1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/******* COPYRIGHT ************************************************
* *
* FlowVR Render *
* Parallel Rendering Library *
* *
*-----------------------------------------------------------------*
* COPYRIGHT (C) 2005 by *
* Laboratoire Informatique et Distribution (UMR5132) and *
* INRIA Project MOVI. ALL RIGHTS RESERVED. *
* *
* This source is covered by the GNU LGPL, please refer to the *
* COPYING-LIB file for further information. *
* *
*-----------------------------------------------------------------*
* *
* Original Contributors: *
* Jeremie Allard, *
* Clement Menier. *
* *
*******************************************************************
* *
* File: ./include/flowvr/render/mesh.h *
* *
* Contacts: *
* *
******************************************************************/
#ifndef FLOWVR_RENDER_MESH_H
#define FLOWVR_RENDER_MESH_H
#include <ftl/type.h>
#include <ftl/quat.h>
#include "bbox.h"
#ifndef MINI_FLOWVR
#include "chunkwriter.h"
#endif
#include <vector>
#include <map>
#include <stdio.h>
namespace flowvr
{
namespace render
{
using namespace ftl;
/// Mesh container helper class
class Mesh
{
public:
enum { MESH_MAGIC = 0x003E583E, MESH_MAGIC_SWAP = 0x3E583E00 };
enum Attrib {
MESH_POINTS_POSITION=1<<0,
MESH_POINTS_TEXCOORD=1<<1,
MESH_POINTS_NORMAL =1<<2,
MESH_POINTS_COLOR =1<<3,
MESH_POINTS_VALUE =1<<4,
MESH_POINTS_GROUP =1<<5,
MESH_FACES =1<<6,
MESH_DISTMAP =1<<7,
MESH_VOXEL =1<<8,
MESH_MATERIALS =1<<9,
};
int attrib;
bool getAttrib(Attrib a) const { return (attrib&(a))!=0; }
void setAttrib(Attrib a, bool b) { if(b) attrib|=(a); else attrib&=~(a); }
struct Vertex //__attribute__((packed))
{
Vec3f p;
Vec2f t;
Vec3f n;
Vec4b c;
float v;
void operator+=(const Vertex& b)
{
p+=b.p;
t+=b.t;
n+=b.n;
c+=b.c;
v+=b.v;
}
void mean(int nb)
{
p/=(float)nb;
t/=(float)nb;
n.normalize();
c/=nb;
v/=nb;
}
};
std::vector<Vec3f> points_p;
Vec3f getPP(int i) const { if ((unsigned)i<points_p.size()) return points_p[i]; else return Vec3f(); }
Vec3f& PP(int i) { if ((unsigned)i>=points_p.size()) points_p.resize(i+1); return points_p[i]; }
Vec2f getPT(int i) const { if ((unsigned)i<points_t.size()) return points_t[i]; else return Vec2f(); }
Vec2f& PT(int i) { if ((unsigned)i>=points_t.size()) points_t.resize(i+1); return points_t[i]; }
Vec3f getPN(int i) const { if ((unsigned)i<points_n.size()) return points_n[i]; else return Vec3f(); }
Vec3f& PN(int i) { if ((unsigned)i>=points_n.size()) points_n.resize(i+1); return points_n[i]; }
Vec4b getPC(int i) const { if ((unsigned)i<points_c.size()) return points_c[i]; else return Vec4b(); }
Vec4b& PC(int i) { if ((unsigned)i>=points_c.size()) points_c.resize(i+1); return points_c[i]; }
float getPV(int i) const { if ((unsigned)i<points_v.size()) return points_v[i]; else return 0; }
float& PV(int i) { if ((unsigned)i>=points_v.size()) points_v.resize(i+1); return points_v[i]; }
Vertex getP(int i) const {
Vertex v;
v.p = getPP(i);
v.t = getPT(i);
v.n = getPN(i);
v.c = getPC(i);
v.v = getPV(i);
return v;
}
int addP(const Vertex& v, int g=-1) {
int i = nbp();
PP(i) = v.p;
PN(i) = v.n;
if (getAttrib(MESH_POINTS_TEXCOORD)) PT(i) = v.t;
