File: vec.h

package info (click to toggle)
sofa-framework 1.0~beta4-4
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 88,224 kB
  • ctags: 26,759
  • sloc: cpp: 151,113; ansic: 2,387; xml: 581; sh: 431; makefile: 101
file content (952 lines) | stat: -rw-r--r-- 33,061 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                              SOFA :: Framework                              *
*                                                                             *
* Authors: M. Adam, J. Allard, B. Andre, P-J. Bensoussan, S. Cotin, C. Duriez,*
* H. Delingette, F. Falipou, F. Faure, S. Fonteneau, L. Heigeas, C. Mendoza,  *
* M. Nesme, P. Neumann, J-P. de la Plata Alcade, F. Poyer and F. Roy          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
/*
 * vec.h --  Vector macros for 2,3, and 4 dimensions,
 *           for any  combination of C scalar types.
 *
 * Author:		Don Hatch (hatch@sgi.com)
 * Last modified:	Fri Sep 30 03:23:02 PDT 1994
 *
 * General description:
 *
 *	The macro name describes its arguments; e.g.
 *	    	MXS3 is "matrix times scalar in 3 dimensions";
 *	    	VMV2 is "vector minus vector in 2 dimensions".
 *
 *	If the result of an operation is a scalar, then the macro "returns"
 *	the value; e.g.
 *	    	result = DOT3(v,w);
 *	    	result = DET4(m);
 *
 *	If the result of an operation is a vector or matrix, then
 *	the first argument is the destination; e.g.
 *	    	SET2(tovec, fromvec);
 *	    	MXM3(result, m1, m2);
 *
 *  WARNING: For the operations that are not done "componentwise"
 *	    (e.g. vector cross products and matrix multiplies)
 *	    the destination should not be either of the arguments,
 *	    for obvious reasons.  For example, the following is wrong:
 *		VXM2(v,v,m);
 *          For such "unsafe" macros, there are safe versions provided,
 *          but you have to specify a type for the temporary
 *	    result vector or matrix.  For example, the safe versions
 *	    of VXM2 are:
 *              VXM2d(v,v,m)    if v's scalar type is double or float
 *              VXM2i(v,v,m)    if v's scalar type is int or char
 *              VXM2l(v,v,m)    if v's scalar type is long
 *              VXM2r(v,v,m)    if v's scalar type is real
 *              VXM2safe(type,v,v,m) for other scalar types.
 *	    These "safe" macros do not evaluate to C expressions
 *	    (so, for example, they can't be used inside the parentheses of
 *	    a for(...)).
 *
 *  Specific descriptions:
 *
 *	The "?"'s in the following can be 2, 3, or 4.
 *
 *	SET?(to,from)			to = from
 *	SETMAT?(to,from)		to = from
 *	ROUNDVEC?(to,from)		to = from with entries rounded
 *							to nearest integer
 *	ROUNDMAT?(to,from)		to = from with entries rounded
 *							to nearest integer
 *	FILLVEC?(v,s)			set each entry of vector v to be s
 *	FILLMAT?(m,s)			set each entry of matrix m to be s
 *	ZEROVEC?(v)			v = 0
 *	ISZEROVEC?(v)			v == 0
 *	EQVEC?(v,w)			v == w
 *	EQMAT?(m1,m2)			m1 == m2
 *	ZEROMAT?(m)			m = 0
 *	IDENTMAT?(m)			m = 1
 *	TRANSPOSE?(to,from)		(matrix to) = (transpose of matrix from)
 *	ADJOINT?(to,from)		(matrix to) = (adjoint of matrix from)
 *					 i.e. its determinant times its inverse
 *
 *	V{P,M}V?(to,v,w)		to = v {+,-} w
 *	M{P,M}M?(to,m1,m2)		to = m1 {+,-} m2
 *	SX{V,M}?(to,s,from)		to = s * from
 *	M{V,M}?(to,from)		to = -from
 *	{V,M}{X,D}S?(to,from,s)		to = from {*,/} s
 *	MXM?(to,m1,m2)			to = m1 * m2
 *	VXM?(to,v,m)			(row vec to) = (row vec v) * m
 *	MXV?(to,m,v)			(column vec to) = m * (column vec v)
 *	LERP?(to,v0,v1,t)		to = v0 + t*(v1-v0)
 *
 *	DET?(m)				determinant of m
 *	TRACE?(m)			trace (sum of diagonal entries) of m
 *	DOT?(v,w)			dot (scalar) product of v and w
 *	NORMSQRD?(v)			square of |v|
 *	DISTSQRD?(v,w)			square of |v-w|
 *
 *	XV2(to,v)			to = v rotated by 90 degrees
 *	VXV3(to,v1,v2)			to = cross (vector) product of v1 and v2
 *	VXVXV4(to,v1,v2,v3)		to = 4-dimensional vector cross product
 *					 of v1,v2,v3 (a vector orthogonal to
 *					 v1,v2,v3 whose length equals the
 *					 volume of the spanned parallelotope)
 *	VXV2(v0,v1)			determinant of matrix with rows v0,v1
 *	VXVXV3(v0,v1,v2)		determinant of matrix with rows v0,v1,v2
 *	VXVXVXV4(v0,v1,v2,v3)		determinant of matrix with rows v0,..,v3
 *
 *   The following macros mix objects from different dimensions.
 *   For example, V3XM4 would be used to apply a composite
 *   4x4 rotation-and-translation matrix to a 3d vector.
 *
 *	SET3from2(to,from,pad)		(3d vec to) = (2d vec from) with pad
 *	SET4from3(to,from,pad)		(4d vec to) = (3d vec from) with pad
 *	SETMAT3from2(to,from,pad0,pad1) (3x3 mat to) = (2x2 mat from)
 *					 padded with pad0 on the sides
 *					 and pad1 in the corner
 *	SETMAT4from3(to,from,pad0,pad1) (4x4 mat to) = (3x3 mat from)
 *					 padded with pad0 on the sides
 *					 and pad1 in the corner
 *	V2XM3(to2,v2,m3)       (2d row vec to2) = (2d row vec v2) * (3x3 mat m3)
 *	V3XM4(to3,v3,m4)       (3d row vec to3) = (3d row vec v2) * (4x4 mat m4)
 *	M3XV2(to2,m3,v2)       (2d col vec to2) = (3x3 mat m3) * (2d col vec v2)
 *	M4XV3(to3,m4,v3)       (3d col vec to3) = (4x4 mat m4) * (3d col vec v3)
 *	M2XM3(to3,m2,m3)       (3x3 mat to3) = (2x2 mat m2) * (3x3 mat m3)
 *	M3XM4(to4,m3,m4)       (4x4 mat to4) = (3x3 mat m3) * (4x4 mat m4)
 *	M3XM2(to3,m3,m2)       (3x3 mat to3) = (3x3 mat m3) * (2x2 mat m2)
 *	M4XM3(to4,m4,m3)       (4x4 mat to4) = (4x4 mat m4) * (3x3 mat m3)
 *
 *
 *   This file is machine-generated and can be regenerated
 *   for any number of dimensions.
