1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
|
/*
Copyright 2010-2016 by
Laboratoire d'Informatique de Paris 6, equipe PEQUAN,
UPMC Universite Paris 06 - CNRS - UMR 7606 - LIP6, Paris, France,
Laboratoire d'Informatique de Paris 6 - Équipe PEQUAN
Sorbonne Universités
UPMC Univ Paris 06
UMR 7606, LIP6
Boîte Courrier 169
4, place Jussieu
F-75252 Paris Cedex 05
France,
Laboratoire de l'Informatique du Parallelisme,
UMR CNRS - ENS Lyon - UCB Lyon 1 - INRIA 5668
and by
Centre de recherche INRIA Sophia Antipolis Mediterranee, equipe APICS,
Sophia Antipolis, France.
Contributors Ch. Lauter, M. Joldes, S. Chevillard
christoph.lauter@ens-lyon.org
joldes@laas.fr
sylvain.chevillard@ens-lyon.org
This software is a computer program whose purpose is to provide an
environment for safe floating-point code development. It is
particularly targeted to the automated implementation of
mathematical floating-point libraries (libm). Amongst other features,
it offers a certified infinity norm, an automatic polynomial
implementer and a fast Remez algorithm.
This software is governed by the CeCILL-C license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL-C
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL-C license and that you accept its terms.
This program is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "supnorm.h"
#include <mpfr.h>
#include "mpfi-compat.h"
#include "execute.h"
#include <stdio.h>
#include <stdlib.h>
#include "expression.h"
#include "infnorm.h"
#include "autodiff.h"
#include "taylorform.h"
#include "chain.h"
#include "sturm.h"
#include "general.h"
#include "infnorm.h"
#include "remez.h"
#include "external.h"
/* Add error codes here as needed.
When adding error codes, add warning messages below (in
supremumNormBisect()).
In case of an error, return SUPNORM_SOME_ERROR unless
a precise understanding which phase failed is available.
*/
#define SUPNORM_NO_ERROR 0 /* No error */
#define SUPNORM_SOME_ERROR -1 /* Some default error, don't know what caused it */
#define SUPNORM_NO_TAYLOR 1 /* Couldn't compute a Taylor */
#define SUPNORM_NOT_ENOUGH_WORKING_PRECISION 2 /* Got the impression the precision was not enough */
#define SUPNORM_SINGULARITY_NOT_REMOVED 3 /* Couldn't divide poly by (x-x0)^k */
#define SUPNORM_COULD_NOT_SHOW_POSITIVITY 4 /* Could not validate everything by showing positivity */
#define SUPNORM_SINGULARITY_NOT_DETECTED 5 /* Failed to compute an approximate value to a singularity */
#define SUPNORM_ANOTHER_SINGULARITY_IN_DOM 6 /* There's at least two singularities, more bisection needed */
#define SUPNORM_CANNOT_COMPUTE_LOWER_BOUND 7 /* For some reason, we cannot compute a valid lower bound */
#define SUPNORM_CANNOT_COMPUTE_ABSOLUTE_INF 8 /* For some reason, we cannot compute a valid lower bound on the absolute value of func */
#define SUPNORM_CANNOT_DETERMINE_SIGN_OF_T 9 /* For some reason, we cannot determine the sign of the Taylor polynomial at a point */
#define SUPNORM_CANNOT_DETERMINE_ORDER_OF_SINGU 10 /* Could not correctly determine the order of the pole (error intervals not [0]) */
/* Exactly add two polynomials
For each monomial degree do:
In the case when both monomials are floating-point numbers,
return a monomial that is a floating-point number.
In the case when one of the monomials is a ratio of two
floating-point numbers and the other is a floating-point number or
a ratio of floating-point numbers, return a ratio of floating-point
numbers.
Otherwise, return a monomial representing the sum of the two
expressions.
This version is a first, crude version. We can do better if need
be.
*/
node *addPolynomialsExactly(node *p1, node *p2) {
node *temp, *res, *temp2;
if (!(isPolynomial(p1) && isPolynomial(p2))) {
temp = makeAdd(copyTree(p1),copyTree(p2));
res = simplifyTreeErrorfree(temp);
free_memory(temp);
return res;
}
/* Here, we know that we have polynomials */
temp = makeAdd(copyTree(p1),copyTree(p2));
temp2 = horner(temp);
res = simplifyRationalErrorfree(temp2);
free_memory(temp);
free_memory(temp2);
return res;
}
/* Exactly subtract two polynomials
For each monomial degree do:
In the case when both monomials are floating-point numbers,
return a monomial that is a floating-point number.
In the case when one of the monomials is a ratio of two
floating-point numbers and the other is a floating-point number or
a ratio of floating-point numbers, return a ratio of floating-point
numbers.
Otherwise, return a monomial representing the sum of the two
expressions.
This version is a first, crude version. We can do better if need
be.
*/
node *subPolynomialsExactly(node *p1, node *p2) {
node *temp, *res, *temp2;
if (!(isPolynomial(p1) && isPolynomial(p2))) {
temp = makeSub(copyTree(p1),copyTree(p2));
res = simplifyTreeErrorfree(temp);
free_memory(temp);
return res;
}
/* Here, we know that we have polynomials */
temp = makeSub(copyTree(p1),copyTree(p2));
temp2 = horner(temp);
res = simplifyRationalErrorfree(temp2);
free_memory(temp);
free_memory(temp2);
return res;
}
/* Exactly scale a polynomial
Return sum (s * c_i) * x^i for s and p(x) = sum c_i * x^i
Wherever possible (even when more precision is needed), simplify
the expressions s * c_i in the monomials.
This version is a first, crude version. We can do better if need
be.
*/
node *scalePolynomialExactly(node *poly, mpfr_t scale) {
node *temp, *res, *temp2;
if (!(isPolynomial(poly))) {
temp = makeMul(copyTree(poly),makeConstant(scale));
res = simplifyTreeErrorfree(temp);
free_memory(temp);
return res;
}
/* Here, we know that we have a polynomial */
temp = makeMul(copyTree(poly),makeConstant(scale));
temp2 = horner(temp);
res = simplifyRationalErrorfree(temp2);
free_memory(temp);
free_memory(temp2);
return res;
}
/* Divide a polynomial by (x - x0)^k and check if rest is zero
The function tries to divide the polynomial poly by (x - x0)^k
through long division. If the division rest is zero, i.e.
if poly/(x - x0)^k is a polynomial, the function returns a
non-zero value and sets pTilde to poly/(x - x0)^k.
Otherwise, if poly is not a polynomial or if poly/(x - x0)^k
is not a polynomial because the division leaves a rest,
the function returns zero and does not touch pTilde.
*/
int dividePolyByXMinusX0ToTheK(node **pTilde, node *poly, mpfr_t x0, int k, mp_prec_t prec) {
int okay, degPoly, degQuotient;
node *myPTilde;
node *shifterForth, *shifterBack, *pShifted, *xToK, *pShiftedHorner, *quotient;
node *quotientSimplified, *quotientShifted, *quotientShiftedHorner;
mpfr_t kAsMpfr;
UNUSED_PARAM(prec);
/* Determine the degree of poly and, at the same time, if
it really is a polynomial
*/
degPoly = getDegree(poly);
/* We can't do anything if poly isn't a polynomial */
if (degPoly < 0) return 0;
/* The division will fail if k is greater than the degree of poly */
if (k > degPoly) return 0;
/* Cannot divide if (x-x0)^k is not a polynomial */
if (k < 0) return 0;
/* Division by (x-x0)^0 = 1 is trivial */
if (k == 0) {
*pTilde = copyTree(poly);
return 1;
}
/* Here we know that degPoly >= k >= 1 */
okay = 0;
myPTilde = NULL;
/* We shift poly: pShifted(x) = poly(x + x0) */
shifterForth = makeAdd(makeVariable(),makeConstant(x0));
pShifted = substitute(poly,shifterForth);
pShiftedHorner = horner(pShifted);
/* Now build x^k */
mpfr_init2(kAsMpfr,5 + 8 * sizeof(k));
mpfr_set_si(kAsMpfr,k,GMP_RNDN); /* exact as per what precedes */
xToK = makePow(makeVariable(),makeConstant(kAsMpfr));
/* Now build quotient = pShifted/xToK */
quotient = makeDiv(pShiftedHorner,xToK);
/* Now simplify quotient */
quotientSimplified = simplifyRationalErrorfree(quotient);
/* Now shift the quotient back: quotientShifted(x) = quotientSimplified(x - x0) */
shifterBack = makeSub(makeVariable(),makeConstant(x0));
quotientShifted = substitute(quotientSimplified,shifterBack);
quotientShiftedHorner = horner(quotientShifted);
/* Try to get the degree of quotientShiftedHorner
If it is non-negative, quotientShiftedHorner is a polynomial
If it is equal to degPoly - k, the division worked
*/
degQuotient = getDegree(quotientShiftedHorner);
if ((degQuotient >= 0) && (degQuotient == (degPoly - k))) {
okay = 1;
myPTilde = copyTree(quotientShiftedHorner);
}
/* Free all locally used memory */
free_memory(shifterForth);
free_memory(pShifted);
/* pSHiftedHorner gets freed by freeing quotient */
/* xToK gets freed by freeing quotient */
free_memory(quotient);
free_memory(quotientSimplified);
free_memory(shifterBack);
free_memory(quotientShifted);
free_memory(quotientShiftedHorner);
mpfr_clear(kAsMpfr);
/* Set result if appropriate and return */
if (myPTilde == NULL) okay = 0;
if (okay) *pTilde = myPTilde;
return okay;
}
/* Show positivity of a polynomial using the Sturm algorithm
For a polynomial poly and a domain dom,
return zero if there is a point in dom at which poly is non-positive,
return a non-zero value otherwise.
Return zero for expressions that are no polynomial.
Return zero for domains that are not bounded by finite numbers.
Return zero if something goes wrong in the Sturm routine.
Generally, return zero in case of a doubt (not enough precision
etc.)
*/
int showPositivity(node * poly, sollya_mpfi_t dom, mp_prec_t prec) {
int res, positive, nbRoots;
mpfr_t a, b, c, y, nbRootsMpfr;
mp_prec_t pp;
if (!isPolynomial(poly)) return 0;
if (!sollya_mpfi_bounded_p(dom)) return 0;
mpfr_init2(nbRootsMpfr,8 * sizeof(int));
res = getNrRoots(nbRootsMpfr, poly, dom, prec, 0);
if (!mpfr_number_p(nbRootsMpfr)) {
nbRoots = 1;
} else {
nbRoots = mpfr_get_si(nbRootsMpfr,GMP_RNDU);
}
mpfr_clear(nbRootsMpfr);
if (!res) return 0;
if (nbRoots != 0) return 0;
/* Here, we know that we do not cross the abscissa
We still have to establish that at some point (in the middle of
the interval), we have a positive value.
*/
pp = sollya_mpfi_get_prec(dom);
mpfr_init2(a,pp);
mpfr_init2(b,pp);
mpfr_init2(c,pp+1);
sollya_mpfi_get_left(a,dom);
sollya_mpfi_get_right(b,dom);
mpfr_add(c,a,b,GMP_RNDN);
mpfr_div_2ui(c,c,1,GMP_RNDN);
mpfr_init2(y,16);
res = evaluateFaithful(y, poly, c, prec);
positive = 1;
if (!res) positive = 0;
if (!mpfr_number_p(y)) positive = 0;
if (mpfr_sgn(y) <= 0) positive = 0;
mpfr_clear(a);
mpfr_clear(b);
mpfr_clear(c);
mpfr_clear(y);
return positive;
}
/* Compute a value result such that forall x in dom abs(func(x)) > result
If such a minimum cannot easily be computed, set result to 0 and return 0.
