1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
|
'-----------------------------------------------------------------------------
' Some sample code for slvs.dll. We draw some geometric entities, provide
' initial guesses for their positions, and then constrain them. The solver
' calculates their new positions, in order to satisfy the constraints.
'
' The library is distributed as a DLL, but the functions are designed to
' be usable from .net languages through a P/Invoke. This file contains an
' example of that process, and a wrapper class around those P/Invoke'd
' functions that you may wish to use a starting point in your own
' application.
'
' Copyright 2008-2013 Jonathan Westhues.
'-----------------------------------------------------------------------------
Imports System.Runtime.InteropServices
Module VbDemo
' Call our example functions, which set up some kind of sketch, solve
' it, and then print the result.
Sub Main()
Console.WriteLine("EXAMPLE IN 3d (by objects):")
Example3dWithObjects()
Console.WriteLine("")
Console.WriteLine("EXAMPLE IN 2d (by objects):")
Example2dWithObjects()
Console.WriteLine("")
Console.WriteLine("EXAMPLE IN 3d (by handles):")
Example3dWithHandles()
Console.WriteLine("")
Console.WriteLine("EXAMPLE IN 2d (by handles):")
Example2dWithHandles()
Console.WriteLine("")
End Sub
'''''''''''''''''''''''''''''''
' This is the simplest way to use the library. A set of wrapper
' classes allow us to represent entities (e.g., lines and points)
' as .net objects. So we create an Slvs object, which will contain
' the entire sketch, with all the entities and constraints.
'
' We then create entity objects (for example, points and lines)
' associated with that sketch, indicating the initial positions of
' those entities and any hierarchical relationships among them (e.g.,
' defining a line entity in terms of endpoint entities). We also add
' constraints associated with those entities.
'
' Finally, we solve, and print the new positions of the entities. If the
' solution succeeded, then the entities will satisfy the constraints. If
' not, then the solver will suggest problematic constraints that, if
' removed, would render the sketch solvable.
Sub Example3dWithObjects()
Dim g As UInteger
Dim slv As New Slvs
' This will contain a single group, which will arbitrarily number 1.
g = 1
Dim p1, p2 As Slvs.Point3d
' A point, initially at (x y z) = (10 10 10)
p1 = slv.NewPoint3d(g, 10.0, 10.0, 10.0)
' and a second point at (20 20 20)
p2 = slv.NewPoint3d(g, 20.0, 20.0, 20.0)
Dim ln As Slvs.LineSegment
' and a line segment connecting them.
ln = slv.NewLineSegment(g, slv.FreeIn3d(), p1, p2)
' The distance between the points should be 30.0 units.
slv.AddConstraint(1, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
slv.FreeIn3d(), 30.0, p1, p2, Nothing, Nothing)
' Let's tell the solver to keep the second point as close to constant
' as possible, instead moving the first point.
slv.Solve(g, p2, True)
If (slv.GetResult() = Slvs.SLVS_RESULT_OKAY) Then
' We call the GetX(), GetY(), and GetZ() functions to see
' where the solver moved our points to.
Console.WriteLine(String.Format( _
"okay; now at ({0:F3}, {1:F3}, {2:F3})", _
p1.GetX(), p1.GetY(), p1.GetZ()))
Console.WriteLine(String.Format( _
" ({0:F3}, {1:F3}, {2:F3})", _
p2.GetX(), p2.GetY(), p2.GetZ()))
Console.WriteLine(slv.GetDof().ToString() + " DOF")
Else
Console.WriteLine("solve failed")
End If
End Sub
Sub Example2dWithObjects()
Dim g As UInteger
Dim slv As New Slvs
g = 1
' First, we create our workplane. Its origin corresponds to the origin
' of our base frame (x y z) = (0 0 0)
Dim origin As Slvs.Point3d
origin = slv.NewPoint3d(g, 0.0, 0.0, 0.0)
' and it is parallel to the xy plane, so it has basis vectors (1 0 0)
' and (0 1 0).
Dim normal As Slvs.Normal3d
normal = slv.NewNormal3d(g, 1.0, 0.0, 0.0, _
0.0, 1.0, 0.0)
Dim wrkpl As Slvs.Workplane
wrkpl = slv.NewWorkplane(g, origin, normal)
' Now create a second group. We'll solve group 2, while leaving group 1
' constant; so the workplane that we've created will be locked down,
' and the solver can't move it.
g = 2
' These points are represented by their coordinates (u v) within the
' workplane, so they need only two parameters each.