 *   The program that generated it is available upon request.
 */

#ifndef VEC_H
#define VEC_H 4
#include <math.h>	/* for definition of floor() */
#include <sofa/helper/helper.h>

namespace sofa
{

namespace helper
{

namespace polygon_cube_intersection
{

#define SET2(to,from)	\
		((to)[0] = (from)[0], \
		 (to)[1] = (from)[1])
#define SETMAT2(to,from)	\
		(SET2((to)[0], (from)[0]), \
		 SET2((to)[1], (from)[1]))
#define ROUNDVEC2(to,from)	\
		((to)[0] = floor((from)[0]+.5), \
		 (to)[1] = floor((from)[1]+.5))
#define ROUNDMAT2(to,from)	\
		(ROUNDVEC2((to)[0], (from)[0]), \
		 ROUNDVEC2((to)[1], (from)[1]))
#define FILLVEC2(v,s)	\
		((v)[0] = (s), \
		 (v)[1] = (s))
#define FILLMAT2(m,s)	\
		(FILLVEC2((m)[0], s), \
		 FILLVEC2((m)[1], s))
#define ZEROVEC2(v)	\
		((v)[0] = 0, \
		 (v)[1] = 0)
#define ISZEROVEC2(v)	\
		((v)[0] == 0 && \
		 (v)[1] == 0)
#define EQVEC2(v,w)	\
		((v)[0] == (w)[0] && \
		 (v)[1] == (w)[1])
#define EQMAT2(m1,m2)	\
		(EQVEC2((m1)[0], (m2)[0]) && \
		 EQVEC2((m1)[1], (m2)[1]))
#define ZEROMAT2(m)	\
		(ZEROVEC2((m)[0]), \
		 ZEROVEC2((m)[1]))
#define IDENTMAT2(m)	\
		(ZEROVEC2((m)[0]), (m)[0][0]=1, \
		 ZEROVEC2((m)[1]), (m)[1][1]=1)
#define TRANSPOSE2(to,from)	\
		(_SETcol2((to)[0], from, 0), \
		 _SETcol2((to)[1], from, 1))
#define VPV2(to,v,w)	\
		((to)[0] = (v)[0] + (w)[0], \
		 (to)[1] = (v)[1] + (w)[1])
#define VMV2(to,v,w)	\
		((to)[0] = (v)[0] - (w)[0], \
		 (to)[1] = (v)[1] - (w)[1])
#define MPM2(to,m1,m2)	\
		(VPV2((to)[0], (m1)[0], (m2)[0]), \
		 VPV2((to)[1], (m1)[1], (m2)[1]))
#define MMM2(to,m1,m2)	\
		(VMV2((to)[0], (m1)[0], (m2)[0]), \
		 VMV2((to)[1], (m1)[1], (m2)[1]))
#define SXV2(to,s,from)	\
		((to)[0] = (s) * (from)[0], \
		 (to)[1] = (s) * (from)[1])
#define SXM2(to,s,from)	\
		(SXV2((to)[0], s, (from)[0]), \
		 SXV2((to)[1], s, (from)[1]))
#define MV2(to,from)	\
		((to)[0] = -(from)[0], \
		 (to)[1] = -(from)[1])
#define MM2(to,from)	\
		(MV2((to)[0], (from)[0]), \
		 MV2((to)[1], (from)[1]))
#define VXS2(to,from,s)	\
		((to)[0] = (from)[0] * (s), \
		 (to)[1] = (from)[1] * (s))
#define VDS2(to,from,s)	\
		((to)[0] = (from)[0] / (s), \
		 (to)[1] = (from)[1] / (s))
#define MXS2(to,from,s)	\
		(VXS2((to)[0], (from)[0], s), \
		 VXS2((to)[1], (from)[1], s))
#define MDS2(to,from,s)	\
		(VDS2((to)[0], (from)[0], s), \
		 VDS2((to)[1], (from)[1], s))
#define MXM2(to,m1,m2)	\
		(VXM2((to)[0], (m1)[0], m2), \
		 VXM2((to)[1], (m1)[1], m2))
#define VXM2(to,v,m)	\
		((to)[0] = _DOTcol2(v, m, 0), \
		 (to)[1] = _DOTcol2(v, m, 1))
#define MXV2(to,m,v)	\
		((to)[0] = DOT2((m)[0], v), \
		 (to)[1] = DOT2((m)[1], v))
#define LERP2(to,v0,v1,t)	\
		((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
		 (to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]))
#define TRACE2(m)	\
		((m)[0][0] + \
		 (m)[1][1])
#define DOT2(v,w)	\
		((v)[0] * (w)[0] + \
		 (v)[1] * (w)[1])
#define NORMSQRD2(v)	\
		((v)[0] * (v)[0] + \
		 (v)[1] * (v)[1])
#define DISTSQRD2(v,w)	\
		(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
		 ((v)[1]-(w)[1])*((v)[1]-(w)[1]))
#define _DOTcol2(v,m,j)	\
		((v)[0] * (m)[0][j] + \
		 (v)[1] * (m)[1][j])
#define _SETcol2(v,m,j)	\
		((v)[0] = (m)[0][j], \
		 (v)[1] = (m)[1][j])
#define _MXVcol2(to,m,M,j)	\
		((to)[0][j] = _DOTcol2((m)[0],M,j), \
		 (to)[1][j] = _DOTcol2((m)[1],M,j))
#define _DET2(v0,v1,i0,i1)	\
		((v0)[i0]* _DET1(v1,i1) + \
		 (v0)[i1]*-_DET1(v1,i0))
#define XV2(to,v1)	\
		((to)[0] = -_DET1(v1, 1), \
		 (to)[1] =  _DET1(v1, 0))
#define V2XM3(to2,v2,m3)	\
		((to2)[0] = _DOTcol2(v2,m3,0) + (m3)[2][0], \
		 (to2)[1] = _DOTcol2(v2,m3,1) + (m3)[2][1])
#define M3XV2(to2,m3,v2)	\
		((to2)[0] = DOT2((m3)[0],v2) + (m3)[0][2], \
		 (to2)[1] = DOT2((m3)[1],v2) + (m3)[1][2])
#define _DET1(v0,i0)	\
		((v0)[i0])
#define VXV2(v0,v1)	\
		(_DET2(v0,v1,0,1))
