1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Framework *
* *
* Authors: M. Adam, J. Allard, B. Andre, P-J. Bensoussan, S. Cotin, C. Duriez,*
* H. Delingette, F. Falipou, F. Faure, S. Fonteneau, L. Heigeas, C. Mendoza, *
* M. Nesme, P. Neumann, J-P. de la Plata Alcade, F. Poyer and F. Roy *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
/*
* vec.h -- Vector macros for 2,3, and 4 dimensions,
* for any combination of C scalar types.
*
* Author: Don Hatch (hatch@sgi.com)
* Last modified: Fri Sep 30 03:23:02 PDT 1994
*
* General description:
*
* The macro name describes its arguments; e.g.
* MXS3 is "matrix times scalar in 3 dimensions";
* VMV2 is "vector minus vector in 2 dimensions".
*
* If the result of an operation is a scalar, then the macro "returns"
* the value; e.g.
* result = DOT3(v,w);
* result = DET4(m);
*
* If the result of an operation is a vector or matrix, then
* the first argument is the destination; e.g.
* SET2(tovec, fromvec);
* MXM3(result, m1, m2);
*
* WARNING: For the operations that are not done "componentwise"
* (e.g. vector cross products and matrix multiplies)
* the destination should not be either of the arguments,
* for obvious reasons. For example, the following is wrong:
* VXM2(v,v,m);
* For such "unsafe" macros, there are safe versions provided,
* but you have to specify a type for the temporary
* result vector or matrix. For example, the safe versions
* of VXM2 are:
* VXM2d(v,v,m) if v's scalar type is double or float
* VXM2i(v,v,m) if v's scalar type is int or char
* VXM2l(v,v,m) if v's scalar type is long
* VXM2r(v,v,m) if v's scalar type is real
* VXM2safe(type,v,v,m) for other scalar types.
* These "safe" macros do not evaluate to C expressions
* (so, for example, they can't be used inside the parentheses of
* a for(...)).
*
* Specific descriptions:
*
* The "?"'s in the following can be 2, 3, or 4.
*
* SET?(to,from) to = from
* SETMAT?(to,from) to = from
* ROUNDVEC?(to,from) to = from with entries rounded
* to nearest integer
* ROUNDMAT?(to,from) to = from with entries rounded
* to nearest integer
* FILLVEC?(v,s) set each entry of vector v to be s
* FILLMAT?(m,s) set each entry of matrix m to be s
* ZEROVEC?(v) v = 0
* ISZEROVEC?(v) v == 0
* EQVEC?(v,w) v == w
* EQMAT?(m1,m2) m1 == m2
* ZEROMAT?(m) m = 0
* IDENTMAT?(m) m = 1
* TRANSPOSE?(to,from) (matrix to) = (transpose of matrix from)
* ADJOINT?(to,from) (matrix to) = (adjoint of matrix from)
* i.e. its determinant times its inverse
*
* V{P,M}V?(to,v,w) to = v {+,-} w
* M{P,M}M?(to,m1,m2) to = m1 {+,-} m2
* SX{V,M}?(to,s,from) to = s * from
* M{V,M}?(to,from) to = -from
* {V,M}{X,D}S?(to,from,s) to = from {*,/} s
* MXM?(to,m1,m2) to = m1 * m2
* VXM?(to,v,m) (row vec to) = (row vec v) * m
* MXV?(to,m,v) (column vec to) = m * (column vec v)
* LERP?(to,v0,v1,t) to = v0 + t*(v1-v0)
*
* DET?(m) determinant of m
* TRACE?(m) trace (sum of diagonal entries) of m
* DOT?(v,w) dot (scalar) product of v and w
* NORMSQRD?(v) square of |v|
* DISTSQRD?(v,w) square of |v-w|
*
* XV2(to,v) to = v rotated by 90 degrees
* VXV3(to,v1,v2) to = cross (vector) product of v1 and v2
* VXVXV4(to,v1,v2,v3) to = 4-dimensional vector cross product
* of v1,v2,v3 (a vector orthogonal to
* v1,v2,v3 whose length equals the
* volume of the spanned parallelotope)
* VXV2(v0,v1) determinant of matrix with rows v0,v1
* VXVXV3(v0,v1,v2) determinant of matrix with rows v0,v1,v2
* VXVXVXV4(v0,v1,v2,v3) determinant of matrix with rows v0,..,v3
*
* The following macros mix objects from different dimensions.
* For example, V3XM4 would be used to apply a composite
* 4x4 rotation-and-translation matrix to a 3d vector.
*
* SET3from2(to,from,pad) (3d vec to) = (2d vec from) with pad
* SET4from3(to,from,pad) (4d vec to) = (3d vec from) with pad
* SETMAT3from2(to,from,pad0,pad1) (3x3 mat to) = (2x2 mat from)
* padded with pad0 on the sides
* and pad1 in the corner
* SETMAT4from3(to,from,pad0,pad1) (4x4 mat to) = (3x3 mat from)
* padded with pad0 on the sides
* and pad1 in the corner
* V2XM3(to2,v2,m3) (2d row vec to2) = (2d row vec v2) * (3x3 mat m3)
* V3XM4(to3,v3,m4) (3d row vec to3) = (3d row vec v2) * (4x4 mat m4)
* M3XV2(to2,m3,v2) (2d col vec to2) = (3x3 mat m3) * (2d col vec v2)
* M4XV3(to3,m4,v3) (3d col vec to3) = (4x4 mat m4) * (3d col vec v3)
* M2XM3(to3,m2,m3) (3x3 mat to3) = (2x2 mat m2) * (3x3 mat m3)
* M3XM4(to4,m3,m4) (4x4 mat to4) = (3x3 mat m3) * (4x4 mat m4)
* M3XM2(to3,m3,m2) (3x3 mat to3) = (3x3 mat m3) * (2x2 mat m2)
* M4XM3(to4,m4,m3) (4x4 mat to4) = (4x4 mat m4) * (3x3 mat m3)
*
*
* This file is machine-generated and can be regenerated
* for any number of dimensions.
* The program that generated it is available upon request.
