1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
|
/******************************************************************************
* SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4 *
* (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by *
* the Free Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
*******************************************************************************
* SOFA :: Modules *
* *
* Authors: The SOFA Team and external contributors (see Authors.txt) *
* *
* Contact information: contact@sofa-framework.org *
******************************************************************************/
#ifndef SOFA_CORE_COMPONENTMODEL_COLLISION_LINEARSOLVERCONTACTCORRECTION_INL
#define SOFA_CORE_COMPONENTMODEL_COLLISION_LINEARSOLVERCONTACTCORRECTION_INL
#include "LinearSolverConstraintCorrection.h"
#include <sofa/defaulttype/RigidTypes.h>
#include <sofa/simulation/common/Node.h>
#include <sofa/component/mass/UniformMass.h>
#include <sofa/simulation/common/MechanicalVisitor.h>
//compliance computation include
#include <sofa/component/odesolver/CGImplicitSolver.h>
//#include <glib.h>
#include <sstream>
#include <list>
namespace sofa
{
namespace component
{
namespace constraint
{
#define MAX_NUM_CONSTRAINT_PER_NODE 100
#define EPS_UNITARY_FORCE 0.01
using namespace sofa::component::odesolver;
template<class DataTypes>
LinearSolverConstraintCorrection<DataTypes>::LinearSolverConstraintCorrection(behavior::MechanicalState<DataTypes> *mm)
: wire_optimization(initData(&wire_optimization, false, "wire_optimization", "constraints are reordered along a wire-like topology (from tip to base)"))
,mstate(mm), odesolver(NULL), linearsolver(NULL)
{
}
template<class DataTypes>
LinearSolverConstraintCorrection<DataTypes>::~LinearSolverConstraintCorrection()
{
}
//////////////////////////////////////////////////////////////////////////
// Precomputation of the Constraint Correction for all type of data
//////////////////////////////////////////////////////////////////////////
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::init()
{
mstate = dynamic_cast< behavior::MechanicalState<DataTypes>* >(getContext()->getMechanicalState());
objectmodel::BaseContext* c = this->getContext();
// odesolver = c->get< behavior::OdeSolver >();
// linearsolver = c->get< behavior::LinearSolver >();
odesolver=getOdeSolver(c);
linearsolver=getLinearSolver(c);
if (odesolver == NULL)
{
serr << "LinearSolverConstraintCorrection: ERROR no OdeSolver found."<<sendl;
return;
}
if (linearsolver == NULL)
{
serr << "LinearSolverConstraintCorrection: ERROR no LinearSolver found."<<sendl;
return;
}
int n = mstate->getSize()*Deriv::size();
std::stringstream ss;
ss << this->getContext()->getName() << ".comp";
std::ifstream compFileIn(ss.str().c_str(), std::ifstream::binary);
sout << "try to open : " << ss.str() << endl;
if(compFileIn.good())
{
sout << "file open : " << ss.str() << " compliance being loaded" << endl;
refMinv.resize(n,n);
//complianceLoaded = true;
compFileIn.read((char*)refMinv.ptr(), n*n*sizeof(double));
compFileIn.close();
}
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::getCompliance(defaulttype::BaseMatrix* W)
{
if (!mstate || !odesolver || !linearsolver) return;
// use the OdeSolver to get the position integration factor
//const double factor = 1.0;
//const double factor = odesolver->getPositionIntegrationFactor(); // dt
const double factor = odesolver->getPositionIntegrationFactor(); //*odesolver->getPositionIntegrationFactor(); // dt*dt
const unsigned int numDOFs = mstate->getSize();
const unsigned int N = Deriv::size();
const unsigned int numDOFReals = numDOFs*N;
if (refMinv.rowSize() > 0) // What's for ??