#define DET2(m)	\
		(VXV2((m)[0],(m)[1]))
#define ADJOINT2(to,m)	\
		( _ADJOINTcol2(to,0,m,1), \
		 __ADJOINTcol2(to,1,m,0))
#define _ADJOINTcol2(to,col,m,i1)	\
		((to)[0][col] =  _DET1(m[i1], 1), \
		 (to)[1][col] = -_DET1(m[i1], 0))
#define __ADJOINTcol2(to,col,m,i1)	\
		((to)[0][col] = -_DET1(m[i1], 1), \
		 (to)[1][col] =  _DET1(m[i1], 0))
#define SET3(to,from)	\
		((to)[0] = (from)[0], \
		 (to)[1] = (from)[1], \
		 (to)[2] = (from)[2])
#define SETMAT3(to,from)	\
		(SET3((to)[0], (from)[0]), \
		 SET3((to)[1], (from)[1]), \
		 SET3((to)[2], (from)[2]))
#define ROUNDVEC3(to,from)	\
		((to)[0] = floor((from)[0]+.5), \
		 (to)[1] = floor((from)[1]+.5), \
		 (to)[2] = floor((from)[2]+.5))
#define ROUNDMAT3(to,from)	\
		(ROUNDVEC3((to)[0], (from)[0]), \
		 ROUNDVEC3((to)[1], (from)[1]), \
		 ROUNDVEC3((to)[2], (from)[2]))
#define FILLVEC3(v,s)	\
		((v)[0] = (s), \
		 (v)[1] = (s), \
		 (v)[2] = (s))
#define FILLMAT3(m,s)	\
		(FILLVEC3((m)[0], s), \
		 FILLVEC3((m)[1], s), \
		 FILLVEC3((m)[2], s))
#define ZEROVEC3(v)	\
		((v)[0] = 0, \
		 (v)[1] = 0, \
		 (v)[2] = 0)
#define ISZEROVEC3(v)	\
		((v)[0] == 0 && \
		 (v)[1] == 0 && \
		 (v)[2] == 0)
#define EQVEC3(v,w)	\
		((v)[0] == (w)[0] && \
		 (v)[1] == (w)[1] && \
		 (v)[2] == (w)[2])
#define EQMAT3(m1,m2)	\
		(EQVEC3((m1)[0], (m2)[0]) && \
		 EQVEC3((m1)[1], (m2)[1]) && \
		 EQVEC3((m1)[2], (m2)[2]))
#define ZEROMAT3(m)	\
		(ZEROVEC3((m)[0]), \
		 ZEROVEC3((m)[1]), \
		 ZEROVEC3((m)[2]))
#define IDENTMAT3(m)	\
		(ZEROVEC3((m)[0]), (m)[0][0]=1, \
		 ZEROVEC3((m)[1]), (m)[1][1]=1, \
		 ZEROVEC3((m)[2]), (m)[2][2]=1)
#define TRANSPOSE3(to,from)	\
		(_SETcol3((to)[0], from, 0), \
		 _SETcol3((to)[1], from, 1), \
		 _SETcol3((to)[2], from, 2))
#define VPV3(to,v,w)	\
		((to)[0] = (v)[0] + (w)[0], \
		 (to)[1] = (v)[1] + (w)[1], \
		 (to)[2] = (v)[2] + (w)[2])
#define VMV3(to,v,w)	\
		((to)[0] = (v)[0] - (w)[0], \
		 (to)[1] = (v)[1] - (w)[1], \
		 (to)[2] = (v)[2] - (w)[2])
#define MPM3(to,m1,m2)	\
		(VPV3((to)[0], (m1)[0], (m2)[0]), \
		 VPV3((to)[1], (m1)[1], (m2)[1]), \
		 VPV3((to)[2], (m1)[2], (m2)[2]))
#define MMM3(to,m1,m2)	\
		(VMV3((to)[0], (m1)[0], (m2)[0]), \
		 VMV3((to)[1], (m1)[1], (m2)[1]), \
		 VMV3((to)[2], (m1)[2], (m2)[2]))
#define SXV3(to,s,from)	\
		((to)[0] = (s) * (from)[0], \
		 (to)[1] = (s) * (from)[1], \
		 (to)[2] = (s) * (from)[2])
#define SXM3(to,s,from)	\
		(SXV3((to)[0], s, (from)[0]), \
		 SXV3((to)[1], s, (from)[1]), \
		 SXV3((to)[2], s, (from)[2]))
#define MV3(to,from)	\
		((to)[0] = -(from)[0], \
		 (to)[1] = -(from)[1], \
		 (to)[2] = -(from)[2])
#define MM3(to,from)	\
		(MV3((to)[0], (from)[0]), \
		 MV3((to)[1], (from)[1]), \
		 MV3((to)[2], (from)[2]))
#define VXS3(to,from,s)	\
		((to)[0] = (from)[0] * (s), \
		 (to)[1] = (from)[1] * (s), \
		 (to)[2] = (from)[2] * (s))
#define VDS3(to,from,s)	\
		((to)[0] = (from)[0] / (s), \
		 (to)[1] = (from)[1] / (s), \
		 (to)[2] = (from)[2] / (s))
#define MXS3(to,from,s)	\
		(VXS3((to)[0], (from)[0], s), \
		 VXS3((to)[1], (from)[1], s), \
		 VXS3((to)[2], (from)[2], s))
#define MDS3(to,from,s)	\
		(VDS3((to)[0], (from)[0], s), \
		 VDS3((to)[1], (from)[1], s), \
		 VDS3((to)[2], (from)[2], s))
#define MXM3(to,m1,m2)	\
		(VXM3((to)[0], (m1)[0], m2), \
		 VXM3((to)[1], (m1)[1], m2), \
		 VXM3((to)[2], (m1)[2], m2))
#define VXM3(to,v,m)	\
		((to)[0] = _DOTcol3(v, m, 0), \
		 (to)[1] = _DOTcol3(v, m, 1), \
		 (to)[2] = _DOTcol3(v, m, 2))
#define MXV3(to,m,v)	\
		((to)[0] = DOT3((m)[0], v), \
		 (to)[1] = DOT3((m)[1], v), \
		 (to)[2] = DOT3((m)[2], v))
#define LERP3(to,v0,v1,t)	\
		((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
		 (to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
		 (to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]))
#define TRACE3(m)	\
		((m)[0][0] + \
