File: usertype_storage.hpp

package info (click to toggle)
sol2 3.5.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,096 kB
  • sloc: cpp: 43,816; ansic: 1,018; python: 356; sh: 288; makefile: 202
file content (1165 lines) | stat: -rw-r--r-- 45,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
// sol2

// The MIT License (MIT)

// Copyright (c) 2013-2022 Rapptz, ThePhD and contributors

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#ifndef SOL_USERTYPE_STORAGE_HPP
#define SOL_USERTYPE_STORAGE_HPP

#include <sol/usertype_core.hpp>
#include <sol/make_reference.hpp>

#include <bitset>
#include <unordered_map>
#include <memory>

namespace sol { namespace u_detail {

	struct usertype_storage_base;
	template <typename T>
	struct usertype_storage;

	optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L_, int index);
	usertype_storage_base& get_usertype_storage_base(lua_State* L_, const char* gcmetakey);
	template <typename T>
	optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L_);
	template <typename T>
	usertype_storage<T>& get_usertype_storage(lua_State* L_);

	using index_call_function = int(lua_State*, void*);
	using change_indexing_mem_func = void (usertype_storage_base::*)(
		lua_State*, submetatable_type, void*, stateless_stack_reference&, lua_CFunction, lua_CFunction, lua_CFunction, lua_CFunction);

	struct index_call_storage {
		index_call_function* index;
		index_call_function* new_index;
		void* binding_data;
	};

	struct new_index_call_storage : index_call_storage {
		void* new_binding_data;
	};

	struct binding_base {
		virtual void* data() = 0;
		virtual ~binding_base() {
		}
	};

	template <typename K, typename Fq, typename T = void>
	struct binding : binding_base {
		using uF = meta::unqualified_t<Fq>;
		using F = meta::conditional_t<meta::is_c_str_of_v<uF, char>
#if SOL_IS_ON(SOL_CHAR8_T)
			     || meta::is_c_str_of_v<uF, char8_t>
#endif
			     || meta::is_c_str_of_v<uF, char16_t> || meta::is_c_str_of_v<uF, char32_t> || meta::is_c_str_of_v<uF, wchar_t>,
			std::add_pointer_t<std::add_const_t<std::remove_all_extents_t<Fq>>>, std::decay_t<Fq>>;
		F data_;

		template <typename... Args>
		binding(Args&&... args) : data_(std::forward<Args>(args)...) {
		}

		virtual void* data() override {
			return static_cast<void*>(std::addressof(data_));
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int call_with_(lua_State* L_, void* target) {
			constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
			auto& f = *static_cast<F*>(target);
			return call_detail::call_wrapped<T, is_index, is_variable, boost>(L_, f);
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int call_(lua_State* L_) {
			void* f = stack::get<void*>(L_, upvalue_index(usertype_storage_index));
			return call_with_<is_index, is_variable>(L_, f);
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int call(lua_State* L_) {
			int r = detail::typed_static_trampoline<decltype(&call_<is_index, is_variable>), (&call_<is_index, is_variable>)>(L_);
			if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
				return lua_yield(L_, r);
			}
			else {
				return r;
			}
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int index_call_with_(lua_State* L_, void* target) {
			if constexpr (!is_variable) {
				if constexpr (is_lua_c_function_v<std::decay_t<F>>) {
					auto& f = *static_cast<std::decay_t<F>*>(target);
					return stack::push(L_, f);
				}
				else {
					// set up upvalues
					// for a chained call
					int upvalues = 0;
					upvalues += stack::push(L_, nullptr);
					upvalues += stack::push(L_, target);
					auto cfunc = &call<is_index, is_variable>;
					return stack::push(L_, c_closure(cfunc, upvalues));
				}
			}
			else {
				constexpr int boost = !detail::is_non_factory_constructor<F>::value && std::is_same<K, call_construction>::value ? 1 : 0;
				auto& f = *static_cast<F*>(target);
				return call_detail::call_wrapped<T, is_index, is_variable, boost>(L_, f);
			}
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int index_call_(lua_State* L_) {
			void* f = stack::get<void*>(L_, upvalue_index(usertype_storage_index));
			return index_call_with_<is_index, is_variable>(L_, f);
		}

		template <bool is_index = true, bool is_variable = false>
		static inline int index_call(lua_State* L_) {
			int r = detail::typed_static_trampoline<decltype(&index_call_<is_index, is_variable>), (&index_call_<is_index, is_variable>)>(L_);
			if constexpr (meta::is_specialization_of_v<uF, yielding_t>) {
				return lua_yield(L_, r);
			}
			else {
				return r;
			}
		}
	};

	inline int index_fail(lua_State* L_) {
		if (lua_getmetatable(L_, 1) == 1) {
			int metatarget = lua_gettop(L_);
			stack::get_field<false, true>(L_, stack_reference(L_, raw_index(2)), metatarget);
			return 1;
		}
		// With runtime extensibility, we can't
		// hard-error things. They have to
		// return nil, like regular table types
		return stack::push(L_, lua_nil);
	}

	inline int index_target_fail(lua_State* L_, void*) {
		return index_fail(L_);
	}

	inline int new_index_fail(lua_State* L_) {
		return luaL_error(L_, "sol: cannot set (new_index) into this object: no defined new_index operation on usertype");
	}

	inline int new_index_target_fail(lua_State* L_, void*) {
		return new_index_fail(L_);
	}