Otherwise return a non-zero value.
*/
int computeAbsoluteMinimum(mpfr_t result, node *func, sollya_mpfi_t dom, mp_prec_t prec) {
sollya_mpfi_t y;
mpfr_t reslt;
mpfr_t yl, yr;
int res;
node *deriv;
mpfr_init2(reslt,mpfr_get_prec(result));
res = 0;
mpfr_set_si(result,0,GMP_RNDN);
sollya_mpfi_init2(y,prec);
mpfr_init2(yl,prec);
mpfr_init2(yr,prec);
evaluateInterval(y, func, NULL, dom);
sollya_mpfi_get_left(yl,y);
sollya_mpfi_get_right(yr,y);
if (mpfr_number_p(yl) && mpfr_number_p(yr)) {
if (mpfr_sgn(yl) * mpfr_sgn(yr) > 0) {
/* The interval does not cross the y-axis, we can take the absolute minimum */
sollya_mpfi_abs(y,y);
sollya_mpfi_get_left(reslt,y);
res = 1;
} else {
/* The interval does cross the y-axis, we give it another try with a derivative */
deriv = differentiate(func);
evaluateInterval(y, func, deriv, dom);
sollya_mpfi_get_left(yl,y);
sollya_mpfi_get_right(yr,y);
if ((mpfr_number_p(yl) && mpfr_number_p(yr)) &&
(mpfr_sgn(yl) * mpfr_sgn(yr) > 0)) {
/* Here, we have a result that does not cross the y-axis */
sollya_mpfi_abs(y,y);
sollya_mpfi_get_left(reslt,y);
res = 1;
}
free_memory(deriv);
}
}
sollya_mpfi_clear(y);
mpfr_clear(yr);
mpfr_clear(yl);
mpfr_set(result,reslt,GMP_RNDN); /* exact */
mpfr_clear(reslt);
return res;
}
/* Determine the sign of func at x
Set sign to 1 if it can be shown that func(x) > 0,
set sign to -1 if it can be shown that func(x) < 0.
Return a non-zero value in both cases.
Otherwise, if the sign cannot be safely determined,
return zero and set sign to zero.
*/
int determineSignAtPoint(int *sign, node *func, mpfr_t x, mp_prec_t prec) {
int okay, mySign;
sollya_mpfi_t yAsInterv, xAsInterv;
mpfr_t yLeft, yRight;
okay = 1;
mySign = 0;
sollya_mpfi_init2(xAsInterv,mpfr_get_prec(x));
sollya_mpfi_init2(yAsInterv,prec);
sollya_mpfi_set_fr(xAsInterv,x);
mpfr_init2(yLeft,prec);
mpfr_init2(yRight,prec);
evaluateInterval(yAsInterv, func, NULL, xAsInterv);
sollya_mpfi_get_left(yLeft,yAsInterv);
sollya_mpfi_get_right(yRight,yAsInterv);
if ((!mpfr_number_p(yLeft)) || (!mpfr_number_p(yRight)) || (mpfr_zero_p(yLeft)) || (mpfr_zero_p(yRight))) {
okay = 0;
}
else {
if (mpfr_sgn(yLeft) * mpfr_sgn(yRight) < 0) okay = 0;
else mySign = (mpfr_sgn(yLeft) < 0) ? (-1) : 1;
}
sollya_mpfi_clear(xAsInterv);
sollya_mpfi_clear(yAsInterv);
mpfr_clear(yLeft);
mpfr_clear(yRight);
/* Return the result */
if (mySign == 0) okay = 0;
if (okay) *sign = mySign; else *sign = 0;
return okay;
}
/* Compute a certified lower bound ell to the supremum norm of
eps = poly - func resp. eps = poly / func - 1
If mode is zero, let eps = poly - func else let eps = poly / func - 1.
Compute a value ell such that for all x in dom, abs(eps(x)) >= ell.
Additionally, if things are pretty, make sure that
|| eps || <= ell * (1 + abs(gamma)).
If everything works fine, set ell to the computed value, ADAPTING
THE PRECISION OF THE mpfr_t VARIABLE ell IF NECESSARY and return a
non-zero value.
Otherwise, set ell to zero and return zero. This case happens
when gamma is not a non-zero number.
The function assumes that poly is a polynomial but will work even
if poly is not a polynomial. However, it will not try to ensure
that ell approximates ||eps|| up to a relative error of abs(gamma).
The procedure determines its working precision itself where
possible. It hence disregards the prec parameter unless the
determination of the working precision fails.
*/
int computeSupnormLowerBound(mpfr_t ell, node *poly, node *func, sollya_mpfi_t dom, mpfr_t gamma, int mode, mp_prec_t prec) {
node *eps;
node *epsPrime;
int res;
mpfr_t l, y;
mpfr_t temp, absGamma;
mp_prec_t pp, pr;
int deg;
chain *possibleExtrema;
mpfr_t a, b, lMinusUlp;
unsigned long int samplePoints;
mpfr_t *aBound, *bBound;
chain *curr;
int resEval;
if (mpfr_zero_p(gamma) || (!mpfr_number_p(gamma))) {
mpfr_set_si(ell,0,GMP_RNDN);
return 0;
}
pr = sollya_mpfi_get_prec(dom);
mpfr_init2(a,pr);
mpfr_init2(b,pr);
sollya_mpfi_get_left(a,dom);
sollya_mpfi_get_right(b,dom);
if (!(mpfr_number_p(a) && mpfr_number_p(b))) {
mpfr_clear(a);
mpfr_clear(b);
mpfr_set_si(ell,0,GMP_RNDN);
return 0;
}
if (mode == ABSOLUTE) {
eps = makeSub(copyTree(poly),copyTree(func));
epsPrime = makeSub(differentiate(poly),differentiate(func));
} else {
eps = makeSub(makeDiv(copyTree(poly),copyTree(func)),makeConstantDouble(1.0));
epsPrime = makeSub(makeMul(differentiate(poly),copyTree(func)),makeMul(copyTree(poly),differentiate(func)));
}
mpfr_init2(temp,10 + 8 * ((sizeof(unsigned int) > sizeof(mp_prec_t)) ? sizeof(unsigned int) : sizeof(mp_prec_t)));
mpfr_init2(absGamma,mpfr_get_prec(gamma));
mpfr_abs(absGamma,gamma,GMP_RNDN);
mpfr_log2(temp,absGamma,GMP_RNDD);
mpfr_neg(temp,temp,GMP_RNDU);
mpfr_ceil(temp,temp);
if (mpfr_sgn(temp) > 0) {
pp = 10 + mpfr_get_ui(temp,GMP_RNDU);
if (pp < 12) pp = 12;
} else {
pp = prec;
if (pp < 12) pp = 12;
}
deg = getDegree(poly);
if (deg >= 0) {
samplePoints = 4 * deg + 1;
} else {
samplePoints = getToolPoints();
}
possibleExtrema = uncertifiedFindZeros(epsPrime, a, b, samplePoints, 6 + (pp / 2));
/* We now really define epsPrime as the derivative of eps (for further use with evaluateFaithful) */
if (mode != ABSOLUTE) {
epsPrime = makeDiv(epsPrime, makePow(copyTree(func), makeConstantDouble(2.0)));
}
aBound = (mpfr_t *) safeMalloc(sizeof(mpfr_t));
bBound = (mpfr_t *) safeMalloc(sizeof(mpfr_t));
mpfr_init2(*aBound,pr);
mpfr_set(*aBound,a,GMP_RNDD); /* exact */
mpfr_init2(*bBound,pr);
mpfr_set(*bBound,b,GMP_RNDU); /* exact */
possibleExtrema = addElement(addElement(possibleExtrema,aBound),bBound);
mpfr_init2(l,pp + 5);
mpfr_init2(lMinusUlp,pp);
mpfr_init2(y,pp + 10);
mpfr_set_si(l,0,GMP_RNDN);
res = 1;
for (curr=possibleExtrema;curr!=NULL;curr=curr->next) {
mpfr_set(lMinusUlp,l,GMP_RNDD); /* Take latest maximum minus a couple ulps as a cut off for evaluation */
if (!mpfr_zero_p(lMinusUlp)) mpfr_nextbelow(lMinusUlp);
resEval = evaluateFaithfulWithCutOffFast(y, eps, epsPrime, *((mpfr_t *) (curr->value)), lMinusUlp, pp + 10);
if ((resEval != 0) && (resEval != 3) && (mpfr_number_p(y))) { /* Evaluation okay ? */
mpfr_abs(y,y,GMP_RNDN); /* exact */
if (mpfr_sgn(y) > 0) {
mpfr_nextbelow(y); /* Compensate for faithful rounding */
mpfr_nextbelow(y);
}
if (mpfr_cmp(y,l) > 0) { /* New absolute maximum */
mpfr_set(l,y,GMP_RNDD); /* Round down because we produce a lower bound */
}
} else { /* Here, something went wrong with the evaluation */
res = 0;
break;
}
}
if (res) {
if (mpfr_get_prec(ell) < mpfr_get_prec(l)) {
mpfr_set_prec(ell,mpfr_get_prec(l));
}
mpfr_set(ell,l,GMP_RNDN); /* exact */
} else {
mpfr_set_si(ell,0,GMP_RNDN);
}
freeChain(possibleExtrema, freeMpfrPtr);
mpfr_clear(l);
mpfr_clear(lMinusUlp);
mpfr_clear(y);
mpfr_clear(a);
mpfr_clear(b);
mpfr_clear(absGamma);
mpfr_clear(temp);
free_memory(eps);
free_memory(epsPrime);
return res;
}
/* A small wrapper around taylorform
Compute a polynomial poly and a bounding interval delta
such that ( func - poly ) in delta.
In the case when singu is NULL, use the absolute technique for
taylorform, developing func at x0 = mid(dom), otherwise use the
relative technique at x0 = singu.
In any case, return delta in absolute terms. Account for
all errors in the coefficients (as returned by taylorform).
Check if the final interval delta is bounded, i.e. has finite
real bounds (no NaNs, no Infs).
No check is performed to know if the coefficients of the returned
polynomial are finite real numbers. In the case when this happens
whilst the bound delta is finite, the function returns success.
Return a non-zero value on success, and a zero value otherwise.
If a zero value is returned, the pointer assigned to *poly is
invalid and delta is left untouched. This means, on failure, the
function frees all memory allocated.
Use prec as the working precision.
HACK ALERT: currently, taylorform does not take any prec argument.
This means we have to modify the global precision of the tool. We
reset it correctly in the usual case but if a Ctrl-C pops in in the
middle, it will not be reset. This should be changed in the future.
IMPORTANT REMARK: as does the taylorform command, the computed
polynomial here must be translated in order to get the right
polynomial (i.e. T = poly(x-x0) is the true Taylor polynomial).