		 (m)[1][1] + \
		 (m)[2][2])
#define DOT3(v,w)	\
		((v)[0] * (w)[0] + \
		 (v)[1] * (w)[1] + \
		 (v)[2] * (w)[2])
#define NORMSQRD3(v)	\
		((v)[0] * (v)[0] + \
		 (v)[1] * (v)[1] + \
		 (v)[2] * (v)[2])
#define DISTSQRD3(v,w)	\
		(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
		 ((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
		 ((v)[2]-(w)[2])*((v)[2]-(w)[2]))
#define _DOTcol3(v,m,j)	\
		((v)[0] * (m)[0][j] + \
		 (v)[1] * (m)[1][j] + \
		 (v)[2] * (m)[2][j])
#define _SETcol3(v,m,j)	\
		((v)[0] = (m)[0][j], \
		 (v)[1] = (m)[1][j], \
		 (v)[2] = (m)[2][j])
#define _MXVcol3(to,m,M,j)	\
		((to)[0][j] = _DOTcol3((m)[0],M,j), \
		 (to)[1][j] = _DOTcol3((m)[1],M,j), \
		 (to)[2][j] = _DOTcol3((m)[2],M,j))
#define _DET3(v0,v1,v2,i0,i1,i2)	\
		((v0)[i0]* _DET2(v1,v2,i1,i2) + \
		 (v0)[i1]*-_DET2(v1,v2,i0,i2) + \
		 (v0)[i2]* _DET2(v1,v2,i0,i1))
#define VXV3(to,v1,v2)	\
		((to)[0] =  _DET2(v1,v2, 1,2), \
		 (to)[1] = -_DET2(v1,v2, 0,2), \
		 (to)[2] =  _DET2(v1,v2, 0,1))
#define SET3from2(to,from,pad)	\
		((to)[0] = (from)[0], \
		 (to)[1] = (from)[1], \
		 (to)[2] = (pad))
#define SETMAT3from2(to,from,pad0,pad1)	\
		(SET3from2((to)[0], (from)[0], pad0), \
		 SET3from2((to)[1], (from)[1], pad0), \
		 FILLVEC2((to)[2], (pad0)), (to)[2][2] = (pad1))
#define M2XM3(to3,m2,m3)	\
		(_MXVcol2(to3,m2,m3,0), (to3)[2][0]=(m3)[2][0], \
		 _MXVcol2(to3,m2,m3,1), (to3)[2][1]=(m3)[2][1], \
		 _MXVcol2(to3,m2,m3,2), (to3)[2][2]=(m3)[2][2])
#define M3XM2(to3,m3,m2)	\
		(VXM2((to3)[0],(m3)[0],m2), (to3)[0][2]=(m3)[0][2], \
		 VXM2((to3)[1],(m3)[1],m2), (to3)[1][2]=(m3)[1][2], \
		 VXM2((to3)[2],(m3)[2],m2), (to3)[2][2]=(m3)[2][2])
#define V3XM4(to3,v3,m4)	\
		((to3)[0] = _DOTcol3(v3,m4,0) + (m4)[3][0], \
		 (to3)[1] = _DOTcol3(v3,m4,1) + (m4)[3][1], \
		 (to3)[2] = _DOTcol3(v3,m4,2) + (m4)[3][2])
#define M4XV3(to3,m4,v3)	\
		((to3)[0] = DOT3((m4)[0],v3) + (m4)[0][3], \
		 (to3)[1] = DOT3((m4)[1],v3) + (m4)[1][3], \
		 (to3)[2] = DOT3((m4)[2],v3) + (m4)[2][3])
#define VXVXV3(v0,v1,v2)	\
		(_DET3(v0,v1,v2,0,1,2))
#define DET3(m)	\
		(VXVXV3((m)[0],(m)[1],(m)[2]))
#define ADJOINT3(to,m)	\
		( _ADJOINTcol3(to,0,m,1,2), \
		 __ADJOINTcol3(to,1,m,0,2), \
		  _ADJOINTcol3(to,2,m,0,1))
#define _ADJOINTcol3(to,col,m,i1,i2)	\
		((to)[0][col] =  _DET2(m[i1],m[i2], 1,2), \
		 (to)[1][col] = -_DET2(m[i1],m[i2], 0,2), \
		 (to)[2][col] =  _DET2(m[i1],m[i2], 0,1))
#define __ADJOINTcol3(to,col,m,i1,i2)	\
		((to)[0][col] = -_DET2(m[i1],m[i2], 1,2), \
		 (to)[1][col] =  _DET2(m[i1],m[i2], 0,2), \
		 (to)[2][col] = -_DET2(m[i1],m[i2], 0,1))
#define SET4(to,from)	\
		((to)[0] = (from)[0], \
		 (to)[1] = (from)[1], \
		 (to)[2] = (from)[2], \
		 (to)[3] = (from)[3])
#define SETMAT4(to,from)	\
		(SET4((to)[0], (from)[0]), \
		 SET4((to)[1], (from)[1]), \
		 SET4((to)[2], (from)[2]), \
		 SET4((to)[3], (from)[3]))
#define ROUNDVEC4(to,from)	\
		((to)[0] = floor((from)[0]+.5), \
		 (to)[1] = floor((from)[1]+.5), \
		 (to)[2] = floor((from)[2]+.5), \
		 (to)[3] = floor((from)[3]+.5))
#define ROUNDMAT4(to,from)	\
		(ROUNDVEC4((to)[0], (from)[0]), \
		 ROUNDVEC4((to)[1], (from)[1]), \
		 ROUNDVEC4((to)[2], (from)[2]), \
		 ROUNDVEC4((to)[3], (from)[3]))
#define FILLVEC4(v,s)	\
		((v)[0] = (s), \
		 (v)[1] = (s), \
		 (v)[2] = (s), \
		 (v)[3] = (s))
#define FILLMAT4(m,s)	\
		(FILLVEC4((m)[0], s), \
		 FILLVEC4((m)[1], s), \
		 FILLVEC4((m)[2], s), \
		 FILLVEC4((m)[3], s))
#define ZEROVEC4(v)	\
		((v)[0] = 0, \
		 (v)[1] = 0, \
		 (v)[2] = 0, \
		 (v)[3] = 0)
#define ISZEROVEC4(v)	\
		((v)[0] == 0 && \
		 (v)[1] == 0 && \
		 (v)[2] == 0 && \
		 (v)[3] == 0)
#define EQVEC4(v,w)	\
		((v)[0] == (w)[0] && \
		 (v)[1] == (w)[1] && \
		 (v)[2] == (w)[2] && \
		 (v)[3] == (w)[3])
#define EQMAT4(m1,m2)	\
		(EQVEC4((m1)[0], (m2)[0]) && \
		 EQVEC4((m1)[1], (m2)[1]) && \
