File: CGImplicitSolver.cpp

package info (click to toggle)
sofa-framework 1.0~beta4-9
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 88,688 kB
  • ctags: 27,205
  • sloc: cpp: 151,126; ansic: 2,387; xml: 581; sh: 417; makefile: 67
file content (318 lines) | stat: -rw-r--r-- 11,610 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/******************************************************************************
*       SOFA, Simulation Open-Framework Architecture, version 1.0 beta 4      *
*                (c) 2006-2009 MGH, INRIA, USTL, UJF, CNRS                    *
*                                                                             *
* This library is free software; you can redistribute it and/or modify it     *
* under the terms of the GNU Lesser General Public License as published by    *
* the Free Software Foundation; either version 2.1 of the License, or (at     *
* your option) any later version.                                             *
*                                                                             *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or       *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details.                                                           *
*                                                                             *
* You should have received a copy of the GNU Lesser General Public License    *
* along with this library; if not, write to the Free Software Foundation,     *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.          *
*******************************************************************************
*                               SOFA :: Modules                               *
*                                                                             *
* Authors: The SOFA Team and external contributors (see Authors.txt)          *
*                                                                             *
* Contact information: contact@sofa-framework.org                             *
******************************************************************************/
// Author: François Faure, INRIA-UJF, (C) 2006
//
// Copyright: See COPYING file that comes with this distribution
#include <sofa/component/odesolver/CGImplicitSolver.h>
#include <sofa/simulation/common/MechanicalVisitor.h>
#include <sofa/core/ObjectFactory.h>
#include <math.h>
#include <iostream>
#include "sofa/helper/system/thread/CTime.h"




namespace sofa
{

namespace component
{

namespace odesolver
{

using namespace sofa::defaulttype;
using namespace core::componentmodel::behavior;

CGImplicitSolver::CGImplicitSolver()
        : f_maxIter( initData(&f_maxIter,(unsigned)25,"iterations","maximum number of iterations of the Conjugate Gradient solution") )
        , f_tolerance( initData(&f_tolerance,1e-5,"tolerance","desired precision of the Conjugate Gradient Solution (ratio of current residual norm over initial residual norm)") )
        , f_smallDenominatorThreshold( initData(&f_smallDenominatorThreshold,1e-5,"threshold","minimum value of the denominator in the conjugate Gradient solution") )
        , f_rayleighStiffness( initData(&f_rayleighStiffness,0.1,"rayleighStiffness","Rayleigh damping coefficient related to stiffness") )
        , f_rayleighMass( initData(&f_rayleighMass,0.1,"rayleighMass","Rayleigh damping coefficient related to mass"))
        , f_velocityDamping( initData(&f_velocityDamping,0.,"vdamping","Velocity decay coefficient (no decay if null)") )
        , f_verbose( initData(&f_verbose,false,"verbose","Dump system state at each iteration") )
{
    //     maxCGIter = 25;
    //     smallDenominatorThreshold = 1e-5;
    //     tolerance = 1e-5;
    //     rayleighStiffness = 0.1;
    //     rayleighMass = 0.1;
    //     velocityDamping = 0;

}

// CGImplicitSolver* CGImplicitSolver::setMaxIter( int n )
// {
//     maxCGIter = n;
//     return this;
// }

void CGImplicitSolver::solve(double dt)
{
    MultiVector pos(this, VecId::position());
    MultiVector vel(this, VecId::velocity());
    MultiVector f(this, VecId::force());
    MultiVector b(this, VecId::V_DERIV);
    MultiVector p(this, VecId::V_DERIV);
    MultiVector q(this, VecId::V_DERIV);
    //MultiVector q2(this, VecId::V_DERIV);
    //MultiVector r(this, VecId::V_DERIV);
    MultiVector x(this, VecId::V_DERIV);

    double h = dt;
    const bool printLog = f_printLog.getValue();
    const bool verbose  = f_verbose.getValue();

    addSeparateGravity(dt);	// v += dt*g . Used if mass wants to added G separately from the other forces to v.