*/
#ifndef VEC_H
#define VEC_H 4
#include <math.h> /* for definition of floor() */
#include <sofa/helper/helper.h>
namespace sofa
{
namespace helper
{
namespace polygon_cube_intersection
{
#define SET2(to,from) \
((to)[0] = (from)[0], \
(to)[1] = (from)[1])
#define SETMAT2(to,from) \
(SET2((to)[0], (from)[0]), \
SET2((to)[1], (from)[1]))
#define ROUNDVEC2(to,from) \
((to)[0] = floor((from)[0]+.5), \
(to)[1] = floor((from)[1]+.5))
#define ROUNDMAT2(to,from) \
(ROUNDVEC2((to)[0], (from)[0]), \
ROUNDVEC2((to)[1], (from)[1]))
#define FILLVEC2(v,s) \
((v)[0] = (s), \
(v)[1] = (s))
#define FILLMAT2(m,s) \
(FILLVEC2((m)[0], s), \
FILLVEC2((m)[1], s))
#define ZEROVEC2(v) \
((v)[0] = 0, \
(v)[1] = 0)
#define ISZEROVEC2(v) \
((v)[0] == 0 && \
(v)[1] == 0)
#define EQVEC2(v,w) \
((v)[0] == (w)[0] && \
(v)[1] == (w)[1])
#define EQMAT2(m1,m2) \
(EQVEC2((m1)[0], (m2)[0]) && \
EQVEC2((m1)[1], (m2)[1]))
#define ZEROMAT2(m) \
(ZEROVEC2((m)[0]), \
ZEROVEC2((m)[1]))
#define IDENTMAT2(m) \
(ZEROVEC2((m)[0]), (m)[0][0]=1, \
ZEROVEC2((m)[1]), (m)[1][1]=1)
#define TRANSPOSE2(to,from) \
(_SETcol2((to)[0], from, 0), \
_SETcol2((to)[1], from, 1))
#define VPV2(to,v,w) \
((to)[0] = (v)[0] + (w)[0], \
(to)[1] = (v)[1] + (w)[1])
#define VMV2(to,v,w) \
((to)[0] = (v)[0] - (w)[0], \
(to)[1] = (v)[1] - (w)[1])
#define MPM2(to,m1,m2) \
(VPV2((to)[0], (m1)[0], (m2)[0]), \
VPV2((to)[1], (m1)[1], (m2)[1]))
#define MMM2(to,m1,m2) \
(VMV2((to)[0], (m1)[0], (m2)[0]), \
VMV2((to)[1], (m1)[1], (m2)[1]))
#define SXV2(to,s,from) \
((to)[0] = (s) * (from)[0], \
(to)[1] = (s) * (from)[1])
#define SXM2(to,s,from) \
(SXV2((to)[0], s, (from)[0]), \
SXV2((to)[1], s, (from)[1]))
#define MV2(to,from) \
((to)[0] = -(from)[0], \
(to)[1] = -(from)[1])
#define MM2(to,from) \
(MV2((to)[0], (from)[0]), \
MV2((to)[1], (from)[1]))
#define VXS2(to,from,s) \
((to)[0] = (from)[0] * (s), \
(to)[1] = (from)[1] * (s))
#define VDS2(to,from,s) \
((to)[0] = (from)[0] / (s), \
(to)[1] = (from)[1] / (s))
#define MXS2(to,from,s) \
(VXS2((to)[0], (from)[0], s), \
VXS2((to)[1], (from)[1], s))
#define MDS2(to,from,s) \
(VDS2((to)[0], (from)[0], s), \
VDS2((to)[1], (from)[1], s))
#define MXM2(to,m1,m2) \
(VXM2((to)[0], (m1)[0], m2), \
VXM2((to)[1], (m1)[1], m2))
#define VXM2(to,v,m) \
((to)[0] = _DOTcol2(v, m, 0), \
(to)[1] = _DOTcol2(v, m, 1))
#define MXV2(to,m,v) \
((to)[0] = DOT2((m)[0], v), \
(to)[1] = DOT2((m)[1], v))
#define LERP2(to,v0,v1,t) \
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]))
#define TRACE2(m) \
((m)[0][0] + \
(m)[1][1])
#define DOT2(v,w) \
((v)[0] * (w)[0] + \
(v)[1] * (w)[1])
#define NORMSQRD2(v) \
((v)[0] * (v)[0] + \
(v)[1] * (v)[1])
#define DISTSQRD2(v,w) \
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
((v)[1]-(w)[1])*((v)[1]-(w)[1]))
#define _DOTcol2(v,m,j) \
((v)[0] * (m)[0][j] + \
(v)[1] * (m)[1][j])
#define _SETcol2(v,m,j) \
((v)[0] = (m)[0][j], \
(v)[1] = (m)[1][j])
#define _MXVcol2(to,m,M,j) \
((to)[0][j] = _DOTcol2((m)[0],M,j), \
(to)[1][j] = _DOTcol2((m)[1],M,j))
#define _DET2(v0,v1,i0,i1) \
((v0)[i0]* _DET1(v1,i1) + \
(v0)[i1]*-_DET1(v1,i0))
#define XV2(to,v1) \
((to)[0] = -_DET1(v1, 1), \
(to)[1] = _DET1(v1, 0))
#define V2XM3(to2,v2,m3) \
((to2)[0] = _DOTcol2(v2,m3,0) + (m3)[2][0], \
(to2)[1] = _DOTcol2(v2,m3,1) + (m3)[2][1])
#define M3XV2(to2,m3,v2) \
((to2)[0] = DOT2((m3)[0],v2) + (m3)[0][2], \
(to2)[1] = DOT2((m3)[1],v2) + (m3)[1][2])
#define _DET1(v0,i0) \
((v0)[i0])
#define VXV2(v0,v1) \
(_DET2(v0,v1,0,1))
#define DET2(m) \
(VXV2((m)[0],(m)[1]))
#define ADJOINT2(to,m) \