{
std::cout<<"refMinv.rowSize() > 0"<<std::endl;
J.resize(numDOFReals,numDOFReals);
for (unsigned int i=0;i<numDOFReals;++i)
J.set(i,i,1);
linearsolver::FullMatrix<Real> Minv;
Minv.resize(numDOFReals,numDOFReals);
// use the Linear solver to compute J*inv(M)*Jt, where M is the mechanical linear system matrix
linearsolver->addJMInvJt(&Minv, &J, factor);
double err=0,fact=0;
for (unsigned int i=0;i<numDOFReals;++i)
for (unsigned int j=0;j<numDOFReals;++j)
{
//sout << "Minv("<<i<<","<<j<<") = "<<Minv.element(i,j)<<"\t refMinv("<<i<<","<<j<<") = "<<refMinv.element(i,j)<<sendl;
if (fabs(refMinv.element(i,j)) > 1.0e-30)
{
err += fabs(Minv.element(i,j)-refMinv.element(i,j))/refMinv.element(i,j);
fact += fabs(Minv.element(i,j)/refMinv.element(i,j));
}
else
{
err += fabs(Minv.element(i,j)-refMinv.element(i,j));
fact += 1.0f;
}
}
sout << "LinearSolverConstraintCorrection: mean relative error: "<<err/(numDOFReals*numDOFReals)<<sendl;
sout << "LinearSolverConstraintCorrection: mean relative factor: "<<fact/(numDOFReals*numDOFReals)<<sendl;
refMinv.resize(0,0);
}
// Compute J
VecConst& constraints = *mstate->getC();
const unsigned int numConstraints = constraints.size();
const unsigned int totalNumConstraints = W->rowSize();
J.resize(totalNumConstraints, numDOFReals);
for(unsigned int c1 = 0; c1 < numConstraints; c1++)
{
int cid = mstate->getConstraintId()[c1];
ConstraintIterator itConstraint;
for (itConstraint=constraints[c1].getData().begin();itConstraint!=constraints[c1].getData().end();itConstraint++)
{
unsigned int dof = itConstraint->first;
Deriv n = itConstraint->second;
for (unsigned int r=0;r<N;++r)
J.add(cid, dof*N+r, n[r]);
}
}
// use the Linear solver to compute J*inv(M)*Jt, where M is the mechanical linear system matrix
linearsolver->addJMInvJt(W, &J, factor);
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::applyContactForce(const defaulttype::BaseVector *f)
{
behavior::BaseMechanicalState::VecId forceID(behavior::BaseMechanicalState::VecId::V_DERIV, behavior::BaseMechanicalState::VecId::V_FIRST_DYNAMIC_INDEX);
behavior::BaseMechanicalState::VecId dxID(behavior::BaseMechanicalState::VecId::dx()); //behavior::BaseMechanicalState::VecId::V_DERIV, behavior::BaseMechanicalState::VecId::V_FIRST_DYNAMIC_INDEX+1);
mstate->vAlloc(forceID);
mstate->vOp(forceID);
// mstate->vAlloc(dxID);
mstate->setDx(forceID);
VecDeriv& force = *mstate->getDx();
mstate->setDx(dxID);
VecDeriv& dx = *mstate->getDx();
mstate->setDx(behavior::BaseMechanicalState::VecId::dx());
//VecConst& constraints = *mstate->getC();
//unsigned int numConstraints = constraints.size();
VecCoord& x = *mstate->getX();
VecDeriv& v = *mstate->getV();
VecDeriv v_free = *mstate->getVfree();
VecCoord x_free = *mstate->getXfree();
//double dt = this->getContext()->getDt();
const unsigned int numDOFs = mstate->getSize();
dx.clear();
dx.resize(numDOFs);
for (unsigned int i=0; i< numDOFs; i++)
dx[i] = Deriv();
force.clear();
force.resize(numDOFs);
for (unsigned int i=0; i< numDOFs; i++)
force[i] = Deriv();
#if 0
const unsigned int N = Deriv::size();
const unsigned int numDOFReals = numDOFs*N;
F.resize(numDOFReals);
const linearsolver::FullVector<Real>* fcast = dynamic_cast< const linearsolver::FullVector<Real>* >(f);
if (fcast)
J.mulTranspose(F, *fcast); // fast
else
J.mulTranspose(F, fcast); // slow but generic
for (unsigned int i=0; i< numDOFs; i++)
for (unsigned int r=0;r<N;++r)
force[i][r] = F[i*N+r];
#else
const VecConst& constraints = *mstate->getC();
unsigned int numConstraints = constraints.size();