    //projectResponse(vel);          // initial velocities are projected to the constrained space

    // compute the right-hand term of the equation system
    computeForce(b);             // b = f0

    //propagateDx(vel);            // dx = v
    //computeDf(f);                // f = df/dx v
    computeDfV(f);                // f = df/dx v
    b.peq(f,h+f_rayleighStiffness.getValue());      // b = f0 + (h+rs)df/dx v

    if (f_rayleighMass.getValue() != 0.0)
    {
        //f.clear();
        //addMdx(f,vel);
        //b.peq(f,-f_rayleighMass.getValue());     // b = f0 + (h+rs)df/dx v - rd M v
        //addMdx(b,VecId(),-f_rayleighMass.getValue()); // no need to propagate vel as dx again
        addMdx(b,vel,-f_rayleighMass.getValue()); // no need to propagate vel as dx again
    }

    b.teq(h);                           // b = h(f0 + (h+rs)df/dx v - rd M v)

    if( verbose )
	serr<<"CGImplicitSolver, f0 = "<< b <<sendl;

    projectResponse(b);          // b is projected to the constrained space

    double normb2 = b.dot(b);
    double normb = sqrt(normb2);


    // -- solve the system using a conjugate gradient solution
    double rho, rho_1=0, alpha, beta;

    if( verbose )
	serr<<"CGImplicitSolver, projected f0 = "<< b <<sendl;

    v_clear( x );
    //v_eq(r,b); // initial residual
    MultiVector& r = b; // b is never used after this point

    if( verbose )
    {
        serr<<"CGImplicitSolver, dt = "<< dt <<sendl;
        serr<<"CGImplicitSolver, initial x = "<< pos <<sendl;
        serr<<"CGImplicitSolver, initial v = "<< vel <<sendl;
        serr<<"CGImplicitSolver, r0 = f0 = "<< b <<sendl;
        //serr<<"CGImplicitSolver, r0 = "<< r <<sendl;
    }

    unsigned nb_iter;
    const char* endcond = "iterations";
    for( nb_iter=1; nb_iter<=f_maxIter.getValue(); nb_iter++ )
    {
	    
#ifdef DUMP_VISITOR_INFO
	  std::ostringstream comment;
	  comment << "Iteration : " << nb_iter;
	  simulation::Visitor::printComment(comment.str());
#endif
// 		printWithElapsedTime( x, helper::system::thread::CTime::getTime()-time0,sout );
		
        //z = r; // no precond
        //rho = r.dot(z);
        rho = (nb_iter==1) ? normb2 : r.dot(r);

        if (nb_iter>1)
        {
            double normr = sqrt(rho); //sqrt(r.dot(r));
            if (normr/normb <= f_tolerance.getValue())
            {
                endcond = "tolerance";
                break;
            }
        }

        if( nb_iter==1 )
            p = r; //z;
        else
        {
            beta = rho / rho_1;
            //p *= beta;
            //p += r; //z;
            v_op(p,r,p,beta); // p = p*beta + r
        }

        if( verbose )
        {
            serr<<"p : "<<p<<sendl;
        }
        
        // matrix-vector product
        propagateDx(p);          // dx = p
        computeDf(q);            // q = df/dx p
        
        if( verbose )
        {
            serr<<"q = df/dx p : "<<q<<sendl;
        }
        
        q *= -h*(h+f_rayleighStiffness.getValue());  // q = -h(h+rs) df/dx p
        
        if( verbose )
        {
            serr<<"q = -h(h+rs) df/dx p : "<<q<<sendl;
        }
        //
        // 		serr<<"-h(h+rs) df/dx p : "<<q<<sendl;
        // 		serr<<"f_rayleighMass.getValue() : "<<f_rayleighMass.getValue()<<sendl;