	struct string_for_each_metatable_func {
		bool is_destruction = false;
		bool is_index = false;
		bool is_new_index = false;
		bool is_static_index = false;
		bool is_static_new_index = false;
		bool poison_indexing = false;
		bool is_unqualified_lua_CFunction = false;
		bool is_unqualified_lua_reference = false;
		std::string* p_key = nullptr;
		reference* p_binding_ref = nullptr;
		lua_CFunction call_func = nullptr;
		index_call_storage* p_ics = nullptr;
		usertype_storage_base* p_usb = nullptr;
		void* p_derived_usb = nullptr;
		lua_CFunction idx_call = nullptr, new_idx_call = nullptr, meta_idx_call = nullptr, meta_new_idx_call = nullptr;
		change_indexing_mem_func change_indexing;

		void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
			std::string& key = *p_key;
			usertype_storage_base& usb = *p_usb;
			index_call_storage& ics = *p_ics;

			if (smt_ == submetatable_type::named) {
				// do not override __call or
				// other specific meta functions on named metatable:
				// we need that for call construction
				// and other amenities
				return;
			}
			int fast_index_table_push = fast_index_table_.push(L_);
			stateless_stack_reference t(L_, -fast_index_table_push);
			if (poison_indexing) {
				(usb.*change_indexing)(L_, smt_, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
			}
			if (is_destruction
				&& (smt_ == submetatable_type::reference || smt_ == submetatable_type::const_reference || smt_ == submetatable_type::named
				     || smt_ == submetatable_type::unique)) {
				// gc does not apply to us here
				// for reference types (raw T*, std::ref)
				// for the named metatable itself,
				// or for unique_usertypes, which do their own custom destroyion
				t.pop(L_);
				return;
			}
			if (is_index || is_new_index || is_static_index || is_static_new_index) {
				// do not serialize the new_index and index functions here directly
				// we control those...
				t.pop(L_);
				return;
			}
			if (is_unqualified_lua_CFunction) {
				stack::set_field<false, true>(L_, key, call_func, t.stack_index());
			}
			else if (is_unqualified_lua_reference) {
				reference& binding_ref = *p_binding_ref;
				stack::set_field<false, true>(L_, key, binding_ref, t.stack_index());
			}
			else {
				stack::set_field<false, true>(L_, key, make_closure(call_func, nullptr, ics.binding_data), t.stack_index());
			}
			t.pop(L_);
		}
	};

	struct lua_reference_func {
		reference key;
		reference value;

		void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
			if (smt_ == submetatable_type::named) {
				return;
			}
			int fast_index_table_push = fast_index_table_.push(L_);
			stateless_stack_reference t(L_, -fast_index_table_push);
			stack::set_field<false, true>(L_, key, value, t.stack_index());
			t.pop(L_);
		}
	};

	struct update_bases_func {
		detail::inheritance_check_function base_class_check_func;
		detail::inheritance_cast_function base_class_cast_func;
		lua_CFunction idx_call, new_idx_call, meta_idx_call, meta_new_idx_call;
		usertype_storage_base* p_usb;
		void* p_derived_usb;
		change_indexing_mem_func change_indexing;

		void operator()(lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
			int fast_index_table_push = fast_index_table_.push(L_);
			stateless_stack_reference t(L_, -fast_index_table_push);
			stack::set_field(L_, detail::base_class_check_key(), reinterpret_cast<void*>(base_class_check_func), t.stack_index());
			stack::set_field(L_, detail::base_class_cast_key(), reinterpret_cast<void*>(base_class_cast_func), t.stack_index());
			// change indexing, forcefully
			(p_usb->*change_indexing)(L_, smt_, p_derived_usb, t, idx_call, new_idx_call, meta_idx_call, meta_new_idx_call);
			t.pop(L_);
		}
	};

	struct binding_data_equals {
		void* binding_data;

		binding_data_equals(void* b) : binding_data(b) {
		}

		bool operator()(const std::unique_ptr<binding_base>& ptr) const {
			return binding_data == ptr->data();
		}
	};

	struct usertype_storage_base {
	public:
		lua_State* m_L;
		std::vector<std::unique_ptr<binding_base>> storage;
		std::vector<std::unique_ptr<char[]>> string_keys_storage;
		std::unordered_map<string_view, index_call_storage> string_keys;
		std::unordered_map<stateless_reference, stateless_reference, stateless_reference_hash, stateless_reference_equals> auxiliary_keys;
		stateless_reference value_index_table;
		stateless_reference reference_index_table;
		stateless_reference unique_index_table;
		stateless_reference const_reference_index_table;
		stateless_reference const_value_index_table;
		stateless_reference named_index_table;
		stateless_reference type_table;
		stateless_reference gc_names_table;
		stateless_reference named_metatable;
		new_index_call_storage base_index;
		new_index_call_storage static_base_index;
		bool is_using_index;
		bool is_using_new_index;
		std::bitset<64> properties;

		usertype_storage_base(lua_State* L_)
		: m_L(L_)
		, storage()
		, string_keys_storage()
		, string_keys()
		, auxiliary_keys(0, stateless_reference_hash(L_), stateless_reference_equals(L_))
		, value_index_table()
		, reference_index_table()
		, unique_index_table()
		, const_reference_index_table()
		, const_value_index_table()
		, named_index_table()
		, type_table(make_reference<stateless_reference>(L_, create))
		, gc_names_table(make_reference<stateless_reference>(L_, create))
		, named_metatable(make_reference<stateless_reference>(L_, create))
		, base_index()
		, static_base_index()
		, is_using_index(false)
		, is_using_new_index(false)
		, properties() {
			base_index.binding_data = nullptr;
			base_index.index = index_target_fail;
			base_index.new_index = new_index_target_fail;
			base_index.new_binding_data = nullptr;
			static_base_index.binding_data = nullptr;
			static_base_index.index = index_target_fail;
			static_base_index.new_binding_data = this;
			static_base_index.new_index = new_index_target_set;
		}