( _ADJOINTcol2(to,0,m,1), \
__ADJOINTcol2(to,1,m,0))
#define _ADJOINTcol2(to,col,m,i1) \
((to)[0][col] = _DET1(m[i1], 1), \
(to)[1][col] = -_DET1(m[i1], 0))
#define __ADJOINTcol2(to,col,m,i1) \
((to)[0][col] = -_DET1(m[i1], 1), \
(to)[1][col] = _DET1(m[i1], 0))
#define SET3(to,from) \
((to)[0] = (from)[0], \
(to)[1] = (from)[1], \
(to)[2] = (from)[2])
#define SETMAT3(to,from) \
(SET3((to)[0], (from)[0]), \
SET3((to)[1], (from)[1]), \
SET3((to)[2], (from)[2]))
#define ROUNDVEC3(to,from) \
((to)[0] = floor((from)[0]+.5), \
(to)[1] = floor((from)[1]+.5), \
(to)[2] = floor((from)[2]+.5))
#define ROUNDMAT3(to,from) \
(ROUNDVEC3((to)[0], (from)[0]), \
ROUNDVEC3((to)[1], (from)[1]), \
ROUNDVEC3((to)[2], (from)[2]))
#define FILLVEC3(v,s) \
((v)[0] = (s), \
(v)[1] = (s), \
(v)[2] = (s))
#define FILLMAT3(m,s) \
(FILLVEC3((m)[0], s), \
FILLVEC3((m)[1], s), \
FILLVEC3((m)[2], s))
#define ZEROVEC3(v) \
((v)[0] = 0, \
(v)[1] = 0, \
(v)[2] = 0)
#define ISZEROVEC3(v) \
((v)[0] == 0 && \
(v)[1] == 0 && \
(v)[2] == 0)
#define EQVEC3(v,w) \
((v)[0] == (w)[0] && \
(v)[1] == (w)[1] && \
(v)[2] == (w)[2])
#define EQMAT3(m1,m2) \
(EQVEC3((m1)[0], (m2)[0]) && \
EQVEC3((m1)[1], (m2)[1]) && \
EQVEC3((m1)[2], (m2)[2]))
#define ZEROMAT3(m) \
(ZEROVEC3((m)[0]), \
ZEROVEC3((m)[1]), \
ZEROVEC3((m)[2]))
#define IDENTMAT3(m) \
(ZEROVEC3((m)[0]), (m)[0][0]=1, \
ZEROVEC3((m)[1]), (m)[1][1]=1, \
ZEROVEC3((m)[2]), (m)[2][2]=1)
#define TRANSPOSE3(to,from) \
(_SETcol3((to)[0], from, 0), \
_SETcol3((to)[1], from, 1), \
_SETcol3((to)[2], from, 2))
#define VPV3(to,v,w) \
((to)[0] = (v)[0] + (w)[0], \
(to)[1] = (v)[1] + (w)[1], \
(to)[2] = (v)[2] + (w)[2])
#define VMV3(to,v,w) \
((to)[0] = (v)[0] - (w)[0], \
(to)[1] = (v)[1] - (w)[1], \
(to)[2] = (v)[2] - (w)[2])
#define MPM3(to,m1,m2) \
(VPV3((to)[0], (m1)[0], (m2)[0]), \
VPV3((to)[1], (m1)[1], (m2)[1]), \
VPV3((to)[2], (m1)[2], (m2)[2]))
#define MMM3(to,m1,m2) \
(VMV3((to)[0], (m1)[0], (m2)[0]), \
VMV3((to)[1], (m1)[1], (m2)[1]), \
VMV3((to)[2], (m1)[2], (m2)[2]))
#define SXV3(to,s,from) \
((to)[0] = (s) * (from)[0], \
(to)[1] = (s) * (from)[1], \
(to)[2] = (s) * (from)[2])
#define SXM3(to,s,from) \
(SXV3((to)[0], s, (from)[0]), \
SXV3((to)[1], s, (from)[1]), \
SXV3((to)[2], s, (from)[2]))
#define MV3(to,from) \
((to)[0] = -(from)[0], \
(to)[1] = -(from)[1], \
(to)[2] = -(from)[2])
#define MM3(to,from) \
(MV3((to)[0], (from)[0]), \
MV3((to)[1], (from)[1]), \
MV3((to)[2], (from)[2]))
#define VXS3(to,from,s) \
((to)[0] = (from)[0] * (s), \
(to)[1] = (from)[1] * (s), \
(to)[2] = (from)[2] * (s))
#define VDS3(to,from,s) \
((to)[0] = (from)[0] / (s), \
(to)[1] = (from)[1] / (s), \
(to)[2] = (from)[2] / (s))
#define MXS3(to,from,s) \
(VXS3((to)[0], (from)[0], s), \
VXS3((to)[1], (from)[1], s), \
VXS3((to)[2], (from)[2], s))
#define MDS3(to,from,s) \
(VDS3((to)[0], (from)[0], s), \
VDS3((to)[1], (from)[1], s), \
VDS3((to)[2], (from)[2], s))
#define MXM3(to,m1,m2) \
(VXM3((to)[0], (m1)[0], m2), \
VXM3((to)[1], (m1)[1], m2), \
VXM3((to)[2], (m1)[2], m2))
#define VXM3(to,v,m) \
((to)[0] = _DOTcol3(v, m, 0), \
(to)[1] = _DOTcol3(v, m, 1), \
(to)[2] = _DOTcol3(v, m, 2))
#define MXV3(to,m,v) \
((to)[0] = DOT3((m)[0], v), \
(to)[1] = DOT3((m)[1], v), \
(to)[2] = DOT3((m)[2], v))
#define LERP3(to,v0,v1,t) \
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
(to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]))
#define TRACE3(m) \
((m)[0][0] + \
(m)[1][1] + \
(m)[2][2])
#define DOT3(v,w) \
((v)[0] * (w)[0] + \
(v)[1] * (w)[1] + \
(v)[2] * (w)[2])
