1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2022 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_HPP
#define SOL_STACK_HPP
#include <sol/trampoline.hpp>
#include <sol/stack_core.hpp>
#include <sol/stack_reference.hpp>
#include <sol/stack_check.hpp>
#include <sol/stack_get.hpp>
#include <sol/stack_check_get.hpp>
#include <sol/stack_push.hpp>
#include <sol/stack_pop.hpp>
#include <sol/stack_field.hpp>
#include <sol/stack_probe.hpp>
#include <sol/error.hpp>
#include <sol/assert.hpp>
#include <cstring>
#include <array>
namespace sol {
namespace detail {
using typical_chunk_name_t = char[SOL_ID_SIZE_I_];
using typical_file_chunk_name_t = char[SOL_FILE_ID_SIZE_I_];
inline const std::string& default_chunk_name() {
static const std::string name = "";
return name;
}
template <std::size_t N>
const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
if (chunkname.empty()) {
auto it = code.cbegin();
auto e = code.cend();
std::size_t i = 0;
static const std::size_t n = N - 4;
for (i = 0; i < n && it != e; ++i, ++it) {
basechunkname[i] = *it;
}
if (it != e) {
for (std::size_t c = 0; c < 3; ++i, ++c) {
basechunkname[i] = '.';
}
}
basechunkname[i] = '\0';
return &basechunkname[0];
}
else {
return chunkname.c_str();
}
}
inline void clear_entries(stack_reference r) {
stack::push(r.lua_state(), lua_nil);
while (lua_next(r.lua_state(), -2)) {
absolute_index key(r.lua_state(), -2);
auto pn = stack::pop_n(r.lua_state(), 1);
stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
}
}
inline void clear_entries(const reference& registry_reference) {
auto pp = stack::push_pop(registry_reference);
stack_reference ref(registry_reference.lua_state(), -1);
clear_entries(ref);
}
} // namespace detail
namespace stack {
namespace stack_detail {
template <typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
static const std::size_t itemsize = sizeof(TValue);
static const std::size_t voidsize = sizeof(void*);
static const std::size_t voidsizem1 = voidsize - 1;
static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data { {} };
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for (const auto& v : data) {
lua_pushlightuserdata(L, v);
pushcount += 1;
}
return pushcount;
}
template <typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata { {} };
for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = lua_touserdata(L, upvalue_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <typename T>
inline std::pair<T, int> get_as_upvalues_using_function(lua_State* L, int function_index = -1) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
function_index = lua_absindex(L, function_index);
int index = 0;
data_t voiddata { {} };
for (std::size_t d = 0; d < sizeof(T); d += sizeof(void*)) {
// first upvalue is nullptr to respect environment shenanigans
// So +2 instead of +1
const char* upvalue_name = lua_getupvalue(L, function_index, index + 2);
if (upvalue_name == nullptr) {
// We should freak out here...
break;
}
voiddata[index] = lua_touserdata(L, -1);
++index;
}
lua_pop(L, index);
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <bool checked, typename Handler, typename Fx, typename... Args>
static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, Handler&&, record&, Fx&& fx, Args&&... args) {
return std::forward<Fx>(fx)(std::forward<Args>(args)...);
}
template <bool checked, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename Handler, typename Fx, typename... FxArgs>
static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L_, int start_index_, Handler&& handler_,
record& tracking_, Fx&& fx_, FxArgs&&... fxargs_) {
#if 0 && SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS)
// NOTE: THIS IS TERMPORARILY TURNED OFF BECAUSE IT IMPACTS ACTUAL SEMANTICS W.R.T. THINGS LIKE LUAJIT,
// SO IT MUST REMAIN OFF UNTIL WE CAN ESTABLISH SIMILAR BEHAVIOR IN MODES WHERE `checked == false`!