		template <typename Fx>
		void for_each_table(lua_State* L_, Fx&& fx) {
			for (int i = 0; i < 6; ++i) {
				submetatable_type smt = static_cast<submetatable_type>(i);
				stateless_reference* p_fast_index_table = nullptr;
				switch (smt) {
				case submetatable_type::const_value:
					p_fast_index_table = &this->const_value_index_table;
					break;
				case submetatable_type::reference:
					p_fast_index_table = &this->reference_index_table;
					break;
				case submetatable_type::unique:
					p_fast_index_table = &this->unique_index_table;
					break;
				case submetatable_type::const_reference:
					p_fast_index_table = &this->const_reference_index_table;
					break;
				case submetatable_type::named:
					p_fast_index_table = &this->named_index_table;
					break;
				case submetatable_type::value:
				default:
					p_fast_index_table = &this->value_index_table;
					break;
				}
				fx(L_, smt, *p_fast_index_table);
			}
		}

		void add_entry(string_view sv, index_call_storage ics) {
			string_keys_storage.emplace_back(new char[sv.size()]);
			std::unique_ptr<char[]>& sv_storage = string_keys_storage.back();
			std::memcpy(sv_storage.get(), sv.data(), sv.size());
			string_view stored_sv(sv_storage.get(), sv.size());
			string_keys.insert_or_assign(std::move(stored_sv), std::move(ics));
		}

		template <typename T, typename... Bases>
		void update_bases(lua_State* L_, bases<Bases...>) {
			static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
				"The size of this data pointer is too small to fit the inheritance checking function: Please file "
				"a bug report.");
			static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
				"The size of this data pointer is too small to fit the inheritance checking function: Please file "
				"a bug report.");
			static_assert(!meta::any_same<T, Bases...>::value, "base classes cannot list the original class as part of the bases");
			if constexpr (sizeof...(Bases) > 0) {
				(void)detail::swallow { 0, ((weak_derive<Bases>::value = true), 0)... };

				void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));

				update_bases_func for_each_fx;
				for_each_fx.base_class_check_func = &detail::inheritance<T>::template type_check_with<Bases...>;
				for_each_fx.base_class_cast_func = &detail::inheritance<T>::template type_cast_with<Bases...>;
				for_each_fx.idx_call = &usertype_storage<T>::template index_call_with_bases<false, Bases...>;
				for_each_fx.new_idx_call = &usertype_storage<T>::template index_call_with_bases<true, Bases...>;
				for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<false, Bases...>;
				for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call_with_bases<true, Bases...>;
				for_each_fx.p_usb = this;
				for_each_fx.p_derived_usb = derived_this;
				for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
				for_each_fx.p_derived_usb = derived_this;
				this->for_each_table(L_, for_each_fx);
			}
			else {
				(void)L_;
			}
		}

		void clear() {
			if (value_index_table.valid(m_L)) {
				stack::clear(m_L, value_index_table);
			}
			if (reference_index_table.valid(m_L)) {
				stack::clear(m_L, reference_index_table);
			}
			if (unique_index_table.valid(m_L)) {
				stack::clear(m_L, unique_index_table);
			}
			if (const_reference_index_table.valid(m_L)) {
				stack::clear(m_L, const_reference_index_table);
			}
			if (const_value_index_table.valid(m_L)) {
				stack::clear(m_L, const_value_index_table);
			}
			if (named_index_table.valid(m_L)) {
				stack::clear(m_L, named_index_table);
			}
			if (type_table.valid(m_L)) {
				stack::clear(m_L, type_table);
			}
			if (gc_names_table.valid(m_L)) {
				stack::clear(m_L, gc_names_table);
			}
			if (named_metatable.valid(m_L)) {
				auto pp = stack::push_pop(m_L, named_metatable);
				int named_metatable_index = pp.index_of(named_metatable);
				if (lua_getmetatable(m_L, named_metatable_index) == 1) {
					stack::clear(m_L, absolute_index(m_L, -1));
				}
				stack::clear(m_L, named_metatable);
			}

			value_index_table.reset(m_L);
			reference_index_table.reset(m_L);
			unique_index_table.reset(m_L);
			const_reference_index_table.reset(m_L);
			const_value_index_table.reset(m_L);
			named_index_table.reset(m_L);
			type_table.reset(m_L);
			gc_names_table.reset(m_L);
			named_metatable.reset(m_L);

			storage.clear();
			string_keys.clear();
			auxiliary_keys.clear();
			string_keys_storage.clear();
		}

		template <bool is_new_index, typename Base>
		static void base_walk_index(lua_State* L_, usertype_storage_base& self, bool& keep_going, int& base_result) {
			using bases = typename base<Base>::type;
			if (!keep_going) {
				return;
			}
			(void)L_;
			(void)self;
#if SOL_IS_ON(SOL_USE_UNSAFE_BASE_LOOKUP)
			usertype_storage_base& base_storage = get_usertype_storage<Base>(L_);
			base_result = self_index_call<is_new_index, true>(bases(), L_, base_storage);
#else
			optional<usertype_storage<Base>&> maybe_base_storage = maybe_get_usertype_storage<Base>(L_);
			if (static_cast<bool>(maybe_base_storage)) {
				base_result = self_index_call<is_new_index, true>(bases(), L_, *maybe_base_storage);
				keep_going = base_result == base_walking_failed_index;
			}
#endif // Fast versus slow, safe base lookup
		}