Dim pl1, pl2 As Slvs.Point2d
pl1 = slv.NewPoint2d(g, wrkpl, 10.0, 20.0)
pl2 = slv.NewPoint2d(g, wrkpl, 20.0, 10.0)
' And we create a line segment with those endpoints.
Dim ln As Slvs.LineSegment
ln = slv.NewLineSegment(g, wrkpl, pl1, pl2)
' Now three more points.
Dim pc, ps, pf As Slvs.Point2d
pc = slv.NewPoint2d(g, wrkpl, 100.0, 120.0)
ps = slv.NewPoint2d(g, wrkpl, 120.0, 110.0)
pf = slv.NewPoint2d(g, wrkpl, 115.0, 115.0)
' And arc, centered at point pc, starting at point ps, ending at
' point pf.
Dim arc As Slvs.ArcOfCircle
arc = slv.NewArcOfCircle(g, wrkpl, normal, pc, ps, pf)
' Now one more point, and a distance
Dim pcc As Slvs.Point2d
pcc = slv.NewPoint2d(g, wrkpl, 200.0, 200.0)
Dim r As Slvs.Distance
r = slv.NewDistance(g, wrkpl, 30.0)
' And a complete circle, centered at point pcc with radius equal to
' distance r. The normal is the same as for our workplane.
Dim circle As Slvs.Circle
circle = slv.NewCircle(g, wrkpl, pcc, normal, r)
' The length of our line segment is 30.0 units.
slv.AddConstraint(1, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
wrkpl, 30.0, pl1, pl2, Nothing, Nothing)
' And the distance from our line segment to the origin is 10.0 units.
slv.AddConstraint(2, g, Slvs.SLVS_C_PT_LINE_DISTANCE, _
wrkpl, 10.0, origin, Nothing, ln, Nothing)
' And the line segment is vertical.
slv.AddConstraint(3, g, Slvs.SLVS_C_VERTICAL, _
wrkpl, 0.0, Nothing, Nothing, ln, Nothing)
' And the distance from one endpoint to the origin is 15.0 units.
slv.AddConstraint(4, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
wrkpl, 15.0, pl1, origin, Nothing, Nothing)
' And same for the other endpoint; so if you add this constraint then
' the sketch is overconstrained and will signal an error.
'slv.AddConstraint(5, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
' wrkpl, 18.0, pl2, origin, Nothing, Nothing)
' The arc and the circle have equal radius.
slv.AddConstraint(6, g, Slvs.SLVS_C_EQUAL_RADIUS, _
wrkpl, 0.0, Nothing, Nothing, arc, circle)
' The arc has radius 17.0 units.
slv.AddConstraint(7, g, Slvs.SLVS_C_DIAMETER, _
wrkpl, 2 * 17.0, Nothing, Nothing, arc, Nothing)
' If the solver fails, then ask it to report which constraints caused
' the problem.
slv.Solve(g, True)
If (slv.GetResult() = Slvs.SLVS_RESULT_OKAY) Then
Console.WriteLine("solved okay")
' We call the GetU(), GetV(), and GetDistance() functions to
' see where the solver moved our points and distances to.
Console.WriteLine(String.Format( _
"line from ({0:F3} {1:F3}) to ({2:F3} {3:F3})", _
pl1.GetU(), pl1.GetV(), _
pl2.GetU(), pl2.GetV()))
Console.WriteLine(String.Format( _
"arc center ({0:F3} {1:F3}) start ({2:F3} {3:F3}) " + _
"finish ({4:F3} {5:F3})", _
pc.GetU(), pc.GetV(), _
ps.GetU(), ps.GetV(), _
pf.GetU(), pf.GetV()))
Console.WriteLine(String.Format( _
"circle center ({0:F3} {1:F3}) radius {2:F3}", _
pcc.GetU(), pcc.GetV(), _
r.GetDistance()))
Console.WriteLine(slv.GetDof().ToString() + " DOF")
Else
Console.Write("solve failed; problematic constraints are:")
Dim t As UInteger
For Each t In slv.GetFaileds()
Console.Write(" " + t.ToString())
Next
Console.WriteLine("")
If (slv.GetResult() = Slvs.SLVS_RESULT_INCONSISTENT) Then
Console.WriteLine("system inconsistent")
Else
Console.WriteLine("system nonconvergent")
End If
End If
End Sub
'''''''''''''''''''''''''''''''
' This is a lower-level way to use the library. Internally, the library
' represents parameters, entities, and constraints by integer handles.