for(unsigned int c1 = 0; c1 < numConstraints; c1++)
{
int indexC1 = mstate->getConstraintId()[c1];
double fC1 = f->element(indexC1);
//sout << "fC("<<indexC1<<")="<<fC1<<sendl;
if (fC1 != 0.0)
{
ConstraintIterator itConstraint;
for (itConstraint=constraints[c1].getData().begin();itConstraint!=constraints[c1].getData().end();itConstraint++)
{
unsigned int dof = itConstraint->first;
Deriv n = itConstraint->second;
//sout << "f("<<constraints[c1][i].index<<") += "<< (constraints[c1][i].data * fC1) << sendl;
force[dof] += n * fC1;
}
}
}
#endif
//for (unsigned int i=0; i< numDOFs; i++)
// sout << "f("<<i<<")="<<force[i]<<sendl;
linearsolver->setSystemRHVector(forceID);
linearsolver->setSystemLHVector(dxID);
linearsolver->solveSystem();
//TODO: tell the solver not to recompute the matrix
// use the OdeSolver to get the position integration factor
const double positionFactor = odesolver->getPositionIntegrationFactor();
// use the OdeSolver to get the position integration factor
const double velocityFactor = odesolver->getVelocityIntegrationFactor();
for (unsigned int i=0; i< numDOFs; i++)
{
//sout << "dx("<<i<<")="<<dx[i]<<sendl;
Deriv dxi = dx[i]*positionFactor;
Deriv dvi = dx[i]*velocityFactor;
x[i] = x_free[i] + dxi;
v[i] = v_free[i] + dvi;
dx[i] = dxi;
}
mstate->vFree(forceID);
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::resetContactForce()
{
VecDeriv& force = *mstate->getF();
for( unsigned i=0; i<force.size(); ++i )
force[i] = Deriv();
}
template<class DataTypes>
bool LinearSolverConstraintCorrection<DataTypes>::hasConstraintNumber(int index)
{
const VecConst& constraints = *mstate->getC();
unsigned int numConstraints = constraints.size();
for(unsigned int c = 0; c < numConstraints; c++)
{
int indexC = mstate->getConstraintId()[c];
if (indexC == index)
return true;
}
return false;
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::verify_constraints()
{
VecConst& constraints = *mstate->getC();
//unsigned int numConstraints = constraints.size();
sofa::helper::vector<unsigned int>& Id_vec = mstate->getConstraintId();
sofa::helper::vector<unsigned int>::iterator it_id(Id_vec.begin());
// debug
/*
bool change = false;
for (unsigned int i=0; i<numConstraints; i++)
{
int indexI = mstate->getConstraintId()[i];
for (unsigned int j=0; j<i; j++)
{
int indexJ = mstate->getConstraintId()[j];
if (indexI==indexJ)
{
change = true;
//debug
std::cout<<"!! duplicate detected !! i= "<<i<<" j= "<<j<<"index commun"<<indexI<<std::endl;
}
}
}
if(change)
{
std::cout<<"******* BEFORE******** \n constraints.size() ="<<constraints.size()<<"Id_vec.size()"<<Id_vec.size()<<std::endl;
for (unsigned int j=0; j<Id_vec.size(); j++)
{
std::cout<<"Id_vec["<<j<<"] = "<<Id_vec[j]<<std::endl;
}
}
*/
VecConstIt it_constI, it_constJ;
for (it_constI=constraints.begin() ; it_constI!= constraints.end(); it_constI++ )
{
unsigned int indexI= *it_id;
int j=0;
for (it_constJ=constraints.begin(); it_constJ!=it_constI; it_constJ++ )
{
unsigned int indexJ = Id_vec[j];
if (indexI==indexJ)
{
//debug
//std::cout<<"!! duplicate detected !! j= "<<j<<"index commun"<<indexI<<std::endl;
/// on copie les données de I dans J
ConstraintIterator itConstraintI;
//ConstraintIterator itConstraintJ;
//std::cout<<" copie de I dans J"<<std::endl;
for (itConstraintI=it_constI->getData().begin();itConstraintI!=it_constI->getData().end();itConstraintI++)
{
unsigned int dof = itConstraintI->first;
Deriv n = itConstraintI->second;
it_constJ->getData().insert(std::pair<unsigned int, Deriv> (dof,n ) );