		template <bool is_new_index = false, bool base_walking = false, bool from_named_metatable = false, typename... Bases>
		static inline int self_index_call(types<Bases...>, lua_State* L, usertype_storage_base& self) {
			if constexpr (!from_named_metatable || !is_new_index) {
				type k_type = stack::get<type>(L, 2);
				if (k_type == type::string) {
					index_call_storage* target = nullptr;
					string_view k = stack::get<string_view>(L, 2);
					{
						auto it = self.string_keys.find(k);
						if (it != self.string_keys.cend()) {
							target = &it->second;
						}
					}
					if (target != nullptr) {
						// let the target decide what to do, unless it's named...
						if constexpr (is_new_index) {
							return (target->new_index)(L, target->binding_data);
						}
						else {
							return (target->index)(L, target->binding_data);
						}
					}
				}
				else if (k_type != type::lua_nil && k_type != type::none) {
					stateless_reference* target = nullptr;
					{
						stack_reference k = stack::get<stack_reference>(L, 2);
						auto it = self.auxiliary_keys.find(k);
						if (it != self.auxiliary_keys.cend()) {
							target = &it->second;
						}
					}
					if (target != nullptr) {
						if constexpr (is_new_index) {
							// set value and return
							target->reset(L, 3);
							return 0;
						}
						else {
							// push target to return
							// what we found
							return stack::push(L, *target);
						}
					}
				}
			}

			// retrieve bases and walk through them.
			bool keep_going = true;
			int base_result;
			(void)keep_going;
			(void)base_result;
			(void)detail::swallow { 1, (base_walk_index<is_new_index, Bases>(L, self, keep_going, base_result), 1)... };
			if constexpr (sizeof...(Bases) > 0) {
				if (!keep_going) {
					return base_result;
				}
			}
			if constexpr (base_walking) {
				// if we're JUST base-walking then don't index-fail, just
				// return the false bits
				return base_walking_failed_index;
			}
			else if constexpr (from_named_metatable) {
				if constexpr (is_new_index) {
					return self.static_base_index.new_index(L, self.static_base_index.new_binding_data);
				}
				else {
					return self.static_base_index.index(L, self.static_base_index.binding_data);
				}
			}
			else {
				if constexpr (is_new_index) {
					return self.base_index.new_index(L, self.base_index.new_binding_data);
				}
				else {
					return self.base_index.index(L, self.base_index.binding_data);
				}
			}
		}

		void change_indexing(lua_State* L_, submetatable_type submetatable_, void* derived_this_, stateless_stack_reference& t_, lua_CFunction index_,
			lua_CFunction new_index_, lua_CFunction meta_index_, lua_CFunction meta_new_index_) {
			usertype_storage_base& this_base = *this;
			void* base_this = static_cast<void*>(&this_base);

			this->is_using_index |= true;
			this->is_using_new_index |= true;
			if (submetatable_ == submetatable_type::named) {
				stack::set_field(L_, metatable_key, named_index_table, t_.stack_index());
				stateless_stack_reference stack_metametatable(L_, -named_metatable.push(L_));
				stack::set_field<false, true>(L_,
					meta_function::index,
					make_closure(meta_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic),
					stack_metametatable.stack_index());
				stack::set_field<false, true>(L_,
					meta_function::new_index,
					make_closure(meta_new_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic),
					stack_metametatable.stack_index());
				stack_metametatable.pop(L_);
			}
			else {
				stack::set_field<false, true>(
					L_, meta_function::index, make_closure(index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic), t_.stack_index());
				stack::set_field<false, true>(
					L_, meta_function::new_index, make_closure(new_index_, nullptr, derived_this_, base_this, nullptr, toplevel_magic), t_.stack_index());
			}
		}

		template <typename T = void, typename Key, typename Value>
		void set(lua_State* L, Key&& key, Value&& value);

		static int new_index_target_set(lua_State* L, void* target) {
			usertype_storage_base& self = *static_cast<usertype_storage_base*>(target);
			self.set(L, reference(L, raw_index(2)), reference(L, raw_index(3)));
			return 0;
		}

		~usertype_storage_base() {
			value_index_table.reset(m_L);
			reference_index_table.reset(m_L);
			unique_index_table.reset(m_L);
			const_reference_index_table.reset(m_L);
			const_value_index_table.reset(m_L);
			named_index_table.reset(m_L);
			type_table.reset(m_L);
			gc_names_table.reset(m_L);
			named_metatable.reset(m_L);

			auto auxiliary_first = auxiliary_keys.cbegin();
			auto auxiliary_last = auxiliary_keys.cend();
			while (auxiliary_first != auxiliary_last) {
				// save a copy to what we're going to destroy
				auto auxiliary_target = auxiliary_first;
				// move the iterator up by 1
				++auxiliary_first;
				// extract the node and destroy the key
				auto extracted_node = auxiliary_keys.extract(auxiliary_target);
				extracted_node.key().reset(m_L);
				extracted_node.mapped().reset(m_L);
				// continue if auxiliary_first hasn't been exhausted
			}
		}
	};

	template <typename T>
	struct usertype_storage : usertype_storage_base {

		using usertype_storage_base::usertype_storage_base;

		template <bool is_new_index, bool from_named_metatable>
		static inline int index_call_(lua_State* L) {
			using bases = typename base<T>::type;
			usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
			return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
		}

		template <bool is_new_index, bool from_named_metatable, typename... Bases>
		static inline int index_call_with_bases_(lua_State* L) {
			using bases = types<Bases...>;
			usertype_storage_base& self = stack::get<light<usertype_storage_base>>(L, upvalue_index(usertype_storage_index));
			return self_index_call<is_new_index, false, from_named_metatable>(bases(), L, self);
		}