		 EQVEC4((m1)[2], (m2)[2]) && \
		 EQVEC4((m1)[3], (m2)[3]))
#define ZEROMAT4(m)	\
		(ZEROVEC4((m)[0]), \
		 ZEROVEC4((m)[1]), \
		 ZEROVEC4((m)[2]), \
		 ZEROVEC4((m)[3]))
#define IDENTMAT4(m)	\
		(ZEROVEC4((m)[0]), (m)[0][0]=1, \
		 ZEROVEC4((m)[1]), (m)[1][1]=1, \
		 ZEROVEC4((m)[2]), (m)[2][2]=1, \
		 ZEROVEC4((m)[3]), (m)[3][3]=1)
#define TRANSPOSE4(to,from)	\
		(_SETcol4((to)[0], from, 0), \
		 _SETcol4((to)[1], from, 1), \
		 _SETcol4((to)[2], from, 2), \
		 _SETcol4((to)[3], from, 3))
#define VPV4(to,v,w)	\
		((to)[0] = (v)[0] + (w)[0], \
		 (to)[1] = (v)[1] + (w)[1], \
		 (to)[2] = (v)[2] + (w)[2], \
		 (to)[3] = (v)[3] + (w)[3])
#define VMV4(to,v,w)	\
		((to)[0] = (v)[0] - (w)[0], \
		 (to)[1] = (v)[1] - (w)[1], \
		 (to)[2] = (v)[2] - (w)[2], \
		 (to)[3] = (v)[3] - (w)[3])
#define MPM4(to,m1,m2)	\
		(VPV4((to)[0], (m1)[0], (m2)[0]), \
		 VPV4((to)[1], (m1)[1], (m2)[1]), \
		 VPV4((to)[2], (m1)[2], (m2)[2]), \
		 VPV4((to)[3], (m1)[3], (m2)[3]))
#define MMM4(to,m1,m2)	\
		(VMV4((to)[0], (m1)[0], (m2)[0]), \
		 VMV4((to)[1], (m1)[1], (m2)[1]), \
		 VMV4((to)[2], (m1)[2], (m2)[2]), \
		 VMV4((to)[3], (m1)[3], (m2)[3]))
#define SXV4(to,s,from)	\
		((to)[0] = (s) * (from)[0], \
		 (to)[1] = (s) * (from)[1], \
		 (to)[2] = (s) * (from)[2], \
		 (to)[3] = (s) * (from)[3])
#define SXM4(to,s,from)	\
		(SXV4((to)[0], s, (from)[0]), \
		 SXV4((to)[1], s, (from)[1]), \
		 SXV4((to)[2], s, (from)[2]), \
		 SXV4((to)[3], s, (from)[3]))
#define MV4(to,from)	\
		((to)[0] = -(from)[0], \
		 (to)[1] = -(from)[1], \
		 (to)[2] = -(from)[2], \
		 (to)[3] = -(from)[3])
#define MM4(to,from)	\
		(MV4((to)[0], (from)[0]), \
		 MV4((to)[1], (from)[1]), \
		 MV4((to)[2], (from)[2]), \
		 MV4((to)[3], (from)[3]))
#define VXS4(to,from,s)	\
		((to)[0] = (from)[0] * (s), \
		 (to)[1] = (from)[1] * (s), \
		 (to)[2] = (from)[2] * (s), \
		 (to)[3] = (from)[3] * (s))
#define VDS4(to,from,s)	\
		((to)[0] = (from)[0] / (s), \
		 (to)[1] = (from)[1] / (s), \
		 (to)[2] = (from)[2] / (s), \
		 (to)[3] = (from)[3] / (s))
#define MXS4(to,from,s)	\
		(VXS4((to)[0], (from)[0], s), \
		 VXS4((to)[1], (from)[1], s), \
		 VXS4((to)[2], (from)[2], s), \
		 VXS4((to)[3], (from)[3], s))
#define MDS4(to,from,s)	\
		(VDS4((to)[0], (from)[0], s), \
		 VDS4((to)[1], (from)[1], s), \
		 VDS4((to)[2], (from)[2], s), \
		 VDS4((to)[3], (from)[3], s))
#define MXM4(to,m1,m2)	\
		(VXM4((to)[0], (m1)[0], m2), \
		 VXM4((to)[1], (m1)[1], m2), \
		 VXM4((to)[2], (m1)[2], m2), \
		 VXM4((to)[3], (m1)[3], m2))
#define VXM4(to,v,m)	\
		((to)[0] = _DOTcol4(v, m, 0), \
		 (to)[1] = _DOTcol4(v, m, 1), \
		 (to)[2] = _DOTcol4(v, m, 2), \
		 (to)[3] = _DOTcol4(v, m, 3))
#define MXV4(to,m,v)	\
		((to)[0] = DOT4((m)[0], v), \
		 (to)[1] = DOT4((m)[1], v), \
		 (to)[2] = DOT4((m)[2], v), \
		 (to)[3] = DOT4((m)[3], v))
#define LERP4(to,v0,v1,t)	\
		((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
		 (to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
		 (to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]), \
		 (to)[3]=(v0)[3]+(t)*((v1)[3]-(v0)[3]))
#define TRACE4(m)	\
		((m)[0][0] + \
		 (m)[1][1] + \
		 (m)[2][2] + \
		 (m)[3][3])
#define DOT4(v,w)	\
		((v)[0] * (w)[0] + \
		 (v)[1] * (w)[1] + \
		 (v)[2] * (w)[2] + \
		 (v)[3] * (w)[3])
#define NORMSQRD4(v)	\
		((v)[0] * (v)[0] + \
		 (v)[1] * (v)[1] + \
		 (v)[2] * (v)[2] + \
		 (v)[3] * (v)[3])
#define DISTSQRD4(v,w)	\
		(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
		 ((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
		 ((v)[2]-(w)[2])*((v)[2]-(w)[2]) + \
		 ((v)[3]-(w)[3])*((v)[3]-(w)[3]))
#define _DOTcol4(v,m,j)	\
		((v)[0] * (m)[0][j] + \
		 (v)[1] * (m)[1][j] + \
		 (v)[2] * (m)[2][j] + \
		 (v)[3] * (m)[3][j])
#define _SETcol4(v,m,j)	\
		((v)[0] = (m)[0][j], \
		 (v)[1] = (m)[1][j], \