}
//std::cout<<" suppression de I"<<std::endl;
constraints.erase(it_constI);
//std::cout<<" suppression de l'identifiant I"<<std::endl;
Id_vec.erase(it_id);
it_constI--;
it_id--;
break;
}
j++;
}
it_id++;
}
/*
if(change)
{
std::cout<<"******* AFTER ******** \n constraints.size() ="<<constraints.size()<<"Id_vec.size()"<<Id_vec.size()<<std::endl;
for (unsigned int j=0; j<Id_vec.size(); j++)
{
std::cout<<"Id_vec["<<j<<"] = "<<Id_vec[j]<<std::endl;
}
}
*/
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::resetForUnbuiltResolution(double * f, std::list<int>& renumbering)
{
verify_constraints();
VecConst& constraints = *mstate->getC();
unsigned int numConstraints = constraints.size();
constraint_disp.clear();
constraint_disp.resize(mstate->getSize());
constraint_force.clear();
constraint_force.resize(mstate->getSize());
constraint_dofs.clear();
id_to_localIndex.clear();
////// TODO : supprimer le classement par indice max
//std::vector<unsigned int> VecMaxDof;
//VecMaxDof.resize(numConstraints);
std::vector<unsigned int> VecMinDof;
VecMinDof.resize(numConstraints);
int maxIndex = -1;
for(unsigned int c = 0; c < numConstraints; c++)
{
I_last_Dforce.clear();
int indexC = mstate->getConstraintId()[c];
// resize table if necessary
if (indexC > maxIndex){
id_to_localIndex.resize(indexC+1, -1); // debug : -1 value allows to know if the table is badly filled
maxIndex = indexC;
}
if(id_to_localIndex[indexC]!=-1)
{
std::cerr<<" WARNING: id_to_localIndex["<<indexC<<"] has already a constraint : "<<id_to_localIndex[indexC]<<" concurrent constraint ="<<c<<std::endl;
std::cerr<<" mstate->getConstraintId()["<<c<<"] = "<<mstate->getConstraintId()[c]<<std::endl;
}
// buf the table of local indices
id_to_localIndex[indexC] = c;
// debug //
//if (c==0)
// f[indexC]=1.0;
// buf the value of force applied on concerned dof : constraint_force
// buf a table of indice of involved dof : constraint_dofs
double fC = f[indexC];
// debug
//std::cout<<"f["<<indexC<<"] = "<<fC<<std::endl;
if (fC != 0.0)
{
ConstraintIterator itConstraint;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
unsigned int dof = itConstraint->first;
Deriv n = itConstraint->second;
constraint_force[dof] +=n * fC;
I_last_Dforce.push_back(dof);
}
}
//////////// for wire optimization ////////////
ConstraintIterator itConstraint;
//VecMaxDof[c] = 0;
//for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
//{
// unsigned int dof = itConstraint->first;
// constraint_dofs.push_back(dof);
// if(dof>VecMaxDof[c]) VecMaxDof[c]=dof;
//}
/// a vector of the minimal indice of dof involved with each constraint is built
VecMinDof[c] = mstate->getSize()+1;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
unsigned int dof = itConstraint->first;
constraint_dofs.push_back(dof);
if(dof<VecMinDof[c]) VecMinDof[c]=dof;
}
// debug
//std::cout<<VecMaxDof[c]<<" ";
}
if (wire_optimization.getValue())
{
std::vector< std::vector<int> > ordering_per_dof;
ordering_per_dof.resize(mstate->getSize());
for(unsigned int c = 0; c < numConstraints; c++)
{
int indexC = mstate->getConstraintId()[c];
ordering_per_dof[VecMinDof[c]].push_back(indexC);
}
renumbering.clear();
for(int dof= 0; dof<mstate->getSize(); dof++)
{
for (unsigned int c = 0; c< ordering_per_dof[dof].size(); c++)
{
renumbering.push_back(ordering_per_dof[dof][c]);
}
}
}
// debug
//std::cout<<"in resetConstraintForce : constraint_force ="<<constraint_force<<std::endl;
// constraint_dofs buff the DOF that are involved with the constraints
