1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# -*- coding: utf-8 -*-
#
# Copyright 2019 SoloKeys Developers
#
# Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
# http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
# http://opensource.org/licenses/MIT>, at your option. This file may not be
# copied, modified, or distributed except according to those terms.
import binascii
import struct
from intelhex import IntelHex
from . import helpers
def genkey(output_pem_file, input_seed_file=None):
from ecdsa import NIST256p, SigningKey
from ecdsa.util import randrange_from_seed__trytryagain
if input_seed_file is not None:
seed = input_seed_file
print("using input seed file ", seed)
rng = open(seed, "rb").read()
secexp = randrange_from_seed__trytryagain(rng, NIST256p.order)
sk = SigningKey.from_secret_exponent(secexp, curve=NIST256p)
else:
sk = SigningKey.generate(curve=NIST256p)
sk_name = output_pem_file
print(f"Signing key for signing device firmware: {sk_name}")
with open(sk_name, "wb+") as fh:
fh.write(sk.to_pem())
vk = sk.get_verifying_key()
return vk
hacker_attestation_cert = b"".join(
[
b"0\x82\x02\xe90\x82\x02\x8e\xa0\x03\x02\x01\x02\x02\x01\x010"
b"\n\x06\x08*\x86H\xce=\x04\x03\x020\x81\x821\x0b0\t\x06\x03U"
b"\x04\x06\x13\x02US1\x110\x0f\x06\x03U\x04\x08\x0c\x08Maryla"
b"nd1\x140\x12\x06\x03U\x04\n\x0c\x0bSOLO HACKER1\x100\x0e\x06"
b"\x03U\x04\x0b\x0c\x07Root CA1\x150\x13\x06\x03U\x04\x03\x0c"
b"\x0csolokeys.com1!0\x1f\x06\t*\x86H\x86\xf7\r\x01\t\x01\x16"
b"\x12hello@solokeys.com0 \x17\r181211022012Z\x18\x0f20681128"
b"022012Z0\x81\x941\x0b0\t\x06\x03U\x04\x06\x13\x02US1\x110\x0f"
b"\x06\x03U\x04\x08\x0c\x08Maryland1\x140\x12\x06\x03U\x04\n\x0c"
b'\x0bSOLO HACKER1"0 \x06\x03U\x04\x0b\x0c\x19Authenticator Atte'
b"station1\x150\x13\x06\x03U\x04\x03\x0c\x0csolokeys.com1!0\x1f"
b"\x06\t*\x86H\x86\xf7\r\x01\t\x01\x16\x12hello@solokeys.com0Y0"
b"\x13\x06\x07*\x86H\xce=\x02\x01\x06\x08*\x86H\xce=\x03\x01\x07"
b"\x03B\x00\x04}x\xf6\xbe\xca@v;\xc7\\\xe3\xac\xf4'\x12\xc3\x94"
b"\x98\x137\xa6A\x0e\x92\xf6\x9a;\x15G\x8d\xb6\xce\xd9\xd3O9\x13"
b"\xed\x12{\x81\x14;\xe8\xf9L\x968\xfe\xe3\xd6\xcb\x1bS\x93\xa2t"
b"\xf7\x13\x9a\x0f\x9d^\xa6\xa3\x81\xde0\x81\xdb0\x1d\x06\x03U"
b"\x1d\x0e\x04\x16\x04\x14\x9a\xfb\xa2!\t#\xb5\xe4z*\x1dzlN\x03"
b"\x89\x92\xa3\x0e\xc20\x81\xa1\x06\x03U\x1d#\x04\x81\x990\x81"
b"\x96\xa1\x81\x88\xa4\x81\x850\x81\x821\x0b0\t\x06\x03U\x04\x06"
b"\x13\x02US1\x110\x0f\x06\x03U\x04\x08\x0c\x08Maryland1\x140\x12"
b"\x06\x03U\x04\n\x0c\x0bSOLO HACKER1\x100\x0e\x06\x03U\x04\x0b\x0c"
b"\x07Root CA1\x150\x13\x06\x03U\x04\x03\x0c\x0csolokeys.com1!0\x1f"
b"\x06\t*\x86H\x86\xf7\r\x01\t\x01\x16\x12hello@solokeys.com\x82\t"
b"\x00\xeb\xd4\x84P\x14\xab\xd1W0\t\x06\x03U\x1d\x13\x04\x020\x000"
b"\x0b\x06\x03U\x1d\x0f\x04\x04\x03\x02\x04\xf00\n\x06\x08*\x86H\xce="
b"\x04\x03\x02\x03I\x000F\x02!\x00\xa1{*\x1dNB\xa8hmea\x1e\xf5\xfem"
b"\xc6\x99\xae| \x83\x16\xba\xd6\xe5\x0f\xd7\r~\x05\xda\xc9\x02!\x00"
b"\x92I\xf3\x0bW\xd1\x19r\xf2uZ\xa2\xe0\xb6\xbd\x0f\x078\xd0\xe5\xa2"
b"O\xa0\xf3\x87a\x82\xd8\xcdH\xfcW"
]
)
def mergehex(
input_hex_files,
output_hex_file,
attestation_key=None,
attestation_cert=None,
APPLICATION_END_PAGE=20,
lock=False,
):
"""Merges hex files, and patches in the attestation key.