		 (v)[2] = (m)[2][j], \
		 (v)[3] = (m)[3][j])
#define _MXVcol4(to,m,M,j)	\
		((to)[0][j] = _DOTcol4((m)[0],M,j), \
		 (to)[1][j] = _DOTcol4((m)[1],M,j), \
		 (to)[2][j] = _DOTcol4((m)[2],M,j), \
		 (to)[3][j] = _DOTcol4((m)[3],M,j))
#define _DET4(v0,v1,v2,v3,i0,i1,i2,i3)	\
		((v0)[i0]* _DET3(v1,v2,v3,i1,i2,i3) + \
		 (v0)[i1]*-_DET3(v1,v2,v3,i0,i2,i3) + \
		 (v0)[i2]* _DET3(v1,v2,v3,i0,i1,i3) + \
		 (v0)[i3]*-_DET3(v1,v2,v3,i0,i1,i2))
#define VXVXV4(to,v1,v2,v3)	\
		((to)[0] = -_DET3(v1,v2,v3, 1,2,3), \
		 (to)[1] =  _DET3(v1,v2,v3, 0,2,3), \
		 (to)[2] = -_DET3(v1,v2,v3, 0,1,3), \
		 (to)[3] =  _DET3(v1,v2,v3, 0,1,2))
#define SET4from3(to,from,pad)	\
		((to)[0] = (from)[0], \
		 (to)[1] = (from)[1], \
		 (to)[2] = (from)[2], \
		 (to)[3] = (pad))
#define SETMAT4from3(to,from,pad0,pad1)	\
		(SET4from3((to)[0], (from)[0], pad0), \
		 SET4from3((to)[1], (from)[1], pad0), \
		 SET4from3((to)[2], (from)[2], pad0), \
		 FILLVEC3((to)[3], (pad0)), (to)[3][3] = (pad1))
#define M3XM4(to4,m3,m4)	\
		(_MXVcol3(to4,m3,m4,0), (to4)[3][0]=(m4)[3][0], \
		 _MXVcol3(to4,m3,m4,1), (to4)[3][1]=(m4)[3][1], \
		 _MXVcol3(to4,m3,m4,2), (to4)[3][2]=(m4)[3][2], \
		 _MXVcol3(to4,m3,m4,3), (to4)[3][3]=(m4)[3][3])
#define M4XM3(to4,m4,m3)	\
		(VXM3((to4)[0],(m4)[0],m3), (to4)[0][3]=(m4)[0][3], \
		 VXM3((to4)[1],(m4)[1],m3), (to4)[1][3]=(m4)[1][3], \
		 VXM3((to4)[2],(m4)[2],m3), (to4)[2][3]=(m4)[2][3], \
		 VXM3((to4)[3],(m4)[3],m3), (to4)[3][3]=(m4)[3][3])
#define VXVXVXV4(v0,v1,v2,v3)	\
		(_DET4(v0,v1,v2,v3,0,1,2,3))
#define DET4(m)	\
		(VXVXVXV4((m)[0],(m)[1],(m)[2],(m)[3]))
#define ADJOINT4(to,m)	\
		( _ADJOINTcol4(to,0,m,1,2,3), \
		 __ADJOINTcol4(to,1,m,0,2,3), \
		  _ADJOINTcol4(to,2,m,0,1,3), \
		 __ADJOINTcol4(to,3,m,0,1,2))
#define _ADJOINTcol4(to,col,m,i1,i2,i3)	\
		((to)[0][col] =  _DET3(m[i1],m[i2],m[i3], 1,2,3), \
		 (to)[1][col] = -_DET3(m[i1],m[i2],m[i3], 0,2,3), \
		 (to)[2][col] =  _DET3(m[i1],m[i2],m[i3], 0,1,3), \
		 (to)[3][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,2))
#define __ADJOINTcol4(to,col,m,i1,i2,i3)	\
		((to)[0][col] = -_DET3(m[i1],m[i2],m[i3], 1,2,3), \
		 (to)[1][col] =  _DET3(m[i1],m[i2],m[i3], 0,2,3), \
		 (to)[2][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,3), \
		 (to)[3][col] =  _DET3(m[i1],m[i2],m[i3], 0,1,2))
#define TRANSPOSE2safe(type,to,from) \
		do {type _vec_h_temp_[2][2]; \
		    TRANSPOSE2(_vec_h_temp_,from); \
		    SETMAT2(to, _vec_h_temp_); \
		} while (0)
#define TRANSPOSE2d(to,from) TRANSPOSE2safe(double,to,from)
#define TRANSPOSE2i(to,from) TRANSPOSE2safe(int,to,from)
#define TRANSPOSE2l(to,from) TRANSPOSE2safe(long,to,from)
#define TRANSPOSE2r(to,from) TRANSPOSE2safe(real,to,from)
#define MXM2safe(type,to,m1,m2) \
		do {type _vec_h_temp_[2][2]; \
		    MXM2(_vec_h_temp_,m1,m2); \
		    SETMAT2(to, _vec_h_temp_); \
		} while (0)
#define MXM2d(to,m1,m2) MXM2safe(double,to,m1,m2)
#define MXM2i(to,m1,m2) MXM2safe(int,to,m1,m2)
#define MXM2l(to,m1,m2) MXM2safe(long,to,m1,m2)
#define MXM2r(to,m1,m2) MXM2safe(real,to,m1,m2)
#define VXM2safe(type,to,v,m) \
		do {type _vec_h_temp_[2]; \
		    VXM2(_vec_h_temp_,v,m); \
		    SET2(to, _vec_h_temp_); \
		} while (0)
#define VXM2d(to,v,m) VXM2safe(double,to,v,m)
#define VXM2i(to,v,m) VXM2safe(int,to,v,m)
#define VXM2l(to,v,m) VXM2safe(long,to,v,m)
#define VXM2r(to,v,m) VXM2safe(real,to,v,m)
#define MXV2safe(type,to,m,v) \
		do {type _vec_h_temp_[2]; \
		    MXV2(_vec_h_temp_,m,v); \
		    SET2(to, _vec_h_temp_); \
		} while (0)
#define MXV2d(to,m,v) MXV2safe(double,to,m,v)
#define MXV2i(to,m,v) MXV2safe(int,to,m,v)
#define MXV2l(to,m,v) MXV2safe(long,to,m,v)
#define MXV2r(to,m,v) MXV2safe(real,to,m,v)
#define XV2safe(type,to,v1) \
		do {type _vec_h_temp_[2]; \
		    XV2(_vec_h_temp_,v1); \
		    SET2(to, _vec_h_temp_); \