constraint_dofs.unique();
I_last_Dforce.sort();
I_last_Dforce.unique();
// debug
/*std::cout<<"in resetConstraintForce I_last_Dforce.size() = "<<I_last_Dforce.size()<<"value : "<<std::endl;
std::list<int>::const_iterator lit(I_last_Dforce.begin()), lend(I_last_Dforce.end());
for(;lit!=lend;++lit)
{
int dof =*lit;
std::cout<<dof<<" - ";
}
std::cout<<" "<<std::endl;
*/
/////////////// SET INFO FOR LINEAR SOLVER /////////////
behavior::BaseMechanicalState::VecId forceID(behavior::BaseMechanicalState::VecId::V_DERIV, behavior::BaseMechanicalState::VecId::V_FIRST_DYNAMIC_INDEX);
behavior::BaseMechanicalState::VecId dxID(behavior::BaseMechanicalState::VecId::dx()); //behavior::BaseMechanicalState::VecId::V_DERIV, behavior::BaseMechanicalState::VecId::V_FIRST_DYNAMIC_INDEX+1);
linearsolver->setSystemRHVector(forceID);
linearsolver->setSystemLHVector(dxID);
systemMatrix_buf = linearsolver->getSystemBaseMatrix();
systemRHVector_buf = linearsolver->getSystemRHBaseVector();
systemLHVector_buf = linearsolver->getSystemLHBaseVector();
// systemRHVector_buf is set to constraint_force;
//std::cerr<<"WARNING: resize is called"<<std::endl;
const unsigned int derivDim = Deriv::size();
const unsigned int systemSize = mstate->getSize() * derivDim;
systemRHVector_buf->resize(systemSize) ;
systemLHVector_buf->resize(systemSize) ;
//std::cerr<<"resize ok"<<std::endl;
for ( int i=0; i<mstate->getSize(); i++)
{
for (unsigned int j=0; j<derivDim; j++)
systemRHVector_buf->set(i*derivDim+j, constraint_force[i][j]);
}
// debug !!
//double toto[12];
//toto[0]=0.0;
//addConstraintDisplacement(toto, 0,0) ;
//std::cout<<"toto[0] ="<<toto[0]<<std::endl;
///////// new : précalcul des liste d'indice ///////
Vec_I_list_dof.clear(); // clear = the list is fill during the block compliance computation
Vec_I_list_dof.resize(numConstraints);
last_disp = 0;
last_force= numConstraints-1;
_new_force = true;
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::addConstraintDisplacement(double *d, int begin,int end)
{
const VecConst& constraints = *mstate->getC();
const unsigned int derivDim = Deriv::size();
/*
I_last_Disp.clear();
for ( int id_=begin; id_<=end; id_++)
{
int c = id_to_localIndex[id_];
ConstraintIterator itConstraint;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
int dof = (int) itConstraint->first;
I_last_Disp.push_back(dof);
}
}
I_last_Disp.sort();
I_last_Disp.unique();
*/
last_disp = begin;
/*
std::cout<<"in addConstraintDisplacement I_last_Disp.size() = "<<I_last_Disp.size()<<" value : "<<std::endl;
std::list<int>::const_iterator lit(I_last_Disp.begin()), lend(I_last_Disp.end());
for(;lit!=lend;++lit)
{
int dof =*lit;
std::cout<<dof<<" - ";
}
std::cout<<" "<<std::endl;
*/
//std::cout<<"constraint_force : "<<constraint_force<<std::endl;
linearsolver->partial_solve(Vec_I_list_dof[last_disp], Vec_I_list_dof[last_force], _new_force);
_new_force = false;
for ( int id_=begin; id_<=end; id_++)
{
//std::cout<<"dfree["<<id_<<"] ="<<d[id_];
int c = id_to_localIndex[id_];
ConstraintIterator itConstraint;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
int dof = (int) itConstraint->first;
Deriv n = itConstraint->second;
Deriv Disp;
for(unsigned int j=0; j<derivDim; j++){
Disp[j] = (Real)(systemLHVector_buf->element(dof*derivDim + j) * odesolver->getPositionIntegrationFactor());
}
d[id_] += n*Disp;
}
//std::cout<<" - d["<<id_<<"] = "<<d[id_]<<std::endl;
}
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::setConstraintDForce(double *df, int begin, int end, bool update)