#define NORMSQRD3(v) \
((v)[0] * (v)[0] + \
(v)[1] * (v)[1] + \
(v)[2] * (v)[2])
#define DISTSQRD3(v,w) \
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
((v)[2]-(w)[2])*((v)[2]-(w)[2]))
#define _DOTcol3(v,m,j) \
((v)[0] * (m)[0][j] + \
(v)[1] * (m)[1][j] + \
(v)[2] * (m)[2][j])
#define _SETcol3(v,m,j) \
((v)[0] = (m)[0][j], \
(v)[1] = (m)[1][j], \
(v)[2] = (m)[2][j])
#define _MXVcol3(to,m,M,j) \
((to)[0][j] = _DOTcol3((m)[0],M,j), \
(to)[1][j] = _DOTcol3((m)[1],M,j), \
(to)[2][j] = _DOTcol3((m)[2],M,j))
#define _DET3(v0,v1,v2,i0,i1,i2) \
((v0)[i0]* _DET2(v1,v2,i1,i2) + \
(v0)[i1]*-_DET2(v1,v2,i0,i2) + \
(v0)[i2]* _DET2(v1,v2,i0,i1))
#define VXV3(to,v1,v2) \
((to)[0] = _DET2(v1,v2, 1,2), \
(to)[1] = -_DET2(v1,v2, 0,2), \
(to)[2] = _DET2(v1,v2, 0,1))
#define SET3from2(to,from,pad) \
((to)[0] = (from)[0], \
(to)[1] = (from)[1], \
(to)[2] = (pad))
#define SETMAT3from2(to,from,pad0,pad1) \
(SET3from2((to)[0], (from)[0], pad0), \
SET3from2((to)[1], (from)[1], pad0), \
FILLVEC2((to)[2], (pad0)), (to)[2][2] = (pad1))
#define M2XM3(to3,m2,m3) \
(_MXVcol2(to3,m2,m3,0), (to3)[2][0]=(m3)[2][0], \
_MXVcol2(to3,m2,m3,1), (to3)[2][1]=(m3)[2][1], \
_MXVcol2(to3,m2,m3,2), (to3)[2][2]=(m3)[2][2])
#define M3XM2(to3,m3,m2) \
(VXM2((to3)[0],(m3)[0],m2), (to3)[0][2]=(m3)[0][2], \
VXM2((to3)[1],(m3)[1],m2), (to3)[1][2]=(m3)[1][2], \
VXM2((to3)[2],(m3)[2],m2), (to3)[2][2]=(m3)[2][2])
#define V3XM4(to3,v3,m4) \
((to3)[0] = _DOTcol3(v3,m4,0) + (m4)[3][0], \
(to3)[1] = _DOTcol3(v3,m4,1) + (m4)[3][1], \
(to3)[2] = _DOTcol3(v3,m4,2) + (m4)[3][2])
#define M4XV3(to3,m4,v3) \
((to3)[0] = DOT3((m4)[0],v3) + (m4)[0][3], \
(to3)[1] = DOT3((m4)[1],v3) + (m4)[1][3], \
(to3)[2] = DOT3((m4)[2],v3) + (m4)[2][3])
#define VXVXV3(v0,v1,v2) \
(_DET3(v0,v1,v2,0,1,2))
#define DET3(m) \
(VXVXV3((m)[0],(m)[1],(m)[2]))
#define ADJOINT3(to,m) \
( _ADJOINTcol3(to,0,m,1,2), \
__ADJOINTcol3(to,1,m,0,2), \
_ADJOINTcol3(to,2,m,0,1))
#define _ADJOINTcol3(to,col,m,i1,i2) \
((to)[0][col] = _DET2(m[i1],m[i2], 1,2), \
(to)[1][col] = -_DET2(m[i1],m[i2], 0,2), \
(to)[2][col] = _DET2(m[i1],m[i2], 0,1))
#define __ADJOINTcol3(to,col,m,i1,i2) \
((to)[0][col] = -_DET2(m[i1],m[i2], 1,2), \
(to)[1][col] = _DET2(m[i1],m[i2], 0,2), \
(to)[2][col] = -_DET2(m[i1],m[i2], 0,1))
#define SET4(to,from) \
((to)[0] = (from)[0], \
(to)[1] = (from)[1], \
(to)[2] = (from)[2], \
(to)[3] = (from)[3])
#define SETMAT4(to,from) \
(SET4((to)[0], (from)[0]), \
SET4((to)[1], (from)[1]), \
SET4((to)[2], (from)[2]), \
SET4((to)[3], (from)[3]))
#define ROUNDVEC4(to,from) \
((to)[0] = floor((from)[0]+.5), \
(to)[1] = floor((from)[1]+.5), \
(to)[2] = floor((from)[2]+.5), \
(to)[3] = floor((from)[3]+.5))
#define ROUNDMAT4(to,from) \
(ROUNDVEC4((to)[0], (from)[0]), \
ROUNDVEC4((to)[1], (from)[1]), \
ROUNDVEC4((to)[2], (from)[2]), \
ROUNDVEC4((to)[3], (from)[3]))
#define FILLVEC4(v,s) \
((v)[0] = (s), \
(v)[1] = (s), \
(v)[2] = (s), \
(v)[3] = (s))
#define FILLMAT4(m,s) \
(FILLVEC4((m)[0], s), \
FILLVEC4((m)[1], s), \
FILLVEC4((m)[2], s), \
FILLVEC4((m)[3], s))
#define ZEROVEC4(v) \
((v)[0] = 0, \
(v)[1] = 0, \
(v)[2] = 0, \
(v)[3] = 0)
#define ISZEROVEC4(v) \
((v)[0] == 0 && \
(v)[1] == 0 && \
(v)[2] == 0 && \
(v)[3] == 0)
#define EQVEC4(v,w) \
((v)[0] == (w)[0] && \
(v)[1] == (w)[1] && \
(v)[2] == (w)[2] && \
(v)[3] == (w)[3])
#define EQMAT4(m1,m2) \
(EQVEC4((m1)[0], (m2)[0]) && \
EQVEC4((m1)[1], (m2)[1]) && \
EQVEC4((m1)[2], (m2)[2]) && \
EQVEC4((m1)[3], (m2)[3]))
#define ZEROMAT4(m) \
(ZEROVEC4((m)[0]), \
ZEROVEC4((m)[1]), \
ZEROVEC4((m)[2]), \