if (getAttrib(MESH_POINTS_COLOR )) PC(i) = v.c;
if (getAttrib(MESH_POINTS_VALUE )) PV(i) = v.v;
if (getAttrib(MESH_POINTS_GROUP ))
{
if (g==-1) g=nbg();
PG(i) = g;
if (g>=nbg())
GP0(g) = i;
}
return i;
}
int getPG(int i) const { if ((unsigned)i<points_g.size()) return points_g[i]; else return 0; }
int& PG(int i) { if ((unsigned)i>=points_g.size()) points_g.resize(i+1); return points_g[i]; }
int getGP0(int i) const { if ((unsigned)i<groups_p0.size()) return groups_p0[i]; else return -1; }
int& GP0(int i) { if ((unsigned)i>=groups_p0.size()) groups_p0.resize(i+1); return groups_p0[i]; }
Vec3i getFP(int i) const { if ((unsigned)i<faces_p.size()) return faces_p[i]; else return Vec3i(); }
Vec3i& FP(int i) { if ((unsigned)i>=faces_p.size()) faces_p.resize(i+1); return faces_p[i]; }
Vec3f getFN(int i) const { if ((unsigned)i<faces_n.size()) return faces_n[i]; else return Vec3f(); }
Vec3f& FN(int i) { if ((unsigned)i>=faces_n.size()) faces_n.resize(i+1); return faces_n[i]; }
Vec3f getFU(int i) const { if ((unsigned)i<faces_u.size()) return faces_u[i]; else return Vec3f(); }
Vec3f& FU(int i) { if ((unsigned)i>=faces_u.size()) faces_u.resize(i+1); return faces_u[i]; }
Vec3f getFV(int i) const { if ((unsigned)i<faces_v.size()) return faces_v[i]; else return Vec3f(); }
Vec3f& FV(int i) { if ((unsigned)i>=faces_v.size()) faces_v.resize(i+1); return faces_v[i]; }
int addF(Vec3i f)
{
int i = nbf();
FP(i) = f;
if (!edges.empty())
{
addEdgeFace(f[0],f[1],i);
addEdgeFace(f[1],f[2],i);
addEdgeFace(f[2],f[0],i);
}
return i;
}
std::vector<Vec2f> points_t;
std::vector<Vec3f> points_n;
std::vector<Vec4b> points_c;
std::vector<float> points_v;
std::vector<int> points_g;
std::vector<int> groups_p0;
/*
struct Face //__attribute__((packed))
{
int p[3];
Vec3f n;
Vec3f u; // Vector to compute u barycentric coordinate
Vec3f v; // Vector to compute v barycentric coordinate
};
*/
std::vector<Vec3i> faces_p;
std::vector<Vec3f> faces_n;
std::vector<Vec3f> faces_u;
std::vector<Vec3f> faces_v;
struct Edge
{
int f1,f2;
Edge() : f1(-1), f2(-1) {}
};
std::vector< std::map< int,Edge > > edges;
struct DistMap
{
int nx;
int ny;
int nz;
float maxDist;
Mat4x4f mat;
float data[1];
int nval() const { return nx*ny*nz; }
int size() const { return sizeof(DistMap)+(nval()-1)*sizeof(float); }
};
DistMap* distmap;
struct Voxel
{
int nx;
int ny;
int nz;
Mat4x4f mat;
unsigned char data[1]; ///< bit-field containing the voxels, byte-aligned at each line
int size() const { return (sizeof(Voxel)-sizeof(unsigned char))+((nx+7)/8)*ny*nz; }
};
Voxel* voxel;
struct Material
{
std::string mtllib; ///< Name of file containing material
std::string matname; ///< Name of material
Vec3f ambient, diffuse, specular, emmisive;
float alpha;
float shininess;
float optical_density;
std::string map_ambient, map_diffuse, map_specular, map_emmisive, map_alpha;
std::string map_bump;
Material()
: alpha(1), shininess(0), optical_density(1)
{
}
};
struct MaterialGroup
{
std::string gname; ///< Name of group of faces using this material
std::string matname; ///< Name of material
Material* mat; ///< Material itself
int f0, nbf; ///< List of faces in this material group
MaterialGroup()
: mat(NULL), f0(0), nbf(0)