{
const VecConst& constraints = *mstate->getC();
const unsigned int derivDim = Deriv::size();
//std::cout<<" setConstraintDForce is called"<<std::endl;
// debug
//if (end<3)
// std::cout<<"addDf - df["<<begin<<" to "<<end<<"] ="<< df[begin] << " " << df[begin+1] << " "<< df[begin+2] << std::endl;
if (update==false)
return;
_new_force = true;
//debug
Deriv DF_c;
for ( int id_=begin; id_<=end; id_++)
{
int c = id_to_localIndex[id_];
// debug
//std::cout<<" - setConstraintDForce : constraint"<< c <<std::endl;
ConstraintIterator itConstraint;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
Deriv n = itConstraint->second;
int dof = (int) itConstraint->first;
//debug
//std::cout<<"constraint_force["<<dof<<"] = "<<constraint_force[dof] ;
constraint_force[dof] += n * df[id_];
//I_last_Dforce.push_back(dof);
//std::cout<<" after ... constraint_force["<<dof<<"] = "<<constraint_force[dof] ;
DF_c += n * df[id_];
}
//std::cout<<std::endl;
}
/*
if (df[begin]<0)
{
std::cout<<" DF_c : "<< DF_c<< std::endl;
}
*/
last_force = begin;
//debug
std::list<int>::const_iterator it_dof(Vec_I_list_dof[last_force].begin()), it_end(Vec_I_list_dof[last_force].end());
for(;it_dof!=it_end;++it_dof)
{
int dof =(*it_dof) ;
//std::cout<<"dof - "<<dof <<std::endl;
for (unsigned int j=0; j<derivDim; j++)
systemRHVector_buf->set(dof * derivDim + j, constraint_force[dof][j]);
}
}
template<class DataTypes>
void LinearSolverConstraintCorrection<DataTypes>::getBlockDiagonalCompliance(defaulttype::BaseMatrix* W, int begin, int end)
{
if (!mstate || !odesolver || !linearsolver) return;
// use the OdeSolver to get the position integration factor
const double factor = odesolver->getPositionIntegrationFactor(); //*odesolver->getPositionIntegrationFactor(); // dt*dt
const unsigned int numDOFs = mstate->getSize();
const unsigned int N = Deriv::size();
const unsigned int numDOFReals = numDOFs*N;
// Compute J
VecConst& constraints = *mstate->getC();
// const unsigned int numConstraints = constraints.size();
const unsigned int totalNumConstraints = W->rowSize();
J.resize(totalNumConstraints, numDOFReals);
for (int id1=begin; id1<=end; id1++)
{
//std::cerr<<"constraint : "<<id1;
int c1 = id_to_localIndex[id1];
//std::cerr<<" local index : "<<c1<<std::endl;
ConstraintIterator itConstraint1;
unsigned int dof_buf=0;
int toto=0;
for (itConstraint1=constraints[c1].getData().begin();itConstraint1!=constraints[c1].getData().end();itConstraint1++)
{
unsigned int dof = itConstraint1->first;
Deriv n = itConstraint1->second;
for (unsigned int r=0;r<N;++r)
J.add(id1, dof*N+r, n[r]);
if (toto!=0)
{
int test=dof_buf - dof;
if (test>2 || test< -2)
std::cout<<"YES !!!! for constraint id1 dof1 = "<<dof_buf<<" dof2 = "<<dof<<std::endl;
}
dof_buf =dof;
}
}
// use the Linear solver to compute J*inv(M)*Jt, where M is the mechanical linear system matrix
linearsolver->addJMInvJt(W, &J, factor);
// construction of Vec_I_list_dof : vector containing, for each constraint block, the list of dof concerned
ListIndex list_dof;
for ( int id_=begin; id_<=end; id_++)
{
int c = id_to_localIndex[id_];
ConstraintIterator itConstraint;
for (itConstraint=constraints[c].getData().begin();itConstraint!=constraints[c].getData().end();itConstraint++)
{
int dof = (int) itConstraint->first;
list_dof.push_back(dof);
}
}
list_dof.sort();
list_dof.unique();
for ( int id_=begin; id_<=end; id_++)
{
Vec_I_list_dof[id_] = list_dof;
}
}
} // namespace collision
} // namespace component
} // namespace sofa
#endif
|