ZEROVEC4((m)[3]))
#define IDENTMAT4(m) \
(ZEROVEC4((m)[0]), (m)[0][0]=1, \
ZEROVEC4((m)[1]), (m)[1][1]=1, \
ZEROVEC4((m)[2]), (m)[2][2]=1, \
ZEROVEC4((m)[3]), (m)[3][3]=1)
#define TRANSPOSE4(to,from) \
(_SETcol4((to)[0], from, 0), \
_SETcol4((to)[1], from, 1), \
_SETcol4((to)[2], from, 2), \
_SETcol4((to)[3], from, 3))
#define VPV4(to,v,w) \
((to)[0] = (v)[0] + (w)[0], \
(to)[1] = (v)[1] + (w)[1], \
(to)[2] = (v)[2] + (w)[2], \
(to)[3] = (v)[3] + (w)[3])
#define VMV4(to,v,w) \
((to)[0] = (v)[0] - (w)[0], \
(to)[1] = (v)[1] - (w)[1], \
(to)[2] = (v)[2] - (w)[2], \
(to)[3] = (v)[3] - (w)[3])
#define MPM4(to,m1,m2) \
(VPV4((to)[0], (m1)[0], (m2)[0]), \
VPV4((to)[1], (m1)[1], (m2)[1]), \
VPV4((to)[2], (m1)[2], (m2)[2]), \
VPV4((to)[3], (m1)[3], (m2)[3]))
#define MMM4(to,m1,m2) \
(VMV4((to)[0], (m1)[0], (m2)[0]), \
VMV4((to)[1], (m1)[1], (m2)[1]), \
VMV4((to)[2], (m1)[2], (m2)[2]), \
VMV4((to)[3], (m1)[3], (m2)[3]))
#define SXV4(to,s,from) \
((to)[0] = (s) * (from)[0], \
(to)[1] = (s) * (from)[1], \
(to)[2] = (s) * (from)[2], \
(to)[3] = (s) * (from)[3])
#define SXM4(to,s,from) \
(SXV4((to)[0], s, (from)[0]), \
SXV4((to)[1], s, (from)[1]), \
SXV4((to)[2], s, (from)[2]), \
SXV4((to)[3], s, (from)[3]))
#define MV4(to,from) \
((to)[0] = -(from)[0], \
(to)[1] = -(from)[1], \
(to)[2] = -(from)[2], \
(to)[3] = -(from)[3])
#define MM4(to,from) \
(MV4((to)[0], (from)[0]), \
MV4((to)[1], (from)[1]), \
MV4((to)[2], (from)[2]), \
MV4((to)[3], (from)[3]))
#define VXS4(to,from,s) \
((to)[0] = (from)[0] * (s), \
(to)[1] = (from)[1] * (s), \
(to)[2] = (from)[2] * (s), \
(to)[3] = (from)[3] * (s))
#define VDS4(to,from,s) \
((to)[0] = (from)[0] / (s), \
(to)[1] = (from)[1] / (s), \
(to)[2] = (from)[2] / (s), \
(to)[3] = (from)[3] / (s))
#define MXS4(to,from,s) \
(VXS4((to)[0], (from)[0], s), \
VXS4((to)[1], (from)[1], s), \
VXS4((to)[2], (from)[2], s), \
VXS4((to)[3], (from)[3], s))
#define MDS4(to,from,s) \
(VDS4((to)[0], (from)[0], s), \
VDS4((to)[1], (from)[1], s), \
VDS4((to)[2], (from)[2], s), \
VDS4((to)[3], (from)[3], s))
#define MXM4(to,m1,m2) \
(VXM4((to)[0], (m1)[0], m2), \
VXM4((to)[1], (m1)[1], m2), \
VXM4((to)[2], (m1)[2], m2), \
VXM4((to)[3], (m1)[3], m2))
#define VXM4(to,v,m) \
((to)[0] = _DOTcol4(v, m, 0), \
(to)[1] = _DOTcol4(v, m, 1), \
(to)[2] = _DOTcol4(v, m, 2), \
(to)[3] = _DOTcol4(v, m, 3))
#define MXV4(to,m,v) \
((to)[0] = DOT4((m)[0], v), \
(to)[1] = DOT4((m)[1], v), \
(to)[2] = DOT4((m)[2], v), \
(to)[3] = DOT4((m)[3], v))
#define LERP4(to,v0,v1,t) \
((to)[0]=(v0)[0]+(t)*((v1)[0]-(v0)[0]), \
(to)[1]=(v0)[1]+(t)*((v1)[1]-(v0)[1]), \
(to)[2]=(v0)[2]+(t)*((v1)[2]-(v0)[2]), \
(to)[3]=(v0)[3]+(t)*((v1)[3]-(v0)[3]))
#define TRACE4(m) \
((m)[0][0] + \
(m)[1][1] + \
(m)[2][2] + \
(m)[3][3])
#define DOT4(v,w) \
((v)[0] * (w)[0] + \
(v)[1] * (w)[1] + \
(v)[2] * (w)[2] + \
(v)[3] * (w)[3])
#define NORMSQRD4(v) \
((v)[0] * (v)[0] + \
(v)[1] * (v)[1] + \
(v)[2] * (v)[2] + \
(v)[3] * (v)[3])
#define DISTSQRD4(v,w) \
(((v)[0]-(w)[0])*((v)[0]-(w)[0]) + \
((v)[1]-(w)[1])*((v)[1]-(w)[1]) + \
((v)[2]-(w)[2])*((v)[2]-(w)[2]) + \
((v)[3]-(w)[3])*((v)[3]-(w)[3]))
#define _DOTcol4(v,m,j) \
((v)[0] * (m)[0][j] + \
(v)[1] * (m)[1][j] + \
(v)[2] * (m)[2][j] + \
(v)[3] * (m)[3][j])
#define _SETcol4(v,m,j) \
((v)[0] = (m)[0][j], \
(v)[1] = (m)[1][j], \
(v)[2] = (m)[2][j], \
(v)[3] = (m)[3][j])
#define _MXVcol4(to,m,M,j) \
((to)[0][j] = _DOTcol4((m)[0],M,j), \
(to)[1][j] = _DOTcol4((m)[1],M,j), \
(to)[2][j] = _DOTcol4((m)[2],M,j), \
(to)[3][j] = _DOTcol4((m)[3],M,j))