If no attestation key is passed, uses default Solo Hacker one.
Note that later hex files replace data of earlier ones, if they overlap.
"""
if attestation_key is not None and attestation_cert is None:
raise RuntimeError("Need to provide certificate with attestation_key")
if attestation_key is None and attestation_cert is not None:
raise RuntimeError("Need to provide certificate with attestation_key")
if attestation_key is None:
# generic / hacker attestation key
attestation_key = (
"1b2626ecc8f69b0f69e34fb236d76466ba12ac16c3ab5750ba064e8b90e02448"
)
if attestation_cert is None:
attestation_cert = hacker_attestation_cert
else:
attestation_cert = open(attestation_cert, "rb").read()
if len(attestation_cert) < 100:
raise RuntimeError("Attestation certificate is invalid")
# TODO put definitions somewhere else
def flash_addr(num):
return 0x08000000 + num * 2048
PAGES = 128
APPLICATION_END_PAGE = PAGES - APPLICATION_END_PAGE
AUTH_WORD_ADDR = flash_addr(APPLICATION_END_PAGE) - 8
ATTEST_ADDR = flash_addr(PAGES - 15)
print(f"app end page: {APPLICATION_END_PAGE}")
first = IntelHex(input_hex_files[0])
for input_hex_file in input_hex_files[1:]:
print(f"merging {first} with {input_hex_file}")
first.merge(IntelHex(input_hex_file), overlap="replace")
first[flash_addr(APPLICATION_END_PAGE - 1)] = 0x41
first[flash_addr(APPLICATION_END_PAGE - 1) + 1] = 0x41
# authorize boot
first[AUTH_WORD_ADDR + 0] = 0
first[AUTH_WORD_ADDR + 1] = 0
first[AUTH_WORD_ADDR + 2] = 0
first[AUTH_WORD_ADDR + 3] = 0
# make sure bootloader is enabled
first[AUTH_WORD_ADDR + 4] = 0xFF
first[AUTH_WORD_ADDR + 5] = 0xFF
first[AUTH_WORD_ADDR + 6] = 0xFF
first[AUTH_WORD_ADDR + 7] = 0xFF
# patch in the attestation key
key = binascii.unhexlify(attestation_key)
for i, x in enumerate(key):
first[ATTEST_ADDR + i] = x
offset = 32
# patch in device settings / i.e. lock byte in little endian 64 int.
lock_byte = 0x02 if lock else 0x00
device_settings = struct.pack("<Q", 0xAA551E7900000000 | lock_byte)
for i, x in enumerate(device_settings):
first[offset + ATTEST_ADDR + i] = x
offset += 8
# patch in certificate size little endian 64 int.
cert_size = struct.pack("<Q", len(attestation_cert))
for i, x in enumerate(cert_size):
first[offset + ATTEST_ADDR + i] = x
offset += 8
# patch in certificate.
for i, x in enumerate(attestation_cert):
first[offset + ATTEST_ADDR + i] = x
first.tofile(output_hex_file, format="hex")
def sign_firmware(sk_name, hex_file):
v1 = sign_firmware_for_version(sk_name, hex_file, 19)
v2 = sign_firmware_for_version(sk_name, hex_file, 20)
# use fw from v2 since it's smaller.
fw = v2["firmware"]
return {
"firmware": fw,
"signature": v2["signature"],
# signatures to use for different versions of bootloader
"versions": {
"<=2.5.3": {"signature": v1["signature"]},
">2.5.3": {"signature": v2["signature"]},
},
}
def sign_firmware_for_version(sk_name, hex_file, APPLICATION_END_PAGE):
# Maybe this is not the optimal module...
import base64
import binascii
from hashlib import sha256
from ecdsa import SigningKey
from intelhex import IntelHex
sk = SigningKey.from_pem(open(sk_name).read())
fw = open(hex_file, "r").read()
fw = base64.b64encode(fw.encode())
fw = helpers.to_websafe(fw.decode())
ih = IntelHex()
ih.fromfile(hex_file, format="hex")
# start of firmware and the size of the flash region allocated for it.
# TODO put this somewhere else.
START = ih.segments()[0][0]
# keep in sync with targets/stm32l432/src/memory_layout.h
PAGES = 128
PAGE_SIZE = 2048
END = (0x08000000 + ((PAGES - APPLICATION_END_PAGE) * PAGE_SIZE)) - 8
ih = IntelHex(hex_file)
# segs = ih.segments()
arr = ih.tobinarray(start=START, size=END - START)
im_size = END - START
print("im_size: ", im_size)
print("firmware_size: ", len(arr))
byts = (arr).tobytes() if hasattr(arr, "tobytes") else (arr).tostring()
h = sha256()
h.update(byts)
sig = binascii.unhexlify(h.hexdigest())
print("hash", binascii.hexlify(sig))
sig = sk.sign_digest(sig)
print("sig", binascii.hexlify(sig))
sig = base64.b64encode(sig)
sig = helpers.to_websafe(sig.decode())
# msg = {'data': read()}
msg = {"firmware": fw, "signature": sig}
return msg
|