*/
int computeTaylorModel(node **poly, sollya_mpfi_t delta,
node *func, sollya_mpfi_t dom, int n, mpfr_t *singu, mp_prec_t prec) {
mp_prec_t oldToolPrec, ppp;
int res;
mpfr_t x0;
int mode;
sollya_mpfi_t *myDelta;
sollya_mpfi_t myDom, temp, x0AsInterval, nAsInterval, lagrangeDelta, shiftedDom;
chain *errors;
chain *revertedErrors;
chain *curr;
node *myPoly;
if (!sollya_mpfi_bounded_p(dom)) return 0;
oldToolPrec = getToolPrecision();
setToolPrecision(prec);
if (singu == NULL) {
mpfr_init2(x0,sollya_mpfi_get_prec(dom) + 1);
sollya_mpfi_mid(x0,dom);
mode = ABSOLUTE;
} else {
mpfr_init2(x0,mpfr_get_prec(*singu));
mpfr_set(x0,*singu,GMP_RNDN); /* exact */
mode = RELATIVE;
}
sollya_mpfi_init2(x0AsInterval,mpfr_get_prec(x0));
sollya_mpfi_set_fr(x0AsInterval,x0); /* exact */
sollya_mpfi_init2(myDom, sollya_mpfi_get_prec(dom));
sollya_mpfi_set(myDom, dom);
myDelta = NULL;
errors = NULL;
taylorform(&myPoly, &errors, &myDelta, func, n, &x0AsInterval, &myDom, mode);
res = 1;
if ( (myDelta == NULL) || (errors == NULL) || (!sollya_mpfi_bounded_p(*myDelta)) ) res = 0;
else {
if (mode == ABSOLUTE) {
/* Set lagrangeDelta = myDelta */
sollya_mpfi_init2(lagrangeDelta,sollya_mpfi_get_prec(*myDelta));
sollya_mpfi_set(lagrangeDelta,*myDelta);
}
else {
/* Compute lagrangeDelta = myDelta * (dom - x0)^n */
ppp = sollya_mpfi_get_prec(dom);
sollya_mpfi_init2(temp,ppp);
sollya_mpfi_init2(lagrangeDelta,ppp);
sollya_mpfi_sub(temp,dom,x0AsInterval);
sollya_mpfi_init2(nAsInterval,5 + 8 * sizeof(int));
sollya_mpfi_set_si(nAsInterval,n); /* exact */
sollya_mpfi_pow(temp, temp, nAsInterval);
sollya_mpfi_mul(temp,temp,*myDelta);
if (!sollya_mpfi_bounded_p(temp)) res = 0;
else sollya_mpfi_set(lagrangeDelta,temp);
sollya_mpfi_clear(temp);
sollya_mpfi_clear(nAsInterval);
}
if (res) {
/* Here, we have lagrangeDelta such that
(func - (poly(x-x0) + sum errors[i] * (x-x0)^i)) in lagrangeDelta
We now add (sum errors[i] * x^i)(dom-x0) to lagrangeDelta.
We use a simple Horner to perform that evalutation/ bounding.
The error list starts with c0, so we have to revert it
before the Horner.
HACK ALERT: We will allocate only the containers to the
reverted list but we just copy over the pointers to the
MPFIs. So when free'ing the reverted list, we must not
free the MPFIs, as they will be free'd when free'ing the
orginal list.
*/
sollya_mpfi_init2(temp,sollya_mpfi_get_prec(delta));
sollya_mpfi_init2(shiftedDom,sollya_mpfi_get_prec(dom));
sollya_mpfi_sub(shiftedDom,dom,x0AsInterval);
revertedErrors = NULL;
for (curr=errors;curr!=NULL;curr=curr->next)
revertedErrors = addElement(revertedErrors,curr->value);
/* Horner */
curr = revertedErrors;
sollya_mpfi_set(temp,*((sollya_mpfi_t *) (curr->value)));
for (curr=curr->next; curr != NULL; curr = curr->next) {
sollya_mpfi_mul(temp,temp,shiftedDom);
sollya_mpfi_add(temp,temp,*((sollya_mpfi_t *) (curr->value)));
}
freeChain(revertedErrors,freeNoPointer);
sollya_mpfi_add(lagrangeDelta,lagrangeDelta,temp);
if (!sollya_mpfi_bounded_p(lagrangeDelta)) res = 0;
else sollya_mpfi_set(delta,lagrangeDelta);
sollya_mpfi_clear(temp);
sollya_mpfi_clear(shiftedDom);
}
sollya_mpfi_clear(lagrangeDelta);
sollya_mpfi_clear(*myDelta);
safeFree(myDelta);
}
if (!res) free_memory(myPoly);
else *poly=myPoly;
freeChain(errors,freeMpfiPtr);
sollya_mpfi_clear(myDom);
sollya_mpfi_clear(x0AsInterval);
mpfr_clear(x0);
setToolPrecision(oldToolPrec);
return res;
}
/* Tries to compute a Taylor expansion poly of func with degree n such that
|| poly(x-x0) - func || <= delta.
If such an expansion can be computed using computeTaylorForm,
assign that expansion to *poly and return a non-zero value.
Otherwise, do not touch the pointer *poly and return zero.
This means, when the computation fails, all memory allocated
for the computation has been freed.
Be aware that poly is not checked to have finite, real
coefficients. It is just ensured that the Lagrange and coefficient
approximation error of the Taylor form is finite and contained in
[-delta, delta].
The parameters singu and prec are passed directly to
computeTaylorForm.
IMPORTANT REMARK: this is an untranslated polynomial (see computeTaylorModel).
*/
int checkDegreeTaylorModel(node **poly, node *func, sollya_mpfi_t dom, mpfr_t delta, int n, mpfr_t *singu, mp_prec_t prec) {
node *myPoly;
int res, resCompute;
sollya_mpfi_t computedDelta;
mpfr_t supAbsComputedDelta;
res = 0;
sollya_mpfi_init2(computedDelta,prec);
resCompute = computeTaylorModel(&myPoly, computedDelta, func, dom, n, singu, prec);
if (resCompute) {
/* Here, we have to check if sup(abs(computedDelta)) <= delta */
sollya_mpfi_abs(computedDelta,computedDelta);
mpfr_init2(supAbsComputedDelta,prec);
sollya_mpfi_get_right(supAbsComputedDelta,computedDelta);
if (mpfr_number_p(supAbsComputedDelta) &&
mpfr_number_p(delta) &&
(mpfr_cmp(supAbsComputedDelta,delta) <= 0)) {
/* Here, we have a polynomial that satisfies the bound */
*poly = myPoly;
res = 1;
} else {
/* Here, we got a polynomial and a computedDelta, but the
error is too large. So we have to free the polynomial */
free_memory(myPoly);
res = 0;
}
mpfr_clear(supAbsComputedDelta);
} else {
/* Here, we could not compute a Taylor Model
We simply return zero, without touching at poly.
The computeTaylorModel function ensures that myPoly has not
been assigned a newly allocated polynomial.
*/
res = 0;
}
sollya_mpfi_clear(computedDelta);
return res;
}
/* Checks if poly is a polynomial with coefficients that are all fully
evaluated MPFR constants each of which is finite and real (not NaN,
not Inf).
Returns a non-zero value if poly fullfills the constraints and zero
otherwise.
I believe that this code is useless. It is here to cover the case where
checkDegreeTaylorModel would successfully return, but the returned
polynomial would contain non-dyadic coefficients. I think that this
cannot happen.
*/
int isPolynomialWithConstantDyadicFiniteRealCoefficients(node *poly) {
node **coefficients;
int degree, i, res;
if (!isPolynomial(poly)) return 0;
getCoefficients(°ree, &coefficients, poly);
if (degree < 0) return 0;
res = 1;
for (i=0;i<=degree;i++) {
if (coefficients[i] != NULL) {
if ((!(accessThruMemRef(coefficients[i])->nodeType == CONSTANT)) ||
(!mpfr_number_p(*(accessThruMemRef(coefficients[i])->value)))) {
res = 0;
break;
}
}
}
for (i=0;i<=degree;i++) {
if (coefficients[i] != NULL)
free_memory(coefficients[i]);
}
safeFree(coefficients);
return res;
}
/* Compute a Taylor Model poly for func such that
- for all x in dom, abs(func(x) - poly(x)) <= delta,
- the degree of poly is the least possible of the polynomials
computable with the tool that satisfy the bound,
- the degree of poly is less than or equal to maximumAllowedN,
- the polynomial has finite, real coefficients that are MPFR constants.
If such a polynomial is found, assign it to *poly and return a
non-zero value. Otherwise, do not touch *poly and return zero.
If singu is NULL, develop func at the midpoint of dom, using the
absolute error mode of the Taylor Model code suite. Otherwise,
develop func at singu, using the relative error mode of the Taylor
Model code.
Perform the computations with a working precision prec.
*/
int computeTaylorModelOfLeastDegree(node **poly, node *func, sollya_mpfi_t dom, mpfr_t delta, int maximumAllowedN, mpfr_t *singu, mp_prec_t prec) {
node *myPoly;
node *bestPoly;
node *shifterBack;
node *pShifted;
mpfr_t x0;
int n, okay, resCompute, nMin, nMax;
nMax = 1; nMin = 0; okay = 0;
bestPoly = NULL;
while (nMax < 2*maximumAllowedN) {
if (nMax > maximumAllowedN) nMax = maximumAllowedN;
resCompute = checkDegreeTaylorModel(&myPoly, func, dom, delta, nMax, singu, prec);
if (resCompute) {
free_memory(bestPoly); /* does nothing if bestPoly == NULL */
bestPoly = myPoly;
okay = 1;
break;
}
nMin = nMax;
nMax <<= 1;
}
if (!okay) return 0; /* We cannot find a suitable polynomial of degree <= maximumAllowedN */
/* Here we know that with nMin, we cannot reach the bound but with
nMax we can. So we refine by bisecting the interval [nMin,nMax]
Also, we know that bestPoly contains the poly associated with nMax.
*/
while (nMax - nMin > 1) {
n = (nMin + nMax) / 2;
resCompute = checkDegreeTaylorModel(&myPoly, func, dom, delta, n, singu, prec);
if (resCompute) { /* OK with n, so the new interval is [nMin,n] */
nMax = n;
free_memory(bestPoly);
bestPoly = myPoly;
}
else nMin = n; /* Not OK with n, so the new interval is [n,nMax] */
}
/* Now we know that bestPoly is the polynomial that we want, but we need to translate it */
if (singu == NULL) {
mpfr_init2(x0,sollya_mpfi_get_prec(dom) + 1);
sollya_mpfi_mid(x0,dom);
}
else {
mpfr_init2(x0,mpfr_get_prec(*singu));
mpfr_set(x0,*singu,GMP_RNDN); /* exact */
}
shifterBack = makeSub(makeVariable(),makeConstant(x0));
pShifted = substitute(bestPoly,shifterBack);
free_memory(shifterBack);
free_memory(bestPoly);
bestPoly = horner(pShifted);
free_memory(pShifted);
mpfr_clear(x0);
*poly = bestPoly;
return 1;
}
/* Determines if func has a zero in dom.
If, using a safe, validated algorithm, it can be shown that func
does not vanish on dom, the function returns 0 and does not
touch zero and bisect.
Otherwise, the function tries to determine the least zero of func
in dom and assigns that value to zero. If func appears to have no
other zeros in dom, the function returns 1 and does not touch
bisect. Otherwise, the function assigns the midpoint of the least
and one-but-least zero of func in dom to bisect and returns 2.
In the case when the function is not able to establish the
fact that func does not vanish on dom but is not able to
find an approximation to a zero of func in dom, it does not
touch zero and bisect and returns -1.