// We can save performance/time by letting errors unwind produced arguments
// rather than checking everything once, and then potentially re-doing work
if constexpr (checked) {
return eval<checked>(types<Args...>(),
std::index_sequence<Is...>(),
L_,
start_index_,
std::forward<Handler>(handler_),
tracking_,
std::forward<Fx>(fx_),
std::forward<FxArgs>(fxargs_)...,
*stack_detail::check_get_arg<Arg>(L_, start_index_ + tracking_.used, handler_, tracking_));
}
else
#endif
{
return eval<checked>(types<Args...>(),
std::index_sequence<Is...>(),
L_,
start_index_,
std::forward<Handler>(handler_),
tracking_,
std::forward<Fx>(fx_),
std::forward<FxArgs>(fxargs_)...,
stack_detail::unchecked_get_arg<Arg>(L_, start_index_ + tracking_.used, tracking_));
}
}
template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R>, types<Args...> argument_types_, std::index_sequence<I...> argument_indices_, lua_State* L_,
int start_index_, Fx&& fx_, FxArgs&&... args_) {
static_assert(meta::all_v<meta::is_not_move_only<Args>...>,
"One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take "
"a reference and std::move it manually if this was your intention.");
argument_handler<types<R, Args...>> handler {};
record tracking {};
#if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS)
if constexpr (checkargs) {
multi_check<Args...>(L_, start_index_, handler);
}
#endif
if constexpr (std::is_void_v<R>) {
eval<checkargs>(
argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
}
else {
return eval<checkargs>(
argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
}
}
template <typename T>
void raw_table_set(lua_State* L, T&& arg, int tableindex = -2) {
int push_count = push(L, std::forward<T>(arg));
SOL_ASSERT(push_count == 1);
std::size_t unique_index = static_cast<std::size_t>(luaL_len(L, tableindex) + 1u);
lua_rawseti(L, tableindex, static_cast<int>(unique_index));
}
} // namespace stack_detail
template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
int push_count = push(L, std::forward<T>(arg));
SOL_ASSERT(push_count == 1);
return luaL_ref(L, tableindex);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
using args_indices = std::make_index_sequence<sizeof...(Args)>;
if constexpr (std::is_void_v<R>) {
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
if constexpr (std::is_void_v<R>) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
using expected_count_t = meta::count_for_pack<lua_size, Args...>;
if constexpr (std::is_void_v<R>) {
call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args,
typename Fx, typename... FxArgs>
inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
if constexpr (std::is_void_v<Ret0>) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
if constexpr (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
else {
(void)tr;
decltype(auto) r
= call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
using R = meta::unqualified_t<decltype(r)>;
using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
if constexpr (clean_stack && !is_stack::value) {
lua_settop(L, 0);
}
return push_reference(L, std::forward<decltype(r)>(r));
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
using args_list = typename traits_type::args_list;
using returns_list = typename traits_type::returns_list;
return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}
inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
if (lua_gettop(L) < 1) {
return call_syntax::dot;
}
luaL_getmetatable(L, key.data());
auto pn = pop_n(L, 1);
if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
return call_syntax::dot;
}
return call_syntax::colon;
}
inline void script(
lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script(
lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
if (L == nullptr) {
return;
}
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, (void*)handler);
auto pn = pop_n(L, 1);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
if (L == nullptr) {
return;
}
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
namespace stack_detail {
inline error get_error(lua_State* L, int target) {
auto maybe_exc = stack::check_get<error&>(L, target);
if (maybe_exc.has_value()) {
return maybe_exc.value();
}
return error(detail::direct_error, stack::get<std::string>(L, target));
}
inline detail::error_exception get_error_exception(lua_State* L, int target) {
auto maybe_exc = stack::check_get<detail::error_exception&>(L, target);
if (maybe_exc.has_value()) {
return maybe_exc.value();
}
return detail::error_exception(detail::direct_error, stack::get<std::string>(L, target));
}
}
} // namespace stack
} // namespace sol
#endif // SOL_STACK_HPP
|