1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2022 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_FUNCTION_TYPES_STATELESS_HPP
#define SOL_FUNCTION_TYPES_STATELESS_HPP
#include <sol/stack.hpp>
#include <sol/call.hpp>
#include <sol/bind_traits.hpp>
namespace sol { namespace function_detail {
template <typename Function>
struct upvalue_free_function {
using function_type = std::remove_pointer_t<std::decay_t<Function>>;
using traits_type = meta::bind_traits<function_type>;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
auto udata = stack::stack_detail::get_as_upvalues<function_type*>(L);
function_type* fx = udata.first;
return call_detail::call_wrapped<void, true, false>(L, fx);
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L) {
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
};
template <typename T, typename Function>
struct upvalue_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member function pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
auto& item = *static_cast<T*>(stack::get<void*>(L, upvalue_index(3)));
return call_detail::call_wrapped<T, true, false, -1>(L, memfx, item);
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
return call(L);
}
};
template <typename T, typename Function>
struct upvalue_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
case 1:
return call_detail::call_wrapped<T, false, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
return call(L);
}
};
template <typename T, typename Function>
struct upvalue_member_variable<T, readonly_wrapper<Function>> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
// idx n + 1: is the object's void pointer
// We don't need to store the size, because the other side is templated
// with the same member function pointer type
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
auto objdata = stack::stack_detail::get_as_upvalues<T*>(L, memberdata.second);
auto& mem = *objdata.first;
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 0:
return call_detail::call_wrapped<T, true, false, -1>(L, var, mem);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
return call(L);
}
};
template <typename T, typename Function>
struct upvalue_this_member_function {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
// Layout:
// idx 1...n: verbatim data of member variable pointer
function_type& memfx = stack::get<user<function_type>>(L, upvalue_index(2));
return call_detail::call_wrapped<T, false, false>(L, memfx);
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L)
#if SOL_IS_ON(SOL_COMPILER_VCXX)
// MSVC is broken, what a surprise...
#else
noexcept(traits_type::is_noexcept)
#endif
{
return call(L);
}
};
template <typename T, typename Function>
struct upvalue_this_member_variable {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
static int real_call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
case 2:
return call_detail::call_wrapped<T, false, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
return call(L);
}
};
template <typename T, typename Function>
struct upvalue_this_member_variable<T, readonly_wrapper<Function>> {
typedef std::remove_pointer_t<std::decay_t<Function>> function_type;
typedef lua_bind_traits<function_type> traits_type;
static int real_call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
// Layout:
// idx 1...n: verbatim data of member variable pointer
auto memberdata = stack::stack_detail::get_as_upvalues<function_type>(L);
function_type& var = memberdata.first;
switch (lua_gettop(L)) {
case 1:
return call_detail::call_wrapped<T, true, false>(L, var);
default:
return luaL_error(L, "sol: incorrect number of arguments to member variable function");
}
}
template <bool is_yielding, bool no_trampoline>
static int call(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
int nr;
if constexpr (no_trampoline) {
nr = real_call(L);
}
else {
nr = detail::typed_static_trampoline<decltype(&real_call), (&real_call)>(L);
}
if (is_yielding) {
return lua_yield(L, nr);
}
else {
return nr;
}
}
int operator()(lua_State* L) noexcept(std::is_nothrow_copy_assignable_v<T>) {
return call(L);
}
};
}} // namespace sol::function_detail
#endif // SOL_FUNCTION_TYPES_STATELESS_HPP
|