		template <bool is_new_index>
		static inline int index_call(lua_State* L) {
			return detail::static_trampoline<&index_call_<is_new_index, false>>(L);
		}

		template <bool is_new_index, typename... Bases>
		static inline int index_call_with_bases(lua_State* L) {
			return detail::static_trampoline<&index_call_with_bases_<is_new_index, false, Bases...>>(L);
		}

		template <bool is_new_index>
		static inline int meta_index_call(lua_State* L) {
			return detail::static_trampoline<&index_call_<is_new_index, true>>(L);
		}

		template <bool is_new_index, typename... Bases>
		static inline int meta_index_call_with_bases(lua_State* L) {
			return detail::static_trampoline<&index_call_with_bases_<is_new_index, true, Bases...>>(L);
		}

		template <typename Key, typename Value>
		inline void set(lua_State* L, Key&& key, Value&& value);
	};

	template <typename T, typename Key, typename Value>
	void usertype_storage_base::set(lua_State* L, Key&& key, Value&& value) {
		using ValueU = meta::unwrap_unqualified_t<Value>;
		using KeyU = meta::unwrap_unqualified_t<Key>;
		using Binding = binding<KeyU, ValueU, T>;
		using is_var_bind = is_variable_binding<ValueU>;
		if constexpr (std::is_same_v<KeyU, call_construction>) {
			(void)key;
			std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
			Binding& b = *p_binding;
			this->storage.push_back(std::move(p_binding));

			this->named_index_table.push(L);
			absolute_index metametatable_index(L, -1);
			std::string_view call_metamethod_name = to_string(meta_function::call);
			lua_pushlstring(L, call_metamethod_name.data(), call_metamethod_name.size());
			stack::push(L, nullptr);
			stack::push(L, b.data());
			lua_CFunction target_func = &b.template call<false, false>;
			lua_pushcclosure(L, target_func, 2);
			lua_rawset(L, metametatable_index);
			this->named_index_table.pop(L);
		}
		else if constexpr (std::is_same_v<KeyU, base_classes_tag>) {
			(void)key;
			this->update_bases<T>(L, std::forward<Value>(value));
		}
		else if constexpr ((meta::is_string_like_or_constructible<KeyU>::value || std::is_same_v<KeyU, meta_function>)) {
			std::string s = u_detail::make_string(std::forward<Key>(key));
			auto storage_it = this->storage.end();
			auto string_it = this->string_keys.find(s);
			if (string_it != this->string_keys.cend()) {
				const auto& binding_data = string_it->second.binding_data;
				storage_it = std::find_if(this->storage.begin(), this->storage.end(), binding_data_equals(binding_data));
				this->string_keys.erase(string_it);
			}

			std::unique_ptr<Binding> p_binding = std::make_unique<Binding>(std::forward<Value>(value));
			Binding& b = *p_binding;
			if (storage_it != this->storage.cend()) {
				*storage_it = std::move(p_binding);
			}
			else {
				this->storage.push_back(std::move(p_binding));
			}

			bool is_index = (s == to_string(meta_function::index));
			bool is_new_index = (s == to_string(meta_function::new_index));
			bool is_static_index = (s == to_string(meta_function::static_index));
			bool is_static_new_index = (s == to_string(meta_function::static_new_index));
			bool is_destruction = s == to_string(meta_function::garbage_collect);
			bool poison_indexing = (!is_using_index || !is_using_new_index) && (is_var_bind::value || is_index || is_new_index);
			void* derived_this = static_cast<void*>(static_cast<usertype_storage<T>*>(this));
			index_call_storage ics;
			ics.binding_data = b.data();
			ics.index = is_index || is_static_index ? &Binding::template call_with_<true, is_var_bind::value>
				                                   : &Binding::template index_call_with_<true, is_var_bind::value>;
			ics.new_index = is_new_index || is_static_new_index ? &Binding::template call_with_<false, is_var_bind::value>
				                                               : &Binding::template index_call_with_<false, is_var_bind::value>;

			string_for_each_metatable_func for_each_fx;
			for_each_fx.is_destruction = is_destruction;
			for_each_fx.is_index = is_index;
			for_each_fx.is_new_index = is_new_index;
			for_each_fx.is_static_index = is_static_index;
			for_each_fx.is_static_new_index = is_static_new_index;
			for_each_fx.poison_indexing = poison_indexing;
			for_each_fx.p_key = &s;
			for_each_fx.p_ics = &ics;
			if constexpr (is_lua_c_function_v<ValueU>) {
				for_each_fx.is_unqualified_lua_CFunction = true;
				for_each_fx.call_func = *static_cast<lua_CFunction*>(ics.binding_data);
			}
			else if constexpr (is_lua_reference_or_proxy_v<ValueU>) {
				for_each_fx.is_unqualified_lua_reference = true;
				for_each_fx.p_binding_ref = static_cast<reference*>(ics.binding_data);
			}
			else {
				for_each_fx.call_func = &b.template call<false, is_var_bind::value>;
			}
			for_each_fx.p_usb = this;
			for_each_fx.p_derived_usb = derived_this;
			for_each_fx.idx_call = &usertype_storage<T>::template index_call<false>;
			for_each_fx.new_idx_call = &usertype_storage<T>::template index_call<true>;
			for_each_fx.meta_idx_call = &usertype_storage<T>::template meta_index_call<false>;
			for_each_fx.meta_new_idx_call = &usertype_storage<T>::template meta_index_call<true>;
			for_each_fx.change_indexing = &usertype_storage_base::change_indexing;
			// set base index and base new_index
			// functions here
			if (is_index) {
				this->base_index.index = ics.index;
				this->base_index.binding_data = ics.binding_data;
			}
			if (is_new_index) {
				this->base_index.new_index = ics.new_index;
				this->base_index.new_binding_data = ics.binding_data;
			}
			if (is_static_index) {
				this->static_base_index.index = ics.index;
				this->static_base_index.binding_data = ics.binding_data;
			}
			if (is_static_new_index) {
				this->static_base_index.new_index = ics.new_index;
				this->static_base_index.new_binding_data = ics.binding_data;
			}
			this->for_each_table(L, for_each_fx);
			this->add_entry(s, std::move(ics));
		}
		else {
			// the reference-based implementation might compare poorly and hash
			// poorly in some cases...
			if constexpr (is_lua_reference_v<KeyU> && is_lua_reference_v<ValueU>) {
				if (key.get_type() == type::string) {
					stack::push(L, key);
					std::string string_key = stack::pop<std::string>(L);
					this->set<T>(L, string_key, std::forward<Value>(value));
				}
				else {
					lua_reference_func ref_additions_fx { key, value };