This means: if the return value is
- 0: the calling function can safely assume that func does not have
a zero in dom,
- 1: the calling function can assume that zero is a good
approximation to the least zero of func in dom and that it is
probably the only zero of func in dom. Hence by overcoming the
problems due to this zero of func, the supnorm is likely to
be computable in one step,
- 2: the calling function can assume that, for supnorm computation,
it is a good idea to bisect in the indicated bisection point if
the computation tackling only the first zero fails,
- -1: the calling function is not provided with a zero that
might need to be overcome in supnorm computation but is likely
to see the supnorm computation on the whole domain dom fail.
The argument expectedZeros is an indication how many zeros of func
are maximally expected in the given range.
*/
int determinePossibleZeroAndBisectPoint(mpfr_t zero, mpfr_t bisect,
node *func, sollya_mpfi_t dom,
int expectedZeros,
mp_prec_t prec) {
int res;
sollya_mpfi_t y;
mpfr_t yl, yr;
unsigned long int points;
mpfr_t a, b;
mp_prec_t pp, ppp;
chain *possibleZeros;
chain *curr;
mpfr_t *least, *second;
mpfr_t myBisect;
sollya_mpfi_init2(y,prec);
mpfr_init2(yl,prec);
mpfr_init2(yr,prec);
evaluateInterval(y, func, NULL, dom);
sollya_mpfi_get_left(yl,y);
sollya_mpfi_get_right(yr,y);
if (mpfr_number_p(yl) &&
mpfr_number_p(yr) &&
(mpfr_sgn(yl) * mpfr_sgn(yr) > 0)) {
/* Here, we know by interval evaluation of func over dom
that there is no zero of func in the interval.
We can return zero.
*/
res = 0;
} else {
/* Here, we have to compute a list of approximations to
the zeros of func in dom.
*/
points = 4 * expectedZeros + 1;
pp = sollya_mpfi_get_prec(dom);
mpfr_init2(a,pp);
mpfr_init2(b,pp);
sollya_mpfi_get_left(a,dom);
sollya_mpfi_get_right(b,dom);
if ( (!mpfr_number_p(a)) || (!mpfr_number_p(b)) )
res=-1; /* an unbounded range, return -1. */
else {
/* Try to compute a list of zeros */
pp = mpfr_get_prec(zero);
if (prec > pp) pp = prec;
possibleZeros = uncertifiedFindZeros(func, a, b, points, pp + 5);
/* Remark: uncertifiedFindZeros always returns ordered values.
Hence, the following code is uselessly complicated. */
if (possibleZeros != NULL) { /* We found at least one zero */
if (possibleZeros->next == NULL) {
/* Here, we have exactly one zero. */
res = 1;
mpfr_set(zero,*((mpfr_t *) (possibleZeros->value)),GMP_RNDN); /* It's an approx. anyway */
}
else {
/* Here, we have at least two zeros
Start by exhibiting the least zero.
*/
least = (mpfr_t *) (possibleZeros->value);
for (curr=possibleZeros;curr!=NULL;curr=curr->next) {
if (mpfr_cmp(*((mpfr_t *) (curr->value)),*least) < 0) {
least = (mpfr_t *) (curr->value);
}
}
/* Now find the second least zero */
second = least;
for (curr=possibleZeros;curr!=NULL;curr=curr->next) {
if (mpfr_cmp(*((mpfr_t *) (curr->value)),*second) > 0) {
second = (mpfr_t *) (curr->value);
}
}
/* Now second is the greatest zero.
In the next stanza we will go down on second
with all zeros in the list greater than the least zero.
Anyway, we first check if the greatest zero is greater
then the least zero. If it is not, we cannot find a
second least zero.
*/
if (mpfr_cmp(*least,*second) == 0) {
/* Here, we couldn't find any zero larger than the least
This case should not happen but anyway, we found one zero.
*/
res = 1;
mpfr_set(zero,*least,GMP_RNDN); /* It's an approx. anyway */
} else {
/* Here, we really found that there at least two different zeros
We now go down on second with all zeros in the list greater
than the least zero.
*/
for (curr=possibleZeros;curr!=NULL;curr=curr->next) {
if ((mpfr_cmp(*((mpfr_t *) (curr->value)),*least) > 0) &&
(mpfr_cmp(*((mpfr_t *) (curr->value)),*second) < 0)) {
second = (mpfr_t *) (curr->value);
}
}
/* Now, second is really the second least zero in the list */
res = 2;
mpfr_set(zero,*least,GMP_RNDN); /* It's an approx. anyway */
/* Compute midpoint between least and second least zero */
pp = mpfr_get_prec(*least);
ppp = mpfr_get_prec(*second);
if (ppp > pp) pp = ppp;
mpfr_init2(myBisect,pp + 1);
mpfr_add(myBisect, *least, *second, GMP_RNDN);
mpfr_div_2ui(myBisect,myBisect,1,GMP_RNDN);
/* Set bisection point to midpoint of the two least zeros */
mpfr_set(bisect,myBisect,GMP_RNDN); /* It's all an approx. anyway */
mpfr_clear(myBisect);
}
}
freeChain(possibleZeros,freeMpfrPtr);
} else {
/* We did not find any zero, return -1. */
res = -1;
}
}
mpfr_clear(a);
mpfr_clear(b);
}
mpfr_clear(yr);
mpfr_clear(yl);
sollya_mpfi_clear(y);
return res;
}
/* Determines the order of a zero of func at x0.
The function computes an upper bound k for the order of a zero of
func at x0, provided that the zero is of order less than n.
In the case when an upper bound has been correctly determined, the
function assigns the order to k and returns a non-zero value.
Otherwise, if n is too low to correctly determine an upper bound,
the function does not touch k and returns zero.
In the context of supremum norm computation, initialize n
to the degree of the polynomial p in p/f - 1, as f might not
reasonably have a zero of a higher degree than that of p.
HACK ALERT: currently, taylorform does not take any prec argument.
This means we have to modify the global precision of the tool. We
reset it correctly in the usual case but if a Ctrl-C pops in in the
middle, it will not be reset. This should be changed in the future.
*/
int determineOrderOfZero(int *k, node *func, mpfr_t x0, int n, mp_prec_t prec) {
int myK, res;
mp_prec_t oldToolPrec;
node *poly;
chain *errors;
sollya_mpfi_t x0AsInterval;
node **coefficients;
int degree, i, len;
chain *curr;
sollya_mpfi_t **errorsAsArray;
res = 0;
/* Make compiler happy: */
myK = -1;
/* End of compiler happiness */
sollya_mpfi_init2(x0AsInterval,mpfr_get_prec(x0));
sollya_mpfi_set_fr(x0AsInterval,x0);
oldToolPrec = getToolPrecision();
setToolPrecision(prec);
poly = NULL;
errors = NULL;
taylorform(&poly, &errors, NULL, func, n, &x0AsInterval, NULL, RELATIVE);
setToolPrecision(oldToolPrec);
if ((poly != NULL) && (errors != NULL)) {
len = lengthChain(errors); /* Normally, len == n+1 */
/* HACK ALERT: We will allocate only the containers to the
array of errors but we just copy over the pointers to the
MPFIs. So when free'ing the array, we must not
free the MPFIs, as they will be free'd when free'ing the
orginal list.
*/
errorsAsArray = (sollya_mpfi_t **) safeCalloc(len,sizeof(sollya_mpfi_t *));
i = 0;
for (curr=errors;curr!=NULL;curr=curr->next) {
errorsAsArray[i] = (sollya_mpfi_t *) (curr->value);
i++;
}
coefficients = NULL;
getCoefficients(°ree,&coefficients,poly);
if ( (degree >= 0) && (coefficients != NULL) ) {
if (len == degree + 1) { /* Should always be true */
myK = 0;
while ((myK <= degree) && (myK <= n-1) && (!res)) { /* Normally n==degree */
if ( ( (coefficients[myK] == NULL)
||
( (accessThruMemRef(coefficients[myK])->nodeType == CONSTANT) &&
(mpfr_zero_p(*(accessThruMemRef(coefficients[myK])->value)))
)
) &&
(sollya_mpfi_is_zero(*(errorsAsArray[myK])))
) {
myK++;
} else {
res = 1;
}
}
}
for (i=0;i<=degree;i++) {
if (coefficients[i] != NULL) free_memory(coefficients[i]);
}
}
if (coefficients != NULL) safeFree(coefficients);
safeFree(errorsAsArray);
freeChain(errors,freeMpfiPtr);
free_memory(poly);
}
sollya_mpfi_clear(x0AsInterval);
if (res) *k = myK;
return res;
}
/* Compute the supremum norm on eps = p - f over dom
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value is non-zero. The
number of the return value then corresponds to a special error
message meaning (see #defines above).
No warning message is ever displayed by this function.
The computing precision is prec.
We are ensured that this function is called only if
* poly is a polynomial
* dom is a closed non-empty interval containing only numbers that is not reduced to a point,
* accuracy is a positive number.
In the case when the computation fails but there is hope in
obtaining a result by bisection, the algorithm may assign a point
in the interior of dom to bisectPoint. The global bisection code
will then try to bisect at that point. If no value is assigned, the
global bisection will be performed at the midpoint of dom. This
means: if you just want default behavior for the bisection (in the
midpoint), then do not touch bisectPoint.
To begin with, we do not care about removable singularities in the
expression of func. In such a case, the absolute supnorm may simply
fail for now.
*/
int supnormAbsolute(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, mpfr_t accuracy, mp_prec_t prec, mpfr_t bisectPoint) {
mpfr_t ell, gamma, fifthteenThirtySecond, errMax, bound, u, thirtyoneThirtySecond;
mp_prec_t pr;
node *T;
int maximumAllowedN;
node *boundAsNode, *s1, *s2, *pMinusT, *TMinusp;
UNUSED_PARAM(bisectPoint);
/* Compute ell such that ell <= || p - f || with an accuracy gamma = accuracy/32 */
mpfr_init2(ell,prec);
mpfr_init2(gamma,mpfr_get_prec(accuracy));
mpfr_div_ui(gamma,accuracy,32,GMP_RNDN); /* exact, but it doesn't matter anyway */
if (!computeSupnormLowerBound(ell, poly, func, dom, gamma, ABSOLUTE, prec)) { /*we compute a lower bound with expected accuracy gamma=accuracy/32*/
/* Before returning, we do a quick heuristical check if we had a chance
with this level of working precision
*/
mpfr_abs(ell,accuracy,GMP_RNDD); /* heuristic anyway */
mpfr_log2(ell,ell,GMP_RNDD); /* heuristic anyway */
mpfr_floor(ell,ell);
mpfr_neg(ell,ell,GMP_RNDU);
pr = mpfr_get_ui(ell,GMP_RNDD);
mpfr_clear(ell);
mpfr_clear(gamma);
if (pr > prec) {
return SUPNORM_NOT_ENOUGH_WORKING_PRECISION;
}
return SUPNORM_CANNOT_COMPUTE_LOWER_BOUND;
}
/* Compute errMax such that errMax approximates ell * accuracy * 15/32 but is surely no greater */
mpfr_init2(fifthteenThirtySecond,12); /* 15/32 can be written on 12 bits */
mpfr_set_ui(fifthteenThirtySecond,15,GMP_RNDD); /* exact as 15 holds on 12 bits */
mpfr_div_ui(fifthteenThirtySecond,fifthteenThirtySecond,32,GMP_RNDD); /* exact, 32 is a power of 2 */
mpfr_init2(errMax,prec);
mpfr_mul(errMax,ell,accuracy,GMP_RNDD); /* round down to get lesser value */
mpfr_mul(errMax,errMax,fifthteenThirtySecond,GMP_RNDD); /* round down to get lesser value */
mpfr_clear(fifthteenThirtySecond);
/* Compute T such that the absolute error is <= errMax */
maximumAllowedN = 16 * getDegree(poly);
if (maximumAllowedN < 32) maximumAllowedN = 32;
T = NULL;
if (!computeTaylorModelOfLeastDegree(&T, func, dom, errMax, maximumAllowedN, NULL, prec)) {
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(errMax);
return SUPNORM_NO_TAYLOR;
}
/* Compute bound that approximates bound = ell * (1 + accuracy/2) but surely no greater */
/* Hence, proving that ||p-T|| <= bound surely proves that ||p-T|| <= ell*(1+accuracy/2) */
mpfr_init2(bound,prec);
mpfr_div_ui(bound,accuracy,2,GMP_RNDD); /* exact, but round-down anyway */
mpfr_add_ui(bound,bound,1,GMP_RNDD); /* round-down to get lesser value */
mpfr_mul(bound,ell,bound,GMP_RNDD); /* round-down to get lesser value */
/* Represent bound as a node * (a polynomial) that we can give to
subPolynomialsExactly(node *p1, node *p2)
*/
boundAsNode = makeConstant(bound);
/* Compute (build) s1 = bound - (p - T) and s2 = bound - (T - p) */
pMinusT = subPolynomialsExactly(poly, T);
TMinusp = subPolynomialsExactly(T, poly);
s1 = subPolynomialsExactly(boundAsNode, pMinusT);
s2 = subPolynomialsExactly(boundAsNode, TMinusp);
/* Check now that s1 and s2 are both positive on the domain dom
The case when s1 or s2 have a point where they are not
positive should never happen. The check just ensures the
safety of the algorithm, i.e. validates it.