		} while (0)
#define XV2d(to,v1) XV2safe(double,to,v1)
#define XV2i(to,v1) XV2safe(int,to,v1)
#define XV2l(to,v1) XV2safe(long,to,v1)
#define XV2r(to,v1) XV2safe(real,to,v1)
#define V2XM3safe(type,to2,v2,m3) \
		do {type _vec_h_temp_[2]; \
		    V2XM3(_vec_h_temp_,v2,m3); \
		    SET2(to2, _vec_h_temp_); \
		} while (0)
#define V2XM3d(to2,v2,m3) V2XM3safe(double,to2,v2,m3)
#define V2XM3i(to2,v2,m3) V2XM3safe(int,to2,v2,m3)
#define V2XM3l(to2,v2,m3) V2XM3safe(long,to2,v2,m3)
#define V2XM3r(to2,v2,m3) V2XM3safe(real,to2,v2,m3)
#define M3XV2safe(type,to2,m3,v2) \
		do {type _vec_h_temp_[2]; \
		    M3XV2(_vec_h_temp_,m3,v2); \
		    SET2(to2, _vec_h_temp_); \
		} while (0)
#define M3XV2d(to2,m3,v2) M3XV2safe(double,to2,m3,v2)
#define M3XV2i(to2,m3,v2) M3XV2safe(int,to2,m3,v2)
#define M3XV2l(to2,m3,v2) M3XV2safe(long,to2,m3,v2)
#define M3XV2r(to2,m3,v2) M3XV2safe(real,to2,m3,v2)
#define ADJOINT2safe(type,to,m) \
		do {type _vec_h_temp_[2][2]; \
		    ADJOINT2(_vec_h_temp_,m); \
		    SETMAT2(to, _vec_h_temp_); \
		} while (0)
#define ADJOINT2d(to,m) ADJOINT2safe(double,to,m)
#define ADJOINT2i(to,m) ADJOINT2safe(int,to,m)
#define ADJOINT2l(to,m) ADJOINT2safe(long,to,m)
#define ADJOINT2r(to,m) ADJOINT2safe(real,to,m)
#define TRANSPOSE3safe(type,to,from) \
		do {type _vec_h_temp_[3][3]; \
		    TRANSPOSE3(_vec_h_temp_,from); \
		    SETMAT3(to, _vec_h_temp_); \
		} while (0)
#define TRANSPOSE3d(to,from) TRANSPOSE3safe(double,to,from)
#define TRANSPOSE3i(to,from) TRANSPOSE3safe(int,to,from)
#define TRANSPOSE3l(to,from) TRANSPOSE3safe(long,to,from)
#define TRANSPOSE3r(to,from) TRANSPOSE3safe(real,to,from)
#define MXM3safe(type,to,m1,m2) \
		do {type _vec_h_temp_[3][3]; \
		    MXM3(_vec_h_temp_,m1,m2); \
		    SETMAT3(to, _vec_h_temp_); \
		} while (0)
#define MXM3d(to,m1,m2) MXM3safe(double,to,m1,m2)
#define MXM3i(to,m1,m2) MXM3safe(int,to,m1,m2)
#define MXM3l(to,m1,m2) MXM3safe(long,to,m1,m2)
#define MXM3r(to,m1,m2) MXM3safe(real,to,m1,m2)
#define VXM3safe(type,to,v,m) \
		do {type _vec_h_temp_[3]; \
		    VXM3(_vec_h_temp_,v,m); \
		    SET3(to, _vec_h_temp_); \
		} while (0)
#define VXM3d(to,v,m) VXM3safe(double,to,v,m)
#define VXM3i(to,v,m) VXM3safe(int,to,v,m)
#define VXM3l(to,v,m) VXM3safe(long,to,v,m)
#define VXM3r(to,v,m) VXM3safe(real,to,v,m)
#define MXV3safe(type,to,m,v) \
		do {type _vec_h_temp_[3]; \
		    MXV3(_vec_h_temp_,m,v); \
		    SET3(to, _vec_h_temp_); \
		} while (0)
#define MXV3d(to,m,v) MXV3safe(double,to,m,v)
#define MXV3i(to,m,v) MXV3safe(int,to,m,v)
#define MXV3l(to,m,v) MXV3safe(long,to,m,v)
#define MXV3r(to,m,v) MXV3safe(real,to,m,v)
#define VXV3safe(type,to,v1,v2) \
		do {type _vec_h_temp_[3]; \
		    VXV3(_vec_h_temp_,v1,v2); \
		    SET3(to, _vec_h_temp_); \
		} while (0)
#define VXV3d(to,v1,v2) VXV3safe(double,to,v1,v2)
#define VXV3i(to,v1,v2) VXV3safe(int,to,v1,v2)
#define VXV3l(to,v1,v2) VXV3safe(long,to,v1,v2)
#define VXV3r(to,v1,v2) VXV3safe(real,to,v1,v2)
#define M2XM3safe(type,to3,m2,m3) \
		do {type _vec_h_temp_[3][3]; \
		    M2XM3(_vec_h_temp_,m2,m3); \
		    SETMAT3(to3, _vec_h_temp_); \
		} while (0)
#define M2XM3d(to3,m2,m3) M2XM3safe(double,to3,m2,m3)
#define M2XM3i(to3,m2,m3) M2XM3safe(int,to3,m2,m3)
#define M2XM3l(to3,m2,m3) M2XM3safe(long,to3,m2,m3)
#define M2XM3r(to3,m2,m3) M2XM3safe(real,to3,m2,m3)
#define M3XM2safe(type,to3,m3,m2) \
		do {type _vec_h_temp_[3][3]; \
		    M3XM2(_vec_h_temp_,m3,m2); \
		    SETMAT3(to3, _vec_h_temp_); \
		} while (0)
#define M3XM2d(to3,m3,m2) M3XM2safe(double,to3,m3,m2)
#define M3XM2i(to3,m3,m2) M3XM2safe(int,to3,m3,m2)
#define M3XM2l(to3,m3,m2) M3XM2safe(long,to3,m3,m2)
#define M3XM2r(to3,m3,m2) M3XM2safe(real,to3,m3,m2)
#define V3XM4safe(type,to3,v3,m4) \
		do {type _vec_h_temp_[3]; \
		    V3XM4(_vec_h_temp_,v3,m4); \
		    SET3(to3, _vec_h_temp_); \