					this->for_each_table(L, ref_additions_fx);
					this->auxiliary_keys.insert_or_assign(std::forward<Key>(key), std::forward<Value>(value));
				}
			}
			else {
				reference ref_key = make_reference(L, std::forward<Key>(key));
				reference ref_value = make_reference(L, std::forward<Value>(value));
				lua_reference_func ref_additions_fx { ref_key, ref_value };

				this->for_each_table(L, ref_additions_fx);
				this->auxiliary_keys.insert_or_assign(std::move(ref_key), std::move(ref_value));
			}
		}
	}

	template <typename T>
	template <typename Key, typename Value>
	void usertype_storage<T>::set(lua_State* L, Key&& key, Value&& value) {
		static_cast<usertype_storage_base&>(*this).set<T>(L, std::forward<Key>(key), std::forward<Value>(value));
	}

	template <typename T>
	inline void clear_usertype_registry_names(lua_State* L) {
		using u_traits = usertype_traits<T>;
		using u_const_traits = usertype_traits<const T>;
		using u_unique_traits = usertype_traits<d::u<T>>;
		using u_ref_traits = usertype_traits<T*>;
		using u_const_ref_traits = usertype_traits<T const*>;

		stack_reference registry(L, raw_index(LUA_REGISTRYINDEX));
		registry.push();
		// eliminate all named entries for this usertype
		// in the registry (luaL_newmetatable does
		// [name] = new table
		// in registry upon creation
		stack::set_field(L, &u_traits::metatable()[0], lua_nil, registry.stack_index());
		stack::set_field(L, &u_const_traits::metatable()[0], lua_nil, registry.stack_index());
		stack::set_field(L, &u_const_ref_traits::metatable()[0], lua_nil, registry.stack_index());
		stack::set_field(L, &u_ref_traits::metatable()[0], lua_nil, registry.stack_index());
		stack::set_field(L, &u_unique_traits::metatable()[0], lua_nil, registry.stack_index());
		registry.pop();
	}

	template <typename T>
	inline int destroy_usertype_storage(lua_State* L) noexcept {
		clear_usertype_registry_names<T>(L);
		return detail::user_alloc_destroy<usertype_storage<T>>(L);
	}

	template <typename T>
	inline usertype_storage<T>& create_usertype_storage(lua_State* L) {
		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];

		// Make sure userdata's memory is properly in lua first,
		// otherwise all the light userdata we make later will become invalid
		int usertype_storage_push_count = stack::push<user<usertype_storage<T>>>(L, no_metatable, L);
		stack_reference usertype_storage_ref(L, -usertype_storage_push_count);

		// create and push onto the stack a table to use as metatable for this GC
		// we create a metatable to attach to the regular gc_table
		// so that the destructor is called for the usertype storage
		int usertype_storage_metatabe_count = stack::push(L, new_table(0, 1));
		stack_reference usertype_storage_metatable(L, -usertype_storage_metatabe_count);
		// set the destroyion routine on the metatable
		stack::set_field(L, meta_function::garbage_collect, &destroy_usertype_storage<T>, usertype_storage_metatable.stack_index());
		// set the metatable on the usertype storage userdata
		stack::set_field(L, metatable_key, usertype_storage_metatable, usertype_storage_ref.stack_index());
		usertype_storage_metatable.pop();

		// set the usertype storage and its metatable
		// into the global table...
		stack::set_field<true>(L, gcmetakey, usertype_storage_ref);
		usertype_storage_ref.pop();

		// then retrieve the lua-stored version so we have a well-pinned
		// reference that does not die
		stack::get_field<true>(L, gcmetakey);
		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
		return target_umt;
	}

	inline optional<usertype_storage_base&> maybe_as_usertype_storage_base(lua_State* L, int index) {
		if (type_of(L, index) != type::lightuserdata) {
			return nullopt;
		}
		usertype_storage_base& base_storage = *static_cast<usertype_storage_base*>(stack::get<void*>(L, index));
		return base_storage;
	}

	inline optional<usertype_storage_base&> maybe_get_usertype_storage_base_inside(lua_State* L, int index) {
		// okay, maybe we're looking at a table that is nested?
		if (type_of(L, index) != type::table) {
			return nullopt;
		}
		stack::get_field(L, meta_function::storage, index);
		auto maybe_storage_base = maybe_as_usertype_storage_base(L, -1);
		lua_pop(L, 1);
		return maybe_storage_base;
	}

	inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, int index) {
		// If we can get the index directly as this type, go for it
		auto maybe_already_is_usertype_storage_base = maybe_as_usertype_storage_base(L, index);
		if (maybe_already_is_usertype_storage_base) {
			return maybe_already_is_usertype_storage_base;
		}
		return maybe_get_usertype_storage_base_inside(L, index);
	}


	inline optional<usertype_storage_base&> maybe_get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
		stack::get_field<true>(L, gcmetakey);
		auto maybe_storage = maybe_as_usertype_storage_base(L, lua_gettop(L));
		lua_pop(L, 1);
		return maybe_storage;
	}

	inline usertype_storage_base& get_usertype_storage_base(lua_State* L, const char* gcmetakey) {
		stack::get_field<true>(L, gcmetakey);
		stack::record tracking;
		usertype_storage_base& target_umt = stack::stack_detail::unchecked_unqualified_get<user<usertype_storage_base>>(L, -1, tracking);
		lua_pop(L, 1);
		return target_umt;
	}

	template <typename T>
	inline optional<usertype_storage<T>&> maybe_get_usertype_storage(lua_State* L) {
		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
		stack::get_field<true>(L, gcmetakey);
		int target = lua_gettop(L);
		if (!stack::check<user<usertype_storage<T>>>(L, target)) {
			return nullopt;
		}
		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
		return target_umt;
	}

	template <typename T>
	inline usertype_storage<T>& get_usertype_storage(lua_State* L) {
		const char* gcmetakey = &usertype_traits<T>::gc_table()[0];
		stack::get_field<true>(L, gcmetakey);
		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
		return target_umt;
	}

	template <typename T>
	inline void clear_usertype_storage(lua_State* L) {
		using u_traits = usertype_traits<T>;

		const char* gcmetakey = &u_traits::gc_table()[0];
		stack::get_field<true>(L, gcmetakey);
		if (!stack::check<user<usertype_storage<T>>>(L)) {
			lua_pop(L, 1);
			return;
		}
		usertype_storage<T>& target_umt = stack::pop<user<usertype_storage<T>>>(L);
		target_umt.clear();

		clear_usertype_registry_names<T>(L);

		stack::set_field<true>(L, gcmetakey, lua_nil);
	}

	template <typename T, automagic_flags enrollment_flags>
	inline int register_usertype(lua_State* L_, automagic_enrollments enrollments_ = {}) {
		using u_traits = usertype_traits<T>;
		using u_const_traits = usertype_traits<const T>;
		using u_unique_traits = usertype_traits<d::u<T>>;
		using u_ref_traits = usertype_traits<T*>;
		using u_const_ref_traits = usertype_traits<T const*>;
		using uts = usertype_storage<T>;

		// always have __new_index point to usertype_storage method
		// have __index always point to regular fast-lookup
		// meta_method table
		// if __new_index is invoked, runtime-swap
		// to slow __index if necessary
		// (no speed penalty because function calls
		// are all read-only -- only depend on __index
		// to retrieve function and then call happens VIA Lua)

		// __type entry:
		// table contains key -> value lookup,
		// where key is entry in metatable
		// and value is type information as a string as
		// best as we can give it

		// name entry:
		// string that contains raw class name,
		// as defined from C++

		// is entry:
		// checks if argument supplied is of type T

		// __storage entry:
		// a light userdata pointing to the storage
		// mostly to enable this new abstraction
		// to not require the type name `T`
		// to get at the C++ usertype storage within


		// we then let typical definitions potentially override these intrinsics
		// it's the user's fault if they override things or screw them up:
		// these names have been reserved and documented since sol2

		// STEP 0: tell the old usertype (if it exists)
		// to fuck off
		clear_usertype_storage<T>(L_);

		// STEP 1: Create backing store for usertype storage
		// Pretty much the most important step.
		// STEP 2: Create Lua tables used for fast method indexing.
		// This is done inside of the storage table's constructor
		usertype_storage<T>& storage = create_usertype_storage<T>(L_);
		usertype_storage_base& base_storage = storage;
		void* light_storage = static_cast<void*>(&storage);
		void* light_base_storage = static_cast<void*>(&base_storage);


		// STEP 3: set up GC escape hatch table entirely
		storage.gc_names_table.push(L_);
		stateless_stack_reference gnt(L_, -1);
		stack::set_field(L_, submetatable_type::named, &u_traits::gc_table()[0], gnt.stack_index());
		stack::set_field(L_, submetatable_type::const_value, &u_const_traits::metatable()[0], gnt.stack_index());
		stack::set_field(L_, submetatable_type::const_reference, &u_const_ref_traits::metatable()[0], gnt.stack_index());
		stack::set_field(L_, submetatable_type::reference, &u_ref_traits::metatable()[0], gnt.stack_index());
		stack::set_field(L_, submetatable_type::unique, &u_unique_traits::metatable()[0], gnt.stack_index());
		stack::set_field(L_, submetatable_type::value, &u_traits::metatable()[0], gnt.stack_index());
		gnt.pop(L_);

		// STEP 4: add some useful information to the type table
		stateless_stack_reference stacked_type_table(L_, -storage.type_table.push(L_));
		stack::set_field(L_, "name", detail::demangle<T>(), stacked_type_table.stack_index());
		stack::set_field(L_, "is", &detail::is_check<T>, stacked_type_table.stack_index());
		stacked_type_table.pop(L_);