#define _DET4(v0,v1,v2,v3,i0,i1,i2,i3) \
((v0)[i0]* _DET3(v1,v2,v3,i1,i2,i3) + \
(v0)[i1]*-_DET3(v1,v2,v3,i0,i2,i3) + \
(v0)[i2]* _DET3(v1,v2,v3,i0,i1,i3) + \
(v0)[i3]*-_DET3(v1,v2,v3,i0,i1,i2))
#define VXVXV4(to,v1,v2,v3) \
((to)[0] = -_DET3(v1,v2,v3, 1,2,3), \
(to)[1] = _DET3(v1,v2,v3, 0,2,3), \
(to)[2] = -_DET3(v1,v2,v3, 0,1,3), \
(to)[3] = _DET3(v1,v2,v3, 0,1,2))
#define SET4from3(to,from,pad) \
((to)[0] = (from)[0], \
(to)[1] = (from)[1], \
(to)[2] = (from)[2], \
(to)[3] = (pad))
#define SETMAT4from3(to,from,pad0,pad1) \
(SET4from3((to)[0], (from)[0], pad0), \
SET4from3((to)[1], (from)[1], pad0), \
SET4from3((to)[2], (from)[2], pad0), \
FILLVEC3((to)[3], (pad0)), (to)[3][3] = (pad1))
#define M3XM4(to4,m3,m4) \
(_MXVcol3(to4,m3,m4,0), (to4)[3][0]=(m4)[3][0], \
_MXVcol3(to4,m3,m4,1), (to4)[3][1]=(m4)[3][1], \
_MXVcol3(to4,m3,m4,2), (to4)[3][2]=(m4)[3][2], \
_MXVcol3(to4,m3,m4,3), (to4)[3][3]=(m4)[3][3])
#define M4XM3(to4,m4,m3) \
(VXM3((to4)[0],(m4)[0],m3), (to4)[0][3]=(m4)[0][3], \
VXM3((to4)[1],(m4)[1],m3), (to4)[1][3]=(m4)[1][3], \
VXM3((to4)[2],(m4)[2],m3), (to4)[2][3]=(m4)[2][3], \
VXM3((to4)[3],(m4)[3],m3), (to4)[3][3]=(m4)[3][3])
#define VXVXVXV4(v0,v1,v2,v3) \
(_DET4(v0,v1,v2,v3,0,1,2,3))
#define DET4(m) \
(VXVXVXV4((m)[0],(m)[1],(m)[2],(m)[3]))
#define ADJOINT4(to,m) \
( _ADJOINTcol4(to,0,m,1,2,3), \
__ADJOINTcol4(to,1,m,0,2,3), \
_ADJOINTcol4(to,2,m,0,1,3), \
__ADJOINTcol4(to,3,m,0,1,2))
#define _ADJOINTcol4(to,col,m,i1,i2,i3) \
((to)[0][col] = _DET3(m[i1],m[i2],m[i3], 1,2,3), \
(to)[1][col] = -_DET3(m[i1],m[i2],m[i3], 0,2,3), \
(to)[2][col] = _DET3(m[i1],m[i2],m[i3], 0,1,3), \
(to)[3][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,2))
#define __ADJOINTcol4(to,col,m,i1,i2,i3) \
((to)[0][col] = -_DET3(m[i1],m[i2],m[i3], 1,2,3), \
(to)[1][col] = _DET3(m[i1],m[i2],m[i3], 0,2,3), \
(to)[2][col] = -_DET3(m[i1],m[i2],m[i3], 0,1,3), \
(to)[3][col] = _DET3(m[i1],m[i2],m[i3], 0,1,2))
#define TRANSPOSE2safe(type,to,from) \
do {type _vec_h_temp_[2][2]; \
TRANSPOSE2(_vec_h_temp_,from); \
SETMAT2(to, _vec_h_temp_); \
} while (0)
#define TRANSPOSE2d(to,from) TRANSPOSE2safe(double,to,from)
#define TRANSPOSE2i(to,from) TRANSPOSE2safe(int,to,from)
#define TRANSPOSE2l(to,from) TRANSPOSE2safe(long,to,from)
#define TRANSPOSE2r(to,from) TRANSPOSE2safe(real,to,from)
#define MXM2safe(type,to,m1,m2) \
do {type _vec_h_temp_[2][2]; \
MXM2(_vec_h_temp_,m1,m2); \
SETMAT2(to, _vec_h_temp_); \
} while (0)
#define MXM2d(to,m1,m2) MXM2safe(double,to,m1,m2)
#define MXM2i(to,m1,m2) MXM2safe(int,to,m1,m2)
#define MXM2l(to,m1,m2) MXM2safe(long,to,m1,m2)
#define MXM2r(to,m1,m2) MXM2safe(real,to,m1,m2)
#define VXM2safe(type,to,v,m) \
do {type _vec_h_temp_[2]; \
VXM2(_vec_h_temp_,v,m); \
SET2(to, _vec_h_temp_); \
} while (0)
#define VXM2d(to,v,m) VXM2safe(double,to,v,m)
#define VXM2i(to,v,m) VXM2safe(int,to,v,m)
#define VXM2l(to,v,m) VXM2safe(long,to,v,m)
#define VXM2r(to,v,m) VXM2safe(real,to,v,m)
#define MXV2safe(type,to,m,v) \
do {type _vec_h_temp_[2]; \
MXV2(_vec_h_temp_,m,v); \
SET2(to, _vec_h_temp_); \
} while (0)
#define MXV2d(to,m,v) MXV2safe(double,to,m,v)
#define MXV2i(to,m,v) MXV2safe(int,to,m,v)
#define MXV2l(to,m,v) MXV2safe(long,to,m,v)
#define MXV2r(to,m,v) MXV2safe(real,to,m,v)
#define XV2safe(type,to,v1) \
do {type _vec_h_temp_[2]; \
XV2(_vec_h_temp_,v1); \
SET2(to, _vec_h_temp_); \
} while (0)
#define XV2d(to,v1) XV2safe(double,to,v1)
#define XV2i(to,v1) XV2safe(int,to,v1)
#define XV2l(to,v1) XV2safe(long,to,v1)
#define XV2r(to,v1) XV2safe(real,to,v1)
#define V2XM3safe(type,to2,v2,m3) \