*/
if ( (!isPolynomialWithConstantDyadicFiniteRealCoefficients(s1)) ||
(!isPolynomialWithConstantDyadicFiniteRealCoefficients(s2))) {
/* I believe that this is dead code. It is here to cover the case where
checkDegreeTaylorModel would successfully return, but the returned
polynomial would contain non-dyadic coefficients. I think that this
cannot happen.
*/
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(errMax);
mpfr_clear(bound);
free_memory(T);
free_memory(boundAsNode);
free_memory(s1);
free_memory(s2);
free_memory(pMinusT);
free_memory(TMinusp);
return SUPNORM_NO_TAYLOR;
}
if ((!showPositivity(s1, dom, prec)) ||
(!showPositivity(s2, dom, prec))) {
/* At least one of s1 or s2 has a point in dom where it is non-positive
We clear the used memory and return the appropriate failure code.
*/
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(errMax);
mpfr_clear(bound);
free_memory(T);
free_memory(boundAsNode);
free_memory(s1);
free_memory(s2);
free_memory(pMinusT);
free_memory(TMinusp);
return SUPNORM_COULD_NOT_SHOW_POSITIVITY;
}
/* If we are here, we know that s1 and s2 are positive and we can
easily deduce the upper bound from the lower bound ell.
We take u approximating ell * (1 + 31/32 * accuracy) and surely no less
than it.
*/
mpfr_init2(u,prec);
mpfr_init2(thirtyoneThirtySecond,12); /* 31/32 holds on 12 bits */
mpfr_set_ui(thirtyoneThirtySecond,31,GMP_RNDU); /* exact, 31 holds on 12 bits */
mpfr_div_ui(thirtyoneThirtySecond,thirtyoneThirtySecond,32,GMP_RNDU); /* exact, 32 is a power of 2 */
mpfr_mul(u,thirtyoneThirtySecond,accuracy,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
mpfr_add_ui(u,u,1,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
mpfr_mul(u,ell,u,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
/* Set the result */
sollya_mpfi_interv_fr(result,ell,u);
/* Clear all used memory */
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(errMax);
mpfr_clear(bound);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
free_memory(T);
free_memory(boundAsNode);
free_memory(s1);
free_memory(s2);
free_memory(pMinusT);
free_memory(TMinusp);
/* Return success */
return SUPNORM_NO_ERROR;
}
/* Compute the supremum norm on eps = p/f - 1 over dom
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value is non-zero. The
number of the return value then corresponds to a special error
message meaning (see #defines above).
No warning message is ever displayed by this function.
The computing precision is prec.
We are ensured that this function is called only if
* poly is a polynomial
* dom is a closed non-empty interval containing only numbers that is not reduced to a point,
* accuracy is a positive number.
In the case when the computation fails but there is hope in
obtaining a result by bisection, the algorithm may assign a point
in the interior of dom to bisectPoint. The global bisection code
will then try to bisect at that point. If no value is assigned, the
global bisection will be performed at the midpoint of dom. This
means: if you just want default behavior for the bisection (in the
midpoint), then do not touch bisectPoint.
This function may assume that the expression poly / func - 1 is
likely not have any removable singularities in dom, i.e. it can
assume that func is likely not to vanish in dom.
We do not care about removable singularities in the
expression of func. In such a case, the relative supnorm may simply
fail for now.
The singularity parameter is just to be passed on to the
Taylor Form code.
*/
int supnormRelativeNoSingularity(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, mpfr_t accuracy, mp_prec_t prec, mpfr_t *singularity, mpfr_t bisectPoint) {
mpfr_t F, ell, gamma, thirtyoneThirtySecond, u, errMax, midDom, signT, bound;
mp_prec_t pr;
sollya_mpfi_t ellInterval, accuracyInterval, fifthteenThirtySecondInterval, FInterval, errMaxInterval, onePlusUInterval, uInterval;
node *T;
int maximumAllowedN, signAsInt;
node *s1, *s2, *boundTimesT, *pMinusT, *TMinusp;
UNUSED_PARAM(bisectPoint);
/* Makes compiler happy */
signAsInt = -2;
/* End of compiler happiness */
/* Compute F such that forall x in dom |func(x)| >= F */
mpfr_init2(F,prec);
if (!computeAbsoluteMinimum(F, func, dom, prec)) {
/* If we are here, we could not compute a valid lower bound on the absolute
value of func, i.e. a bound that seems to be non-zero.
*/
mpfr_clear(F);
return SUPNORM_CANNOT_COMPUTE_ABSOLUTE_INF;
}
/* Check that F is really non-zero and a real */
if ((!mpfr_number_p(F)) || mpfr_zero_p(F)) {
mpfr_clear(F);
return SUPNORM_CANNOT_COMPUTE_ABSOLUTE_INF;
}
/* Compute ell such that ell <= || p / f - 1 || with an accuracy gamma = accuracy/32 */
mpfr_init2(ell,prec);
mpfr_init2(gamma,mpfr_get_prec(accuracy));
mpfr_div_ui(gamma,accuracy,32,GMP_RNDN); /* exact, but it doesn't matter anyway */
if (!computeSupnormLowerBound(ell, poly, func, dom, gamma, RELATIVE, prec)) {
/* Before returning, we do a quick heuristical check if we had a chance
with this level of working precision
*/
mpfr_abs(ell,accuracy,GMP_RNDD); /* heuristic anyway */
mpfr_log2(ell,ell,GMP_RNDD); /* heuristic anyway */
mpfr_floor(ell,ell);
mpfr_neg(ell,ell,GMP_RNDU);
pr = mpfr_get_ui(ell,GMP_RNDD);
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
if (pr > prec) {
return SUPNORM_NOT_ENOUGH_WORKING_PRECISION;
}
return SUPNORM_CANNOT_COMPUTE_LOWER_BOUND;
}
/* Compute a presumed upper bound for the supremum norm that we will try to
validate.
Take u approximating ell * (1 + 31/32 * accuracy) but surely no less than it.
*/
mpfr_init2(u,prec);
mpfr_init2(thirtyoneThirtySecond,12); /* 31/32 holds on 12 bits */
mpfr_set_ui(thirtyoneThirtySecond,31,GMP_RNDU); /* exact, 31 holds on 12 bits */
mpfr_div_ui(thirtyoneThirtySecond,thirtyoneThirtySecond,32,GMP_RNDU); /* exact, 32 is a power of 2 */
mpfr_mul(u,thirtyoneThirtySecond,accuracy,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
mpfr_add_ui(u,u,1,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
mpfr_mul(u,ell,u,GMP_RNDU); /* round-up as all quantities are positive and we want an upper bound */
/* Compute a maxium absolute error for the Taylor polynomial
Take a value errMax approximating ell * accuracy * (15/32) * 1/(1+u) * F/(1+15*accuracy/32) but being
surely no greater than it (with u approximating ell*(1+31*accuracy/32) but surely no
lesser than it).
We just use interval arithmetic to be sure to have a bound no greater than the approximated
quantity.
*/
/* Get memory */
mpfr_init2(errMax, prec);
sollya_mpfi_init2(ellInterval,prec);
sollya_mpfi_init2(accuracyInterval,mpfr_get_prec(accuracy));
sollya_mpfi_init2(fifthteenThirtySecondInterval,12);
sollya_mpfi_init2(FInterval,mpfr_get_prec(F));
sollya_mpfi_init2(errMaxInterval, prec);
sollya_mpfi_init2(uInterval,mpfr_get_prec(u));
sollya_mpfi_init2(onePlusUInterval, prec);
/* Initialize */
sollya_mpfi_set_fr(accuracyInterval,accuracy);
sollya_mpfi_set_ui(fifthteenThirtySecondInterval,15);
sollya_mpfi_div_ui(fifthteenThirtySecondInterval,fifthteenThirtySecondInterval,32);
sollya_mpfi_set_fr(FInterval,F);
sollya_mpfi_set_fr(uInterval,u);
sollya_mpfi_set_fr(ellInterval,ell);
/* Compute in IA */
sollya_mpfi_mul(errMaxInterval,fifthteenThirtySecondInterval,accuracyInterval); /* errMaxInterval <- 15/32 * accuracy */
sollya_mpfi_add_ui(errMaxInterval,errMaxInterval,1); /* errMaxInterval <- 1 + errMaxInterval = 1 + 15/32 * accuracy */
sollya_mpfi_div(errMaxInterval,FInterval,errMaxInterval); /* errMaxInterval <- F/errMaxInterval = F/(1+15/32*accuracy) */
sollya_mpfi_add_ui(onePlusUInterval,uInterval,1); /* onePlusUInterval <- 1 + u */
sollya_mpfi_div(errMaxInterval,errMaxInterval,onePlusUInterval); /* errMaxInterval <- errMaxInterval/onePlusUInterval = 1/(1+u) * F/(1+15/32*accuracy) */
sollya_mpfi_mul(errMaxInterval,errMaxInterval,fifthteenThirtySecondInterval); /* errMaxInterval <- 15/32 * errMaxInterval = 15/32 * 1/(1+u) * F/(1+15/32*accuracy) */
sollya_mpfi_mul(errMaxInterval,errMaxInterval,accuracyInterval); /* errMaxInterval <- errMaxInterval * accuracy = accuracy * 15/32 * 1/(1+u) * F/(1+15/32*accuracy) */
sollya_mpfi_mul(errMaxInterval,errMaxInterval,ellInterval); /* errMaxInterval <- ell * errMaxInterval = ell * accuracy * 15/32 * 1/(1+u) * F/(1+15/32*accuracy) */
/* Get the lower bound of the result */
sollya_mpfi_get_left(errMax,errMaxInterval);
/* Clear memory */
sollya_mpfi_clear(errMaxInterval);
sollya_mpfi_clear(FInterval);
sollya_mpfi_clear(fifthteenThirtySecondInterval);
sollya_mpfi_clear(accuracyInterval);
sollya_mpfi_clear(ellInterval);
sollya_mpfi_clear(onePlusUInterval);
sollya_mpfi_clear(uInterval);
/* Compute T such that the absolute error is <= errMax */
maximumAllowedN = 16 * getDegree(poly);
if (maximumAllowedN < 32) maximumAllowedN = 32;
T = NULL;
if (!computeTaylorModelOfLeastDegree(&T, func, dom, errMax, maximumAllowedN, singularity, prec)) {
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
mpfr_clear(errMax);
return SUPNORM_NO_TAYLOR;
}
/* Determine the sign of T in the middle of dom
We really need to be sure of the sign, so
if we can't determine it, we fail.