		} while (0)
#define V3XM4d(to3,v3,m4) V3XM4safe(double,to3,v3,m4)
#define V3XM4i(to3,v3,m4) V3XM4safe(int,to3,v3,m4)
#define V3XM4l(to3,v3,m4) V3XM4safe(long,to3,v3,m4)
#define V3XM4r(to3,v3,m4) V3XM4safe(real,to3,v3,m4)
#define M4XV3safe(type,to3,m4,v3) \
		do {type _vec_h_temp_[3]; \
		    M4XV3(_vec_h_temp_,m4,v3); \
		    SET3(to3, _vec_h_temp_); \
		} while (0)
#define M4XV3d(to3,m4,v3) M4XV3safe(double,to3,m4,v3)
#define M4XV3i(to3,m4,v3) M4XV3safe(int,to3,m4,v3)
#define M4XV3l(to3,m4,v3) M4XV3safe(long,to3,m4,v3)
#define M4XV3r(to3,m4,v3) M4XV3safe(real,to3,m4,v3)
#define ADJOINT3safe(type,to,m) \
		do {type _vec_h_temp_[3][3]; \
		    ADJOINT3(_vec_h_temp_,m); \
		    SETMAT3(to, _vec_h_temp_); \
		} while (0)
#define ADJOINT3d(to,m) ADJOINT3safe(double,to,m)
#define ADJOINT3i(to,m) ADJOINT3safe(int,to,m)
#define ADJOINT3l(to,m) ADJOINT3safe(long,to,m)
#define ADJOINT3r(to,m) ADJOINT3safe(real,to,m)
#define TRANSPOSE4safe(type,to,from) \
		do {type _vec_h_temp_[4][4]; \
		    TRANSPOSE4(_vec_h_temp_,from); \
		    SETMAT4(to, _vec_h_temp_); \
		} while (0)
#define TRANSPOSE4d(to,from) TRANSPOSE4safe(double,to,from)
#define TRANSPOSE4i(to,from) TRANSPOSE4safe(int,to,from)
#define TRANSPOSE4l(to,from) TRANSPOSE4safe(long,to,from)
#define TRANSPOSE4r(to,from) TRANSPOSE4safe(real,to,from)
#define MXM4safe(type,to,m1,m2) \
		do {type _vec_h_temp_[4][4]; \
		    MXM4(_vec_h_temp_,m1,m2); \
		    SETMAT4(to, _vec_h_temp_); \
		} while (0)
#define MXM4d(to,m1,m2) MXM4safe(double,to,m1,m2)
#define MXM4i(to,m1,m2) MXM4safe(int,to,m1,m2)
#define MXM4l(to,m1,m2) MXM4safe(long,to,m1,m2)
#define MXM4r(to,m1,m2) MXM4safe(real,to,m1,m2)
#define VXM4safe(type,to,v,m) \
		do {type _vec_h_temp_[4]; \
		    VXM4(_vec_h_temp_,v,m); \
		    SET4(to, _vec_h_temp_); \
		} while (0)
#define VXM4d(to,v,m) VXM4safe(double,to,v,m)
#define VXM4i(to,v,m) VXM4safe(int,to,v,m)
#define VXM4l(to,v,m) VXM4safe(long,to,v,m)
#define VXM4r(to,v,m) VXM4safe(real,to,v,m)
#define MXV4safe(type,to,m,v) \
		do {type _vec_h_temp_[4]; \
		    MXV4(_vec_h_temp_,m,v); \
		    SET4(to, _vec_h_temp_); \
		} while (0)
#define MXV4d(to,m,v) MXV4safe(double,to,m,v)
#define MXV4i(to,m,v) MXV4safe(int,to,m,v)
#define MXV4l(to,m,v) MXV4safe(long,to,m,v)
#define MXV4r(to,m,v) MXV4safe(real,to,m,v)
#define VXVXV4safe(type,to,v1,v2,v3) \
		do {type _vec_h_temp_[4]; \
		    VXVXV4(_vec_h_temp_,v1,v2,v3); \
		    SET4(to, _vec_h_temp_); \
		} while (0)
#define VXVXV4d(to,v1,v2,v3) VXVXV4safe(double,to,v1,v2,v3)
#define VXVXV4i(to,v1,v2,v3) VXVXV4safe(int,to,v1,v2,v3)
#define VXVXV4l(to,v1,v2,v3) VXVXV4safe(long,to,v1,v2,v3)
#define VXVXV4r(to,v1,v2,v3) VXVXV4safe(real,to,v1,v2,v3)
#define M3XM4safe(type,to4,m3,m4) \
		do {type _vec_h_temp_[4][4]; \
		    M3XM4(_vec_h_temp_,m3,m4); \
		    SETMAT4(to4, _vec_h_temp_); \
		} while (0)
#define M3XM4d(to4,m3,m4) M3XM4safe(double,to4,m3,m4)
#define M3XM4i(to4,m3,m4) M3XM4safe(int,to4,m3,m4)
#define M3XM4l(to4,m3,m4) M3XM4safe(long,to4,m3,m4)
#define M3XM4r(to4,m3,m4) M3XM4safe(real,to4,m3,m4)
#define M4XM3safe(type,to4,m4,m3) \
		do {type _vec_h_temp_[4][4]; \
		    M4XM3(_vec_h_temp_,m4,m3); \
		    SETMAT4(to4, _vec_h_temp_); \
		} while (0)
#define M4XM3d(to4,m4,m3) M4XM3safe(double,to4,m4,m3)
#define M4XM3i(to4,m4,m3) M4XM3safe(int,to4,m4,m3)
#define M4XM3l(to4,m4,m3) M4XM3safe(long,to4,m4,m3)
#define M4XM3r(to4,m4,m3) M4XM3safe(real,to4,m4,m3)
#define ADJOINT4safe(type,to,m) \
		do {type _vec_h_temp_[4][4]; \
		    ADJOINT4(_vec_h_temp_,m); \
		    SETMAT4(to, _vec_h_temp_); \
		} while (0)
#define ADJOINT4d(to,m) ADJOINT4safe(double,to,m)
#define ADJOINT4i(to,m) ADJOINT4safe(int,to,m)
#define ADJOINT4l(to,m) ADJOINT4safe(long,to,m)
#define ADJOINT4r(to,m) ADJOINT4safe(real,to,m)

}
}
}

#endif /* VEC_H */