomb_normal_dot_cubedge;
iplus1 = (i+1)%3;
iplus2 = (i+2)%3;
#ifdef THE_EASY_TO_UNDERSTAND_WAY
{
float rhomb_normal[3], cubedge_midpoint[3];
/*
* rhomb_normal = VXV3(edgevec, unit vector in direction i),
* being cavalier about which direction it's facing
*/
rhomb_normal[i] = 0;
rhomb_normal[iplus1] = edgevec[iplus2];
rhomb_normal[iplus2] = -edgevec[iplus1];
/*
* We now are describing a plane parallel to
* both segment and the cube edge in question.
* if |DOT3(rhomb_normal, an arbitrary point on the segment)| >
* |DOT3(rhomb_normal, an arbitrary point on the cube edge in question|
* then the origin is outside this pair of opposite faces.
* (This is equivalent to saying that the line
* containing the segment is "outside" (i.e. further away from the
* origin than) the line containing the cube edge.
*/
cubedge_midpoint[i] = 0;
cubedge_midpoint[iplus1] = edgevec_signs[iplus1]*.5;
cubedge_midpoint[iplus2] = -edgevec_signs[iplus2]*.5;
rhomb_normal_dot_v0 = DOT3(rhomb_normal, v0);
rhomb_normal_dot_cubedge = DOT3(rhomb_normal,cubedge_midpoint);
}
#else /* the efficient way */
rhomb_normal_dot_v0 = edgevec[iplus2] * v0[iplus1]
- edgevec[iplus1] * v0[iplus2];
rhomb_normal_dot_cubedge = .5f *
(edgevec[iplus2] * edgevec_signs[iplus1] +
edgevec[iplus1] * edgevec_signs[iplus2]);
#endif /* the efficient way */
if (SQR(rhomb_normal_dot_v0) > SQR(rhomb_normal_dot_cubedge))
return 0; /* origin is outside this pair of opposite planes */
}
return 1;
}
/*
* Tells whether a given polygon intersects the cube of edge length 1
* centered at the origin.
* Always returns 1 if a polygon edge intersects the cube;
* returns the multiplicity of containment otherwise.
* (See explanation of polygon_contains_point_3d() above).
*/
extern int
polygon_intersects_cube(int nverts, const float verts[/* nverts */][3],
const float polynormal[3],
int ,/* already_know_vertices_are_outside_cube unused*/
int already_know_edges_are_outside_cube)
{
int i, best_diagonal[3];
float p[3], t;
/*
* If any edge intersects the cube, return 1.
*/
if (!already_know_edges_are_outside_cube)
FOR(i,nverts)
if (segment_intersects_cube(verts[i], verts[(i+1)%nverts]))
return 1;
/*
* If the polygon normal is zero and none of its edges intersect the
* cube, then it doesn't intersect the cube
*/
if (ISZEROVEC3(polynormal))
return 0;
/*
* Now that we know that none of the polygon's edges intersects the cube,
* deciding whether the polygon intersects the cube amounts
* to testing whether any of the four cube diagonals intersects
* the interior of the polygon.
*
* Notice that we only need to consider the cube diagonal that comes
* closest to being perpendicular to the plane of the polygon.
* If the polygon intersects any of the cube diagonals,
* it will intersect that one.
*/
FOR(i,3)
best_diagonal[i] = SIGN_NONZERO(polynormal[i]);
/*
* Okay, we have the diagonal of interest.
* The plane containing the polygon is the set of all points p satisfying
* DOT3(polynormal, p) == DOT3(polynormal, verts[0])
* So find the point p on the cube diagonal of interest
* that satisfies this equation.
* The line containing the cube diagonal is described parametrically by
* t * best_diagonal
* so plug this into the previous equation and solve for t.
* DOT3(polynormal, t * best_diagonal) == DOT3(polynormal, verts[0])
* i.e.
* t = DOT3(polynormal, verts[0]) / DOT3(polynormal, best_diagonal)
*
* (Note that the denominator is guaranteed to be nonzero, since
* polynormal is nonzero and best_diagonal was chosen to have the largest
* magnitude dot-product with polynormal)
*/
t = DOT3(polynormal, verts[0])
/ DOT3(polynormal, best_diagonal);
if (!IN_CLOSED_INTERVAL(-.5, t, .5))
return 0; /* intersection point is not in cube */
SXV3(p, t, best_diagonal); /* p = t * best_diagonal */
return polygon_contains_point_3d(nverts, verts, polynormal, p);
}
extern float *
get_polygon_normal(float normal[3],
int nverts, const float verts[/* nverts */][3])
{
int i;
float tothis[3], toprev[3], cross[3];
/*
* Triangulate the polygon and sum up the nverts-2 triangle normals.
*/
ZEROVEC3(normal);
VMV3(toprev, verts[1], verts[0]); /* 3 subtracts */
for (i = 2; i <= nverts-1; ++i) { /* n-2 times... */
VMV3(tothis, verts[i], verts[0]); /* 3 subtracts */
VXV3(cross, toprev, tothis); /* 3 subtracts, 6 multiplies */
VPV3(normal, normal, cross); /* 3 adds */
SET3(toprev, tothis);
}
return normal;
}
}
}
}
|