*/
mpfr_init2(midDom,sollya_mpfi_get_prec(dom));
sollya_mpfi_mid(midDom,dom);
if (!determineSignAtPoint(&signAsInt,T,midDom,prec)) {
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
mpfr_clear(errMax);
mpfr_clear(midDom);
free_memory(T);
return SUPNORM_CANNOT_DETERMINE_SIGN_OF_T;
}
/* Here, we know the sign of T at mid(dom),
we just have to translate it to an mpfr value */
mpfr_init2(signT,12);
if (signAsInt < 0) mpfr_set_si(signT,-1,GMP_RNDN); /* exact */
else mpfr_set_si(signT,1,GMP_RNDN); /* exact */
/* Compute bound that approximates bound = ell * (1 + accuracy/2) but surely no greater */
mpfr_init2(bound,prec);
mpfr_div_ui(bound,accuracy,2,GMP_RNDD); /* exact, but round-down anyway */
mpfr_add_ui(bound,bound,1,GMP_RNDD); /* round-down to get lesser value */
mpfr_mul(bound,ell,bound,GMP_RNDD); /* round-down to get lesser value */
/* Integrate the sign of T at mid(dom) into bound */
mpfr_mul(bound,bound,signT,GMP_RNDN); /* exact as signT one of -1 or 1 */
/* Scale T by bound */
boundTimesT = scalePolynomialExactly(T, bound); /* boundTimesT = |T|*ell*(1+accuracy/2) */
/* Compute (build) s1 = boundTimesT - (p - T) and s2 = boundTimesT - (T - p) */
pMinusT = subPolynomialsExactly(poly, T);
TMinusp = subPolynomialsExactly(T, poly);
s1 = subPolynomialsExactly(boundTimesT, pMinusT);
s2 = subPolynomialsExactly(boundTimesT, TMinusp);
/* Check now that s1 and s2 are both positive on the domain dom
The case when s1 or s2 have a point where they are not
positive should never happen. The check just ensures the
safety of the algorithm, i.e. validates it.
*/
if ( (!isPolynomialWithConstantDyadicFiniteRealCoefficients(s1)) ||
(!isPolynomialWithConstantDyadicFiniteRealCoefficients(s2))) {
/* I believe that this is dead code. It is here to cover the case where
checkDegreeTaylorModel would successfully return, but the returned
polynomial would contain non-dyadic coefficients. I think that this
cannot happen.
*/
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
mpfr_clear(errMax);
mpfr_clear(midDom);
mpfr_clear(bound);
mpfr_clear(signT);
free_memory(T);
free_memory(boundTimesT);
free_memory(s1);
free_memory(s2);
free_memory(pMinusT);
free_memory(TMinusp);
return SUPNORM_NO_TAYLOR;
}
if ((!showPositivity(s1, dom, prec)) ||
(!showPositivity(s2, dom, prec))) {
/* At least one of s1 or s2 has a point in dom where it is non-positive
We clear the used memory and return the appropriate failure code.
*/
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
mpfr_clear(errMax);
mpfr_clear(midDom);
mpfr_clear(bound);
mpfr_clear(signT);
free_memory(T);
free_memory(boundTimesT);
free_memory(pMinusT);
free_memory(TMinusp);
free_memory(s1);
free_memory(s2);
return SUPNORM_COULD_NOT_SHOW_POSITIVITY;
}
/* Here, we know the supnorm as [ell,u] and we have validated it. */
/* Set the result */
sollya_mpfi_interv_fr(result,ell,u);
/* Clear all used memory */
mpfr_clear(F);
mpfr_clear(ell);
mpfr_clear(gamma);
mpfr_clear(u);
mpfr_clear(thirtyoneThirtySecond);
mpfr_clear(errMax);
mpfr_clear(midDom);
mpfr_clear(bound);
mpfr_clear(signT);
free_memory(T);
free_memory(boundTimesT);
free_memory(pMinusT);
free_memory(TMinusp);
free_memory(s1);
free_memory(s2);
/* Return success */
return SUPNORM_NO_ERROR;
}
/* Compute the supremum norm on eps = p/f - 1 over dom
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value is non-zero. The
number of the return value then corresponds to a special error
message meaning (see #defines above).
No warning message is ever displayed by this function.
The computing precision is prec.
We are ensured that this function is called only if
* poly is a polynomial
* dom is a closed non-empty interval containing only numbers that is not reduced to a point,
* accuracy is a positive number.
In the case when the computation fails but there is hope in
obtaining a result by bisection, the algorithm may assign a point
in the interior of dom to bisectPoint. The global bisection code
will then try to bisect at that point. If no value is assigned, the
global bisection will be performed at the midpoint of dom. This
means: if you just want default behavior for the bisection (in the
midpoint), then do not touch bisectPoint.
This function is supposed to overcome a removable singularity at
singularity. There might be other singularities of poly/func-1 in
the domain dom. In this case, the function may fail. It is not
supposed to fail, though, if singularity is the only removable
singularity of poly/func - 1 in the domain dom.
However, we do not care about removable singularities in the
expression of func. In such a case, the relative supnorm may simply
fail for now. It may assign a new value to bisectPoint if desired.
*/
int supnormRelativeSingularity(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, mpfr_t accuracy, mpfr_t singularity, mp_prec_t prec, mpfr_t bisectPoint) {
int deg, k, n, res;
node *pTilde, *fTilde, *fTildeUnsimplified;
mpfr_t kAsMpfr, mySingularity;
/* Makes compiler happy */
k = -1;
/* End of compiler happiness */
/* Determine the degree of poly */
deg = getDegree(poly);
if (deg < 0) {
/* Strange things are happening, we return an error */
return SUPNORM_SOME_ERROR;
}
/* Determine a maximum order */
n = deg;
if (n < 2) n = 2;
if (!determineOrderOfZero(&k, func, singularity, n, prec)) {
/* We couldn't determine the order of the presumed singularity.
Hence we fail with the appropriate error code.
*/
return SUPNORM_CANNOT_DETERMINE_ORDER_OF_SINGU;
}
/* Now we know that func has a singularity at singularity of order k
We have to check now if we can divide poly by (x-singularity)^k
*/
pTilde = NULL;
if (!dividePolyByXMinusX0ToTheK(&pTilde,poly,singularity,k,prec)) {
/* Here, we couldn't divide poly by (x-singularity)^k
We return the appropriate error code.
*/
return SUPNORM_SINGULARITY_NOT_REMOVED;
}
/* If we are here, we know that pTilde = poly/((x-singularity)^k)
We now build fTilde = func/(x-singularity)^k
*/
mpfr_init2(kAsMpfr,5 + 8 * sizeof(k));
mpfr_set_si(kAsMpfr,k,GMP_RNDN); /* exact as per what precedes */
fTildeUnsimplified = makeDiv(copyTree(func),
makePow(makeSub(makeVariable(),makeConstant(singularity)),
makeConstant(kAsMpfr)));
fTilde = simplifyTreeErrorfree(fTildeUnsimplified);
free_memory(fTildeUnsimplified);
/* Now copy singularity into a local variable ('cause that stupid C,
in some versions, prohibits taking a pointer on an argument)
*/
mpfr_init2(mySingularity,mpfr_get_prec(singularity));
mpfr_set(mySingularity,singularity,GMP_RNDN); /* exact, the precision is the same */
/* Now call the relative supremum norm with pTilde and fTilde, passing on
the singularity as the development point for fTilde.
*/
res = supnormRelativeNoSingularity(result, pTilde, fTilde, dom, accuracy, prec, &mySingularity, bisectPoint);
/* Free all locally used memory */
free_memory(pTilde);
free_memory(fTilde);
mpfr_clear(kAsMpfr);
mpfr_clear(mySingularity);
/* Return the result obtained */
return res;
}
/* Compute the supremum norm on eps = p/f - 1 over dom
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value is non-zero. The
number of the return value then corresponds to a special error
message meaning (see #defines above).
No warning message is ever displayed by this function.
The computing precision is prec.
We are ensured that this function is called only if
* poly is a polynomial
* dom is a closed non-empty interval containing only numbers that is not reduced to a point,
* accuracy is a positive number.
In the case when the computation fails but there is hope in
obtaining a result by bisection, the algorithm may assign a point
in the interior of dom to bisectPoint. The global bisection code
will then try to bisect at that point. If no value is assigned, the
global bisection will be performed at the midpoint of dom. This
means: if you just want default behavior for the bisection (in the
midpoint), then do not touch bisectPoint.
This function is supposed to detect and overcome false
singularities. However, it is also supposed to perform a fast check
first, i.e. it is not supposed to do a length detection of zeros of
func if the (IA) image of func over dom does not contain zero. The
use of void evaluateInterval(sollya_mpfi_t y, node *func, node
*deriv, sollya_mpfi_t x); comes handy here (remark that deriv may
be set to NULL).
To begin with, we do not care about removable singularities in the
expression of func. In such a case, the relative supnorm may simply
fail for now.
However, removable singularities in poly/func must be detected
(after a fast check if there aren't any) and overcome. This must
work for cases when there is one singularity in dom, though. If
there are several singularities, bisection will eventually split
the interval. If appropriate set bisectPoint to something
reasonable.
*/
int supnormRelative(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, mpfr_t accuracy, mp_prec_t prec, mpfr_t bisectPoint) {
int numberOfSingularities;
mpfr_t singularity, myBisect, oldBisect;
int degree, res;
/* Initialize the result to "Error" */
res = SUPNORM_SOME_ERROR;
/* We use the degree of the polynomial as an indication of how many
removable singularities poly/func might maximally have.
*/
degree = getDegree(poly);
if (degree < 5) degree = 5;
mpfr_init2(myBisect,mpfr_get_prec(bisectPoint));
mpfr_set(myBisect,bisectPoint,GMP_RNDN); /* exact */
mpfr_init2(singularity, prec);
/* Quickly determine if there is a possible singularity and if yes, where it is and if it is the only one */
numberOfSingularities = determinePossibleZeroAndBisectPoint(singularity, myBisect, func, dom, degree, prec);
/* Do the right thing depending on how many singularities have been determined */
if ((numberOfSingularities == 0) || (numberOfSingularities == -1)) {
mpfr_clear(singularity);
mpfr_clear(myBisect);
/* Launch computation with the conviction that there is no singularity */
res = supnormRelativeNoSingularity(result, poly, func, dom, accuracy, prec, NULL, bisectPoint);
if ((res == SUPNORM_SOME_ERROR) && (numberOfSingularities == -1)) res = SUPNORM_SINGULARITY_NOT_DETECTED;
} else {
mpfr_init2(oldBisect,mpfr_get_prec(bisectPoint));
mpfr_set(oldBisect,bisectPoint,GMP_RNDN);
/* Launch computation with the conviction that there is a singularity at singularity */
res = supnormRelativeSingularity(result, poly, func, dom, accuracy, singularity, prec, oldBisect);
if (res != SUPNORM_NO_ERROR) {
if (numberOfSingularities == 2) {
/* The supnorm failed and we know of another possible
singularity and hence of a good bisection point */
mpfr_set(bisectPoint, myBisect, GMP_RNDN); /* That's all approximations */
if (res == SUPNORM_SOME_ERROR) res = SUPNORM_ANOTHER_SINGULARITY_IN_DOM;
} else {
/* The supnorm failed but we do not know of another possible bisection point
We hence set bisectPoint to the value that value suggested to us by the
supnormRelativeSingularity function.