do {type _vec_h_temp_[2]; \
V2XM3(_vec_h_temp_,v2,m3); \
SET2(to2, _vec_h_temp_); \
} while (0)
#define V2XM3d(to2,v2,m3) V2XM3safe(double,to2,v2,m3)
#define V2XM3i(to2,v2,m3) V2XM3safe(int,to2,v2,m3)
#define V2XM3l(to2,v2,m3) V2XM3safe(long,to2,v2,m3)
#define V2XM3r(to2,v2,m3) V2XM3safe(real,to2,v2,m3)
#define M3XV2safe(type,to2,m3,v2) \
do {type _vec_h_temp_[2]; \
M3XV2(_vec_h_temp_,m3,v2); \
SET2(to2, _vec_h_temp_); \
} while (0)
#define M3XV2d(to2,m3,v2) M3XV2safe(double,to2,m3,v2)
#define M3XV2i(to2,m3,v2) M3XV2safe(int,to2,m3,v2)
#define M3XV2l(to2,m3,v2) M3XV2safe(long,to2,m3,v2)
#define M3XV2r(to2,m3,v2) M3XV2safe(real,to2,m3,v2)
#define ADJOINT2safe(type,to,m) \
do {type _vec_h_temp_[2][2]; \
ADJOINT2(_vec_h_temp_,m); \
SETMAT2(to, _vec_h_temp_); \
} while (0)
#define ADJOINT2d(to,m) ADJOINT2safe(double,to,m)
#define ADJOINT2i(to,m) ADJOINT2safe(int,to,m)
#define ADJOINT2l(to,m) ADJOINT2safe(long,to,m)
#define ADJOINT2r(to,m) ADJOINT2safe(real,to,m)
#define TRANSPOSE3safe(type,to,from) \
do {type _vec_h_temp_[3][3]; \
TRANSPOSE3(_vec_h_temp_,from); \
SETMAT3(to, _vec_h_temp_); \
} while (0)
#define TRANSPOSE3d(to,from) TRANSPOSE3safe(double,to,from)
#define TRANSPOSE3i(to,from) TRANSPOSE3safe(int,to,from)
#define TRANSPOSE3l(to,from) TRANSPOSE3safe(long,to,from)
#define TRANSPOSE3r(to,from) TRANSPOSE3safe(real,to,from)
#define MXM3safe(type,to,m1,m2) \
do {type _vec_h_temp_[3][3]; \
MXM3(_vec_h_temp_,m1,m2); \
SETMAT3(to, _vec_h_temp_); \
} while (0)
#define MXM3d(to,m1,m2) MXM3safe(double,to,m1,m2)
#define MXM3i(to,m1,m2) MXM3safe(int,to,m1,m2)
#define MXM3l(to,m1,m2) MXM3safe(long,to,m1,m2)
#define MXM3r(to,m1,m2) MXM3safe(real,to,m1,m2)
#define VXM3safe(type,to,v,m) \
do {type _vec_h_temp_[3]; \
VXM3(_vec_h_temp_,v,m); \
SET3(to, _vec_h_temp_); \
} while (0)
#define VXM3d(to,v,m) VXM3safe(double,to,v,m)
#define VXM3i(to,v,m) VXM3safe(int,to,v,m)
#define VXM3l(to,v,m) VXM3safe(long,to,v,m)
#define VXM3r(to,v,m) VXM3safe(real,to,v,m)
#define MXV3safe(type,to,m,v) \
do {type _vec_h_temp_[3]; \
MXV3(_vec_h_temp_,m,v); \
SET3(to, _vec_h_temp_); \
} while (0)
#define MXV3d(to,m,v) MXV3safe(double,to,m,v)
#define MXV3i(to,m,v) MXV3safe(int,to,m,v)
#define MXV3l(to,m,v) MXV3safe(long,to,m,v)
#define MXV3r(to,m,v) MXV3safe(real,to,m,v)
#define VXV3safe(type,to,v1,v2) \
do {type _vec_h_temp_[3]; \
VXV3(_vec_h_temp_,v1,v2); \
SET3(to, _vec_h_temp_); \
} while (0)
#define VXV3d(to,v1,v2) VXV3safe(double,to,v1,v2)
#define VXV3i(to,v1,v2) VXV3safe(int,to,v1,v2)
#define VXV3l(to,v1,v2) VXV3safe(long,to,v1,v2)
#define VXV3r(to,v1,v2) VXV3safe(real,to,v1,v2)
#define M2XM3safe(type,to3,m2,m3) \
do {type _vec_h_temp_[3][3]; \
M2XM3(_vec_h_temp_,m2,m3); \
SETMAT3(to3, _vec_h_temp_); \
} while (0)
#define M2XM3d(to3,m2,m3) M2XM3safe(double,to3,m2,m3)
#define M2XM3i(to3,m2,m3) M2XM3safe(int,to3,m2,m3)
#define M2XM3l(to3,m2,m3) M2XM3safe(long,to3,m2,m3)
#define M2XM3r(to3,m2,m3) M2XM3safe(real,to3,m2,m3)
#define M3XM2safe(type,to3,m3,m2) \
do {type _vec_h_temp_[3][3]; \
M3XM2(_vec_h_temp_,m3,m2); \
SETMAT3(to3, _vec_h_temp_); \
} while (0)
#define M3XM2d(to3,m3,m2) M3XM2safe(double,to3,m3,m2)
#define M3XM2i(to3,m3,m2) M3XM2safe(int,to3,m3,m2)
#define M3XM2l(to3,m3,m2) M3XM2safe(long,to3,m3,m2)
#define M3XM2r(to3,m3,m2) M3XM2safe(real,to3,m3,m2)
#define V3XM4safe(type,to3,v3,m4) \
do {type _vec_h_temp_[3]; \
V3XM4(_vec_h_temp_,v3,m4); \
SET3(to3, _vec_h_temp_); \
} while (0)
#define V3XM4d(to3,v3,m4) V3XM4safe(double,to3,v3,m4)
#define V3XM4i(to3,v3,m4) V3XM4safe(int,to3,v3,m4)