{
}
};
std::map<std::string, Material*> mat_map;
Material* getM(const std::string& name)
{
std::map<std::string, Material*>::iterator it = mat_map.find(name);
if (it == mat_map.end()) return NULL;
else return it->second;
}
std::vector<MaterialGroup> mat_groups;
BBox bb;
int nbp() const { return points_p.size(); }
int nbf() const { return faces_p.size(); }
int nbg() const { return groups_p0.size(); }
int nbmatg() const { return mat_groups.size(); }
Mesh();
~Mesh();
void operator=(const Mesh& mesh);
void clear();
void init(int nbp, int nbf, int attribs=MESH_POINTS_POSITION|MESH_FACES);
bool load(const char* filename);
bool loadMesh(const char* filename);
bool loadObj(const char* filename, const char* filter=NULL);
bool loadOff(const char* filename);
bool save(const char* filename) const;
bool saveMesh(const char* filename) const;
bool saveObj(const char* filename) const;
bool saveOff(const char* filename) const;
bool saveStl(const char* filename) const;
bool saveObj(FILE* f, int &v0, int &vn0, int &vt0) const;
bool saveObj(FILE* f, int &v0) const
{
int vn0=1;
int vt0=1;
return saveObj(f,v0,vn0,vt0);
}
bool saveObj(FILE* f) const
{
int v0=1;
return saveObj(f,v0);
}
#ifndef MINI_FLOWVR
/// Output the mesh
void writeMesh(ChunkRenderWriter* scene, ID idIB, ID idVB, int gen=-1) const;
void writeParams(ChunkRenderWriter* scene, ID idP, ID idIB, ID idVB) const;
#endif
/// Compute face normals and points normals (if not already specified or if force is true)
void calcNormals(bool force=false);
/// Compute mesh bounding box
BBox calcBBox();
/// Compute bounding box of a submesh
BBox calcBBox(int f0, int nbf);
/// Compute bounding box of a material group
BBox calcBBox(int matg)
{
return calcBBox(mat_groups[matg].f0, mat_groups[matg].nbf);
}
/// Compute edges data
void calcEdges();
/// Flip all faces
void flipAll();
/// Flip faces not correctly oriented
void calcFlip();
/// Check if the mesh is closed
bool isClosed();
/// Close the mesh. Note: the mesh must be correctly flipped
void close();
/// Brute-force distance computation. Note: the mesh must be closed
float calcDist(Vec3f pos) const;
template<class Real>
void calcExtDistMap(Mat4x4f mat, Real* dest, int nx, int ny, int nz, float maxDist, float fact = 1);
void calcDistMap(Mat4x4f mat, int nx, int ny, int nz, float maxDist);
void calcDistMap(int nx, int ny, int nz, float maxDist);
void calcDistMap(int n, float maxDist);
void translate(Vec3f d);
void dilate(float dist);
/// Optimize mesh by merging identical groups and reordering faces
void optimize();
/// Return true if some materials requires tangent vectors
bool needTangents() const;
/// Compute the tangent and co-tangent at each point
void calcTangents(std::vector<Vec3f>& tangent1, std::vector<Vec3f>& tangent2) const;
/// Compute the tangent at each point, plus a fourth coordinate indicating the direction of the co-tangent.
/// See http://www.terathon.com/code/tangent.php
void calcTangents(std::vector<Vec4f>& tangent) const;
int getEdgeFace(int p0, int p1);
protected:
void clearEdges();
bool addEdgeFace(int p0, int p1, int f);
void closeLoop(const std::vector<int>& loop);
};
} // namespace render
} // namespace flowvr
#endif
|