        // apply global Rayleigh damping 
        if (f_rayleighMass.getValue()==0.0)
        {
            //addMdx( q, p);           // q = Mp -h(h+rs) df/dx p
            addMdx(q); // no need to propagate p as dx again
        }
        else
        {
            //q2.clear();
            //addMdx( q2, p);
            //q.peq(q2,(1+h*f_rayleighMass.getValue())); // q = Mp -h(h+rs) df/dx p +hr Mp  =  (M + dt(rd M + rs K) + dt2 K) dx
            addMdx(q,VecId(),(1+h*f_rayleighMass.getValue())); // no need to propagate p as dx again
        }
        if( verbose )
        {
            serr<<"q = Mp -h(h+rs) df/dx p +hr Mp  =  "<<q<<sendl;
        }

        // filter the product to take the constraints into account
        //
        projectResponse(q);     // q is projected to the constrained space
        if( verbose )
        {
            serr<<"q after constraint projection : "<<q<<sendl;
        }

        double den = p.dot(q);


        if( fabs(den)<f_smallDenominatorThreshold.getValue() )
        {
            endcond = "threshold";
            if( verbose )
            {
                serr<<"CGImplicitSolver, den = "<<den<<", smallDenominatorThreshold = "<<f_smallDenominatorThreshold.getValue()<<sendl;
            }
            break;
        }
        alpha = rho/den;
#ifdef SOFA_NO_VMULTIOP // unoptimized version
        x.peq(p,alpha);                 // x = x + alpha p
        r.peq(q,-alpha);                // r = r - alpha q
#else // single-operation optimization
        {
  	    typedef core::componentmodel::behavior::BaseMechanicalState::VMultiOp VMultiOp;
	    VMultiOp ops;
            ops.resize(2);
            ops[0].first = (VecId)x;
            ops[0].second.push_back(std::make_pair((VecId)x,1.0));
            ops[0].second.push_back(std::make_pair((VecId)p,alpha));
            ops[1].first = (VecId)r;
            ops[1].second.push_back(std::make_pair((VecId)r,1.0));
            ops[1].second.push_back(std::make_pair((VecId)q,-alpha));  
	    simulation::MechanicalVMultiOpVisitor vmop(ops);
            vmop.execute(this->getContext());
        }
#endif
        if( verbose ){
            serr<<"den = "<<den<<", alpha = "<<alpha<<sendl;
            serr<<"x : "<<x<<sendl;
            serr<<"r : "<<r<<sendl;
        }

        rho_1 = rho;
    }
    // x is the solution of the system

    // apply the solution
#ifdef SOFA_NO_VMULTIOP // unoptimized version
    vel.peq( x );                       // vel = vel + x
    pos.peq( vel, h );                  // pos = pos + h vel
#else // single-operation optimization
    {
        typedef core::componentmodel::behavior::BaseMechanicalState::VMultiOp VMultiOp;
	VMultiOp ops;
        ops.resize(2);
        ops[0].first = (VecId)vel;
        ops[0].second.push_back(std::make_pair((VecId)vel,1.0));
        ops[0].second.push_back(std::make_pair((VecId)x,1.0));
        ops[1].first = (VecId)pos;
        ops[1].second.push_back(std::make_pair((VecId)pos,1.0));
        ops[1].second.push_back(std::make_pair((VecId)vel,h));  
	simulation::MechanicalVMultiOpVisitor vmop(ops);
        vmop.execute(this->getContext());
    }
#endif
    if (f_velocityDamping.getValue()!=0.0)
        vel *= exp(-h*f_velocityDamping.getValue());
    
    if( printLog )
    {
        serr<<"CGImplicitSolver::solve, nbiter = "<<nb_iter<<" stop because of "<<endcond<<sendl;
    }
    if( verbose )
    {
        serr<<"CGImplicitSolver::solve, solution = "<<x<<sendl;
        serr<<"CGImplicitSolver, final x = "<< pos <<sendl;
        serr<<"CGImplicitSolver, final v = "<< vel <<sendl;
    }

#ifdef SOFA_HAVE_LAPACK
    applyConstraints();
#endif
}

SOFA_DECL_CLASS(CGImplicit)

int CGImplicitSolverClass = core::RegisterObject("Implicit time integration using the filtered conjugate gradient")
.add< CGImplicitSolver >()
.addAlias("CGImplicit");
;

} // namespace odesolver

} // namespace component

} // namespace sofa