#define V3XM4l(to3,v3,m4) V3XM4safe(long,to3,v3,m4)
#define V3XM4r(to3,v3,m4) V3XM4safe(real,to3,v3,m4)
#define M4XV3safe(type,to3,m4,v3) \
do {type _vec_h_temp_[3]; \
M4XV3(_vec_h_temp_,m4,v3); \
SET3(to3, _vec_h_temp_); \
} while (0)
#define M4XV3d(to3,m4,v3) M4XV3safe(double,to3,m4,v3)
#define M4XV3i(to3,m4,v3) M4XV3safe(int,to3,m4,v3)
#define M4XV3l(to3,m4,v3) M4XV3safe(long,to3,m4,v3)
#define M4XV3r(to3,m4,v3) M4XV3safe(real,to3,m4,v3)
#define ADJOINT3safe(type,to,m) \
do {type _vec_h_temp_[3][3]; \
ADJOINT3(_vec_h_temp_,m); \
SETMAT3(to, _vec_h_temp_); \
} while (0)
#define ADJOINT3d(to,m) ADJOINT3safe(double,to,m)
#define ADJOINT3i(to,m) ADJOINT3safe(int,to,m)
#define ADJOINT3l(to,m) ADJOINT3safe(long,to,m)
#define ADJOINT3r(to,m) ADJOINT3safe(real,to,m)
#define TRANSPOSE4safe(type,to,from) \
do {type _vec_h_temp_[4][4]; \
TRANSPOSE4(_vec_h_temp_,from); \
SETMAT4(to, _vec_h_temp_); \
} while (0)
#define TRANSPOSE4d(to,from) TRANSPOSE4safe(double,to,from)
#define TRANSPOSE4i(to,from) TRANSPOSE4safe(int,to,from)
#define TRANSPOSE4l(to,from) TRANSPOSE4safe(long,to,from)
#define TRANSPOSE4r(to,from) TRANSPOSE4safe(real,to,from)
#define MXM4safe(type,to,m1,m2) \
do {type _vec_h_temp_[4][4]; \
MXM4(_vec_h_temp_,m1,m2); \
SETMAT4(to, _vec_h_temp_); \
} while (0)
#define MXM4d(to,m1,m2) MXM4safe(double,to,m1,m2)
#define MXM4i(to,m1,m2) MXM4safe(int,to,m1,m2)
#define MXM4l(to,m1,m2) MXM4safe(long,to,m1,m2)
#define MXM4r(to,m1,m2) MXM4safe(real,to,m1,m2)
#define VXM4safe(type,to,v,m) \
do {type _vec_h_temp_[4]; \
VXM4(_vec_h_temp_,v,m); \
SET4(to, _vec_h_temp_); \
} while (0)
#define VXM4d(to,v,m) VXM4safe(double,to,v,m)
#define VXM4i(to,v,m) VXM4safe(int,to,v,m)
#define VXM4l(to,v,m) VXM4safe(long,to,v,m)
#define VXM4r(to,v,m) VXM4safe(real,to,v,m)
#define MXV4safe(type,to,m,v) \
do {type _vec_h_temp_[4]; \
MXV4(_vec_h_temp_,m,v); \
SET4(to, _vec_h_temp_); \
} while (0)
#define MXV4d(to,m,v) MXV4safe(double,to,m,v)
#define MXV4i(to,m,v) MXV4safe(int,to,m,v)
#define MXV4l(to,m,v) MXV4safe(long,to,m,v)
#define MXV4r(to,m,v) MXV4safe(real,to,m,v)
#define VXVXV4safe(type,to,v1,v2,v3) \
do {type _vec_h_temp_[4]; \
VXVXV4(_vec_h_temp_,v1,v2,v3); \
SET4(to, _vec_h_temp_); \
} while (0)
#define VXVXV4d(to,v1,v2,v3) VXVXV4safe(double,to,v1,v2,v3)
#define VXVXV4i(to,v1,v2,v3) VXVXV4safe(int,to,v1,v2,v3)
#define VXVXV4l(to,v1,v2,v3) VXVXV4safe(long,to,v1,v2,v3)
#define VXVXV4r(to,v1,v2,v3) VXVXV4safe(real,to,v1,v2,v3)
#define M3XM4safe(type,to4,m3,m4) \
do {type _vec_h_temp_[4][4]; \
M3XM4(_vec_h_temp_,m3,m4); \
SETMAT4(to4, _vec_h_temp_); \
} while (0)
#define M3XM4d(to4,m3,m4) M3XM4safe(double,to4,m3,m4)
#define M3XM4i(to4,m3,m4) M3XM4safe(int,to4,m3,m4)
#define M3XM4l(to4,m3,m4) M3XM4safe(long,to4,m3,m4)
#define M3XM4r(to4,m3,m4) M3XM4safe(real,to4,m3,m4)
#define M4XM3safe(type,to4,m4,m3) \
do {type _vec_h_temp_[4][4]; \
M4XM3(_vec_h_temp_,m4,m3); \
SETMAT4(to4, _vec_h_temp_); \
} while (0)
#define M4XM3d(to4,m4,m3) M4XM3safe(double,to4,m4,m3)
#define M4XM3i(to4,m4,m3) M4XM3safe(int,to4,m4,m3)
#define M4XM3l(to4,m4,m3) M4XM3safe(long,to4,m4,m3)
#define M4XM3r(to4,m4,m3) M4XM3safe(real,to4,m4,m3)
#define ADJOINT4safe(type,to,m) \
do {type _vec_h_temp_[4][4]; \
ADJOINT4(_vec_h_temp_,m); \
SETMAT4(to, _vec_h_temp_); \
} while (0)
#define ADJOINT4d(to,m) ADJOINT4safe(double,to,m)
#define ADJOINT4i(to,m) ADJOINT4safe(int,to,m)
#define ADJOINT4l(to,m) ADJOINT4safe(long,to,m)
#define ADJOINT4r(to,m) ADJOINT4safe(real,to,m)
}
}
}
#endif /* VEC_H */
|