		// STEP 5: create and hook up metatable,
		// add intrinsics
		// this one is the actual meta-handling table,
		// the next one will be the one for
		int for_each_backing_metatable_calls = 0;
		auto for_each_backing_metatable = [&](lua_State* L_, submetatable_type smt_, stateless_reference& fast_index_table_) {
			// Pointer types, AKA "references" from C++
			const char* metakey = nullptr;
			switch (smt_) {
			case submetatable_type::const_value:
				metakey = &u_const_traits::metatable()[0];
				break;
			case submetatable_type::reference:
				metakey = &u_ref_traits::metatable()[0];
				break;
			case submetatable_type::unique:
				metakey = &u_unique_traits::metatable()[0];
				break;
			case submetatable_type::const_reference:
				metakey = &u_const_ref_traits::metatable()[0];
				break;
			case submetatable_type::named:
				metakey = &u_traits::user_metatable()[0];
				break;
			case submetatable_type::value:
			default:
				metakey = &u_traits::metatable()[0];
				break;
			}

			luaL_newmetatable(L_, metakey);
			if (smt_ == submetatable_type::named) {
				// the named table itself
				// gets the associated name value
				storage.named_metatable.reset(L_, -1);
				lua_pop(L_, 1);
				// but the thing we perform the methods on
				// is still the metatable of the named
				// table
				lua_createtable(L_, 0, 6);
			}
			stateless_stack_reference t(L_, -1);
			fast_index_table_.reset(L_, t.stack_index());
			stack::set_field<false, true>(L_, meta_function::type, storage.type_table, t.stack_index());
			// destructible? serialize default destructor here
			// otherwise, not destructible: serialize a "hey you messed up"
			switch (smt_) {
			case submetatable_type::const_reference:
			case submetatable_type::reference:
			case submetatable_type::named:
				break;
			case submetatable_type::unique:
				if constexpr (std::is_destructible_v<T>) {
					stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::unique_destroy<T>, t.stack_index());
				}
				else {
					stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::cannot_destroy<T>, t.stack_index());
				}
				break;
			case submetatable_type::value:
			case submetatable_type::const_value:
			default:
				if constexpr (std::is_destructible_v<T>) {
					stack::set_field<false, true>(L_, meta_function::garbage_collect, detail::make_destructor<T>(), t.stack_index());
				}
				else {
					stack::set_field<false, true>(L_, meta_function::garbage_collect, &detail::cannot_destroy<T>, t.stack_index());
				}
				break;
			}

			static_assert(sizeof(void*) <= sizeof(detail::inheritance_check_function),
				"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
				"report.");
			static_assert(sizeof(void*) <= sizeof(detail::inheritance_cast_function),
				"The size of this data pointer is too small to fit the inheritance checking function: file a bug "
				"report.");
			stack::set_field<false, true>(L_, detail::base_class_check_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_check), t.stack_index());
			stack::set_field<false, true>(L_, detail::base_class_cast_key(), reinterpret_cast<void*>(&detail::inheritance<T>::type_cast), t.stack_index());

			auto prop_fx = detail::properties_enrollment_allowed(for_each_backing_metatable_calls, storage.properties, enrollments_);
			auto insert_fx = [&L_, &t, &storage](meta_function mf, lua_CFunction reg) {
				stack::set_field<false, true>(L_, mf, reg, t.stack_index());
				storage.properties[static_cast<std::size_t>(mf)] = true;
			};
			detail::insert_default_registrations<T>(insert_fx, prop_fx);

			// There are no variables, so serialize the fast function stuff
			// be sure to reset the index stuff to the non-fast version
			// if the user ever adds something later!
			if (smt_ == submetatable_type::named) {
				// add escape hatch storage pointer and gc names
				stack::set_field<false, true>(L_, meta_function::storage, light_base_storage, t.stack_index());
				stack::set_field<false, true>(L_, meta_function::gc_names, storage.gc_names_table, t.stack_index());

				// fancy new_indexing when using the named table
				{
					absolute_index named_metatable_index(L_, -storage.named_metatable.push(L_));
					stack::set_field<false, true>(L_, metatable_key, t, named_metatable_index);
					storage.named_metatable.pop(L_);
				}
				stack_reference stack_metametatable(L_, -storage.named_index_table.push(L_));
				stack::set_field<false, true>(L_,
					meta_function::index,
					make_closure(uts::template meta_index_call<false>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
					stack_metametatable.stack_index());
				stack::set_field<false, true>(L_,
					meta_function::new_index,
					make_closure(uts::template meta_index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
					stack_metametatable.stack_index());
				stack_metametatable.pop();
			}
			else {
				// otherwise just plain for index,
				// and elaborated for new_index
				stack::set_field<false, true>(L_, meta_function::index, t, t.stack_index());
				stack::set_field<false, true>(L_,
					meta_function::new_index,
					make_closure(uts::template index_call<true>, nullptr, light_storage, light_base_storage, nullptr, toplevel_magic),
					t.stack_index());
				storage.is_using_new_index = true;
			}

			++for_each_backing_metatable_calls;
			fast_index_table_.reset(L_, t.stack_index());
			t.pop(L_);
		};

		storage.for_each_table(L_, for_each_backing_metatable);

		// can only use set AFTER we initialize all the metatables
		if constexpr (std::is_default_constructible_v<T> && has_flag(enrollment_flags, automagic_flags::default_constructor)) {
			if (enrollments_.default_constructor) {
				storage.set(L_, meta_function::construct, constructors<T()>());
			}
		}

		// return the named metatable we want names linked into
		storage.named_metatable.push(L_);
		return 1;
	}
}} // namespace sol::u_detail

#endif // SOL_USERTYPE_STORAGE_HPP