*/
mpfr_set(bisectPoint, oldBisect, GMP_RNDN); /* bisectPoint does not change
if supnormRelativeSingularity didn't
touch oldBisect */
}
}
mpfr_clear(singularity);
mpfr_clear(myBisect);
mpfr_clear(oldBisect);
}
return res;
}
/* Compute the supremum norm on eps = p - f resp. eps = p/f - 1 over dom
eps is defined according to the mode parameter:
if mode = ABSOLUTE then eps = p - f else eps = p/f -1
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value is non-zero. The
number of the return value then corresponds to a special error
message meaning (see #defines above).
No warning message is ever displayed by this function.
The computing precision is prec.
We are ensured that this function is called only if
* poly is a polynomial
* dom is a closed non-empty interval containing only numbers that is not reduced to a point,
* accuracy is a positive number.
In the case when the computation fails but there is hope in
obtaining a result by bisection, the algorithm may assign a point
in the interior of dom to bisectPoint. The global bisection code
will then try to bisect at that point. If no value is assigned, the
global bisection will be performed at the midpoint of dom. This
means: if you just want default behavior for the bisection (in the
midpoint), then do not touch bisectPoint.
*/
int supremumNormInner(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, int mode, mpfr_t accuracy, mp_prec_t prec, mpfr_t bisectPoint) {
int res;
if (mode == ABSOLUTE) {
res = supnormAbsolute(result,poly,func,dom,accuracy,prec,bisectPoint);
} else {
res = supnormRelative(result,poly,func,dom,accuracy,prec,bisectPoint);
}
return res;
}
/* Compute the supremum norm on eps = p - f resp. eps = p/f - 1 over [a,b]
eps is defined according to the mode parameter:
if mode = ABSOLUTE then eps = p - f else eps = p/f -1
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then *zero*
(i.e. SUPNORM_NO_ERROR).
Otherwise, if an error occurs, the return value reflects the last
error message of the recursive calls.
We are ensured that this function is called only if
* poly is a polynomial
* a and b, a < b, form an interval [a,b] that is not reduced to a point
* accuracy is a positive number,
* diameter is a non-negative number.
The algorithm is allowed to stop if a result has been found or if
abs(b-a) is less than diameter.
*/
int supremumNormBisectInner(sollya_mpfi_t result, node *poly, node *func, mpfr_t a, mpfr_t b, int mode, mpfr_t accuracy, mpfr_t diameter, mp_prec_t prec) {
int resFirst, resLeft, resRight;
mp_prec_t p1, p2;
sollya_mpfi_t dom, resultLeft, resultRight;
mpfr_t c, width;
mpfr_t ll, lr, ul, ur;
p1 = mpfr_get_prec(a);
p2 = mpfr_get_prec(b);
if (p2 > p1) p1 = p2;
sollya_mpfi_init2(dom,p1);
sollya_mpfi_interv_fr(dom,a,b);
mpfr_init2(c, p1 + 1);
mpfr_add(c,a,b,GMP_RNDN);
mpfr_div_2ui(c,c,1,GMP_RNDN);
/* Call inner supnorm algorithm on whole interval */
resFirst = supremumNormInner(result, poly, func, dom, mode, accuracy, prec, c);
sollya_mpfi_clear(dom);
/* If everything worked fine on the whole interval, we do not need to bisect */
if (resFirst == SUPNORM_NO_ERROR) {
mpfr_clear(c);
return SUPNORM_NO_ERROR;
}
/* Some error occurred, check if we still need to bisect or if we have reached diameter */
mpfr_init2(width,p1);
mpfr_sub(width,b,a,GMP_RNDU);
if (mpfr_cmp(width,diameter) < 0) {
/* We have reached diameter, we return the latest error code */
mpfr_clear(c);
mpfr_clear(width);
return resFirst;
}
mpfr_clear(width);
/* Here, we have to bisect.
We check that the bisection point is a number in the interior of [a,b].
If it is not, we set it to the middle of [a,b].
*/
if ((!mpfr_number_p(c)) ||
(mpfr_cmp(c,a) <= 0) ||
(mpfr_cmp(b,c) <= 0)) {
mpfr_add(c,a,b,GMP_RNDN);
mpfr_div_2ui(c,c,1,GMP_RNDN);
}
/* Bisect */
p2 = sollya_mpfi_get_prec(result);
sollya_mpfi_init2(resultLeft,p2);
resLeft = supremumNormBisectInner(resultLeft, poly, func, a, c, mode, accuracy, diameter, prec);
if (resLeft != SUPNORM_NO_ERROR) {
/* The bisection recursively failed on the left sub-interval [a,c]
Return the error code returned by that recursive call.
*/
mpfr_clear(c);
sollya_mpfi_clear(resultLeft);
return resLeft;
}
/* Here, resLeft == SUPNORM_NO_ERROR */
sollya_mpfi_init2(resultRight,p2);
resRight = supremumNormBisectInner(resultRight, poly, func, c, b, mode, accuracy, diameter, prec);
if (resRight != SUPNORM_NO_ERROR) {
/* The bisection recursively failed on the right sub-interval [c,b]
Return the error code returned by that recursive call.
*/
mpfr_clear(c);
sollya_mpfi_clear(resultLeft);
sollya_mpfi_clear(resultRight);
return resRight;
}
/* Here, resLeft == SUPNORM_NO_ERROR and resRight == SUPNORM_NO_ERROR
This means both recursive calls worked without error.
We combine the results by taking the max of the lower resp. the
upper bounds.
*/
mpfr_init2(ll,p2);
mpfr_init2(lr,p2);
mpfr_init2(ul,p2);
mpfr_init2(ur,p2);
sollya_mpfi_get_left(ll,resultLeft);
sollya_mpfi_get_right(ul,resultLeft);
sollya_mpfi_get_left(lr,resultRight);
sollya_mpfi_get_right(ur,resultRight);
if (mpfr_cmp(ll,lr) > 0) mpfr_set(lr,ll,GMP_RNDN); /* exact */
if (mpfr_cmp(ul,ur) > 0) mpfr_set(ur,ul,GMP_RNDN); /* exact */
sollya_mpfi_interv_fr(result,lr,ur);
mpfr_clear(ll);
mpfr_clear(lr);
mpfr_clear(ul);
mpfr_clear(ur);
sollya_mpfi_clear(resultLeft);
sollya_mpfi_clear(resultRight);
mpfr_clear(c);
return SUPNORM_NO_ERROR;
}
mp_prec_t mp_prec_abs(mp_prec_t p) {
int64_t t;
mp_prec_t pp;
t = (int64_t) p;
if (t < ((int64_t) 0)) t = -t;
pp = (mp_prec_t) t;
return pp;
}
/* Compute the supremum norm on eps = p - f resp. eps = p/f - 1 over [a,b]
eps is defined according to the mode parameter:
if mode = ABSOLUTE then eps = p - f else eps = p/f -1
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then non-zero.
Otherwise, if an error occurs, the return value is 0.
We are ensured that this function is called only if
* poly is a polynomial
* a and b, a < b, form an interval [a,b] that is not reduced to a point
* accuracy is a positive number,
* diameter is a non-negative number.
The algorithm is allowed to stop if a result has been found or if
abs(b-a) is less than diameter.
*/
int supremumNormBisect(sollya_mpfi_t result, node *poly, node *func, mpfr_t a, mpfr_t b, int mode, mpfr_t accuracy, mpfr_t diameter) {
int res;
mp_prec_t prec, p;
mpfr_t temp;
prec = getToolPrecision() + 25;
/*p = sollya_mpfi_get_prec(result);*/
/* Compute p = -floor(log2(accuracy)) to get the number of bits we need
in the end
*/
mpfr_init2(temp, 8 * sizeof(mp_prec_t) + 10);
mpfr_log2(temp,accuracy,GMP_RNDD);
mpfr_floor(temp,temp);
mpfr_neg(temp,temp,GMP_RNDU);
p = mpfr_get_ui(temp,GMP_RNDD);
mpfr_clear(temp);
/*if the requested accuracy (p) is close to prec, increase prec*/
if ((mp_prec_t) mp_prec_abs(p-prec) < (mp_prec_t) (p/2)) {
if (p>prec) prec = p + (p/2);
if (p<=prec) prec = prec + (p/2);
}
if (prec < (p + p/2) / 4) {
prec = p + p/2;
}
res = supremumNormBisectInner(result, poly, func, a, b, mode, accuracy, diameter, prec);
if (res == 0) return 1; /* everything's fine */
/* In the following, perform error handling (messaging and return 0) */
switch (res) {
case SUPNORM_NO_TAYLOR:
printMessage(1,SOLLYA_MSG_SUPNORM_NO_TAYLOR,"Warning: during supnorm computation, no suitable Taylor form could be found.\n");
break;
case SUPNORM_NOT_ENOUGH_WORKING_PRECISION:
printMessage(1,SOLLYA_MSG_SUPNORM_NOT_ENOUGH_WORKING_PRECISION,"Warning: during supnorm computation, no result could be found as the working precision seems to be too low.\n");
break;
case SUPNORM_SINGULARITY_NOT_REMOVED:
printMessage(1,SOLLYA_MSG_SUPNORM_SINGULARITY_NOT_REMOVED,"Warning: during supnorm computation, a singularity in the expression tree could not be removed.\n");
break;
case SUPNORM_COULD_NOT_SHOW_POSITIVITY:
printMessage(1,SOLLYA_MSG_SUPNORM_COULD_NOT_SHOW_POSITIVITY,"Warning: during supnorm computation, the positivity of a polynomial could not be established.\n");
break;
case SUPNORM_SINGULARITY_NOT_DETECTED:
printMessage(1,SOLLYA_MSG_SUPNORM_SINGULARITY_NOT_DETECTED,"Warning: during supnorm computation, a false singularity could not be detected.\n");
break;
case SUPNORM_ANOTHER_SINGULARITY_IN_DOM:
printMessage(1,SOLLYA_MSG_SUPNORM_ANOTHER_SINGULARITY_IN_DOM,"Warning: during supnorm computation, there appeared to be at least two singularities in the domain. More bisection is needed.\n");
break;
case SUPNORM_CANNOT_COMPUTE_LOWER_BOUND:
printMessage(1,SOLLYA_MSG_SUPNORM_CANNOT_COMPUTE_LOWER_BOUND,"Warning: during supnorm computation, it was not possible to determine a valid lower bound for the error function.\n");
break;
case SUPNORM_CANNOT_COMPUTE_ABSOLUTE_INF:
printMessage(1,SOLLYA_MSG_SUPNORM_CANNOT_COMPUTE_ABSOLUTE_INF,"Warning: during supnorm computation, it was not possible to determine a valid lower bound for the absolute value of the function.\n");
break;
case SUPNORM_CANNOT_DETERMINE_SIGN_OF_T:
printMessage(1,SOLLYA_MSG_SUPNORM_CANNOT_DETERMINE_SIGN_OF_T,"Warning: during supnorm computation, it was not possible to safely determine the sign of the Taylor polynomial.\n");
break;
case SUPNORM_CANNOT_DETERMINE_ORDER_OF_SINGU:
printMessage(1,SOLLYA_MSG_SUPNORM_CANNOT_DETERMINE_ORDER_OF_SINGU,"Warning: during supnorm computation, it was not possible to safely determine the order of a presume zero of the given function.\n");
break;
default:
printMessage(1,SOLLYA_MSG_SUPNORM_GENERIC_ERROR,"Warning: during supnorm computation, some generic error occurred. No further description is available.\n");
}
return 0;
}
/* Compute the supremum norm on eps = p - f resp. eps = p/f - 1 at a,
i.e. evaluate abs(eps) at a.
eps is defined according to the mode parameter:
if mode = ABSOLUTE then eps = p - f else eps = p/f -1
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the obtained interval [l,u] satisfies in the end:
abs(u-l/l) <= accuracy
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then non-zero.
Otherwise, if an error occurs, the return value is 0.
We are ensured that this function is called only if
* poly is a polynomial
* a is a number,
* accuracy is a positive number,
* diameter is a non-negative number.
*/
int supremumNormDegenerate(sollya_mpfi_t result, node *poly, node *func, mpfr_t a, int mode, mpfr_t accuracy) {
node *absEps;
int res;
mpfr_t temp, y, ya, yb;
unsigned int pr;
mp_prec_t prec, pp;
int tempRes;
mpfr_t absAccuracy;
if (mode == ABSOLUTE) {
/* Construct absEps = abs(poly - func) */
absEps = makeAbs(makeSub(copyTree(poly),copyTree(func)));
} else {
/* Construct absEps = abs(poly/func - 1) */
absEps = makeAbs(makeSub(makeDiv(copyTree(poly),copyTree(func)),makeConstantDouble(1.0)));
}
/* Compute pr = -floor(log2(accuracy)) to get the number of bits we need
in the end
*/
mpfr_init2(temp, 8 * sizeof(mp_prec_t) + 10);
mpfr_init2(absAccuracy,mpfr_get_prec(accuracy));
mpfr_abs(absAccuracy,accuracy,GMP_RNDN); /* exact */
mpfr_log2(temp,absAccuracy,GMP_RNDD);
mpfr_clear(absAccuracy);
mpfr_floor(temp,temp);
mpfr_neg(temp,temp,GMP_RNDU);
pr = mpfr_get_ui(temp,GMP_RNDD);
mpfr_clear(temp);
prec = getToolPrecision();
if ((mp_prec_t) pr > (mp_prec_t) 2048 * prec) {
printMessage(1,SOLLYA_MSG_SUPNORM_ACCURACY_TOO_HIGH,"Warning: the given accuracy depasses the current maximum precision of %d bits.\n",2048 * prec);
printMessage(1,SOLLYA_MSG_CONTINUATION,"Try to increase the precision of the tool.\n");
sollya_mpfi_set_nan(result);
free_memory(absEps);
return 0;
}
if ((mp_prec_t) pr < prec) pp = prec; else pp = prec;
pp += 10;
mpfr_init2(y,pp);
tempRes = evaluateFaithful(y, absEps, a, pp);
res = 0;
if (tempRes == 1) {
res = 1;
pp = mpfr_get_prec(y) - 5;
mpfr_init2(ya,pp);
mpfr_init2(yb,pp);
mpfr_set(ya,y,GMP_RNDD);
mpfr_set(yb,y,GMP_RNDU);
mpfr_nextbelow(ya);
mpfr_nextbelow(ya);
mpfr_nextabove(yb);
mpfr_nextabove(yb);
if (mpfr_sgn(ya) < 0) {
mpfr_set_si(ya,0,GMP_RNDN);
}
sollya_mpfi_interv_fr(result,ya,yb);
mpfr_clear(ya);
mpfr_clear(yb);
} else {
printMessage(1,SOLLYA_MSG_SUPNORM_COULD_NOT_FAITHFULLY_EVAL_ERROR_FUNC,"Warning: could not perform a faithful evaluation of the error function between the given polynomial and the given function at the given point.\n");
sollya_mpfi_set_nan(result);
}
free_memory(absEps);
mpfr_clear(y);
return res;
}
/* Checks if all coefficients of poly can be written as ratios of
floating-point numbers
Returns 0 if poly is not a polynomial or is a polynomial that does
contain irrational coefficients.
Returns a non-zero value otherwise.
*/
int hasOnlyMpqCoefficients(node *poly) {
node **coefficients;
int degree, i, res, okay;
node *simplified;
if (!isPolynomial(poly)) return 0;
getCoefficients(°ree,&coefficients,poly);
if (degree < 0) return 0;
res = 1;
for (i=0;i<=degree;i++) {
if (coefficients[i] != NULL) {
simplified = simplifyRationalErrorfree(coefficients[i]);
okay = 0;
if ((accessThruMemRef(simplified)->nodeType == CONSTANT) &&
(mpfr_number_p(*(accessThruMemRef(simplified)->value)))) okay = 1;
else {
if ((accessThruMemRef(simplified)->nodeType == DIV) &&
(((accessThruMemRef(accessThruMemRef(simplified)->child1)->nodeType == CONSTANT) &&
(mpfr_number_p(*(accessThruMemRef(accessThruMemRef(simplified)->child1)->value)))) &&
((accessThruMemRef(accessThruMemRef(simplified)->child2)->nodeType == CONSTANT) &&
(mpfr_number_p(*(accessThruMemRef(accessThruMemRef(simplified)->child2)->value)))))) okay = 1;
}
free_memory(simplified);
if (!okay) {
res = 0;
break;
}
}
}
for (i=0;i<=degree;i++) {
if (coefficients[i] != NULL) free_memory(coefficients[i]);
}
safeFree(coefficients);
return res;
}
/* Compute the supremum norm on eps = p - f resp. eps = p/f - 1 over dom
eps is defined according to the mode parameter:
if mode = ABSOLUTE then eps = p - f else eps = p/f -1
The supremum norm is computed with an enclosure error less than accuracy,
i.e. the interval [l,u] obtained satisfies in the end:
abs(u-l/l) <= abs(accuracy)
If everything works fine, result is affected with an interval
safely enclosing the supremum norm. The return value is then non-zero.
Otherwise, if an error occurs, the return value is 0 and result is
affected with [NaN;NaN]. A warning is printed in this case.
*/
int supremumnorm(sollya_mpfi_t result, node *poly, node *func, sollya_mpfi_t dom, int mode, mpfr_t accuracy) {
mpfr_t a, b, diameter, temp, absAccuracy;
mp_prec_t tempPrec;
int res;
if (!isPolynomial(poly)) {
printMessage(1,SOLLYA_MSG_GIVEN_FUNCTION_IS_NO_POLYNOMIAL,"Warning: the given expression is not a polynomial.\n");
sollya_mpfi_set_nan(result);
return 0;
}
tempPrec = sollya_mpfi_get_prec(dom);
mpfr_init2(a,tempPrec);
mpfr_init2(b,tempPrec);
sollya_mpfi_get_left(a,dom);
sollya_mpfi_get_right(b,dom);
if (!(mpfr_number_p(a) && mpfr_number_p(b))) {
printMessage(1,SOLLYA_MSG_DOMAIN_IS_NO_CLOSED_INTERVAL_ON_THE_REALS,"Warning: the given domain is not a closed interval on the reals.\n");
sollya_mpfi_set_nan(result);
mpfr_clear(a);
mpfr_clear(b);
return 0;
}
if (mpfr_cmp(a,b) > 0) {
printMessage(1,SOLLYA_MSG_DOMAIN_IS_EMPTY,"Warning: the given domain is empty.\n");
sollya_mpfi_set_nan(result);
mpfr_clear(a);
mpfr_clear(b);
return 0;
}
if (mpfr_cmp(a,b) == 0) {
printMessage(1,SOLLYA_MSG_DOMAIN_IS_REDUCED_TO_A_POINT_WILL_SIMPLY_EVAL,"Warning: the given domain is reduced to a point. Replacing the supremum norm with an evaluation.\n");
res = supremumNormDegenerate(result,poly,func,a,mode,accuracy);
if (!res) {
printMessage(1,SOLLYA_MSG_SUPNORM_COULD_NOT_EVALUATE_ERROR_FUNC,"Warning: could not evaluate the error function between the given polynomial and the given function at this point.\n");
sollya_mpfi_set_nan(result);
}
mpfr_clear(a);
mpfr_clear(b);
return 1;
}
if (!mpfr_number_p(accuracy)) {
printMessage(1,SOLLYA_MSG_ACCUARCY_INDICATION_IS_NOT_A_REAL_NUMBER,"Warning: the given accuracy is not a real number.\n");
sollya_mpfi_set_nan(result);
mpfr_clear(a);
mpfr_clear(b);
return 0;
}
if (mpfr_zero_p(accuracy)) {
printMessage(1,SOLLYA_MSG_ACCUARCY_INDICATION_IS_ZERO,"Warning: the given accuracy is zero. In order to ensure the termination of the supremum norm algorithm, the accuracy parameter must be non-zero.\n");
sollya_mpfi_set_nan(result);
mpfr_clear(a);
mpfr_clear(b);
return 0;
}
if (!hasOnlyMpqCoefficients(poly)) {
printMessage(1,SOLLYA_MSG_POLYNOMIAL_HAS_NON_DYADIC_COEFFICIENTS,"Warning: the coefficients of the given polynomial cannot all be written as ratios of floating-point numbers.\nSupremum norm computation is only possible on such polynomials. Try to use roundcoefficients().\n");
sollya_mpfi_set_nan(result);
mpfr_clear(a);
mpfr_clear(b);
return 0;
}
/* Here, we know that the interval is proper (no NaNs, no Infs) and
that it is not reduced to a point. We know that accuracy is a
non-zero number and that poly is a polynomial whose coefficients
can be written in floating-point numbers or ratios of floating-point
numbers.
We will call supremumNormBisect with diam * width(dom) and abs(accuracy).
*/
mpfr_init2(temp,tempPrec * 4);
mpfr_init2(diameter, tempPrec * 4 + 53);
mpfr_sub(temp,b,a,GMP_RNDU);
getToolDiameter(diameter);
mpfr_mul(diameter,diameter,temp,GMP_RNDU);
mpfr_abs(diameter,diameter,GMP_RNDN);
mpfr_init2(absAccuracy,mpfr_get_prec(accuracy));
mpfr_abs(absAccuracy,accuracy,GMP_RNDN); /* exact */
res = supremumNormBisect(result,poly,func,a,b,mode,absAccuracy,diameter);
if (!res) {
printMessage(1,SOLLYA_MSG_SUPNORM_SAFE_ENCLOSURE_COULD_NOT_BE_COMPUTED,"Warning: an error occurred during supremum norm computation. A safe enclosure of the supremum norm could not be computed.\n");
sollya_mpfi_set_nan(result);
}
mpfr_clear(a);
mpfr_clear(b);
mpfr_clear(temp);
mpfr_clear(diameter);
mpfr_clear(absAccuracy);
return res;
}
|