' Here, those handles are assigned manually, and not by the wrapper
' classes.
Sub Example3dWithHandles()
Dim g As UInteger
Dim slv As New Slvs
' This will contain a single group, which will arbitrarily number 1.
g = 1
' A point, initially at (x y z) = (10 10 10)
slv.AddParam(1, g, 10.0)
slv.AddParam(2, g, 10.0)
slv.AddParam(3, g, 10.0)
slv.AddPoint3d(101, g, 1, 2, 3)
' and a second point at (20 20 20)
slv.AddParam(4, g, 20.0)
slv.AddParam(5, g, 20.0)
slv.AddParam(6, g, 20.0)
slv.AddPoint3d(102, g, 4, 5, 6)
' and a line segment connecting them.
slv.AddLineSegment(200, g, Slvs.SLVS_FREE_IN_3D, 101, 102)
' The distance between the points should be 30.0 units.
slv.AddConstraint(1, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
Slvs.SLVS_FREE_IN_3D, 30.0, 101, 102, 0, 0)
' Let's tell the solver to keep the second point as close to constant
' as possible, instead moving the first point. That's parameters
' 4, 5, and 6.
slv.Solve(g, 4, 5, 6, 0, True)
If (slv.GetResult() = Slvs.SLVS_RESULT_OKAY) Then
' Note that we are referring to the parameters by their handles,
' and not by their index in the list. This is a difference from
' the C example.
Console.WriteLine(String.Format( _
"okay; now at ({0:F3}, {1:F3}, {2:F3})", _
slv.GetParamByHandle(1), slv.GetParamByHandle(2), _
slv.GetParamByHandle(3)))
Console.WriteLine(String.Format( _
" ({0:F3}, {1:F3}, {2:F3})", _
slv.GetParamByHandle(4), slv.GetParamByHandle(5), _
slv.GetParamByHandle(6)))
Console.WriteLine(slv.GetDof().ToString() + " DOF")
Else
Console.WriteLine("solve failed")
End If
End Sub
Sub Example2dWithHandles()
Dim g As UInteger
Dim qw, qx, qy, qz As Double
Dim slv As New Slvs
g = 1
' First, we create our workplane. Its origin corresponds to the origin
' of our base frame (x y z) = (0 0 0)
slv.AddParam(1, g, 0.0)
slv.AddParam(2, g, 0.0)
slv.AddParam(3, g, 0.0)
slv.AddPoint3d(101, g, 1, 2, 3)
' and it is parallel to the xy plane, so it has basis vectors (1 0 0)
' and (0 1 0).
slv.MakeQuaternion(1, 0, 0, _
0, 1, 0, qw, qx, qy, qz)
slv.AddParam(4, g, qw)
slv.AddParam(5, g, qx)
slv.AddParam(6, g, qy)
slv.AddParam(7, g, qz)
slv.AddNormal3d(102, g, 4, 5, 6, 7)
slv.AddWorkplane(200, g, 101, 102)
' Now create a second group. We'll solve group 2, while leaving group 1
' constant; so the workplane that we've created will be locked down,
' and the solver can't move it.
g = 2
' These points are represented by their coordinates (u v) within the
' workplane, so they need only two parameters each.
slv.AddParam(11, g, 10.0)
slv.AddParam(12, g, 20.0)
slv.AddPoint2d(301, g, 200, 11, 12)
slv.AddParam(13, g, 20.0)
slv.AddParam(14, g, 10.0)
slv.AddPoint2d(302, g, 200, 13, 14)
' And we create a line segment with those endpoints.
slv.AddLineSegment(400, g, 200, 301, 302)
' Now three more points.
slv.AddParam(15, g, 100.0)
slv.AddParam(16, g, 120.0)
slv.AddPoint2d(303, g, 200, 15, 16)
slv.AddParam(17, g, 120.0)
slv.AddParam(18, g, 110.0)
slv.AddPoint2d(304, g, 200, 17, 18)
slv.AddParam(19, g, 115.0)
slv.AddParam(20, g, 115.0)
slv.AddPoint2d(305, g, 200, 19, 20)
' And arc, centered at point 303, starting at point 304, ending at
' point 305.
slv.AddArcOfCircle(401, g, 200, 102, 303, 304, 305)
' Now one more point, and a distance
slv.AddParam(21, g, 200.0)
slv.AddParam(22, g, 200.0)
slv.AddPoint2d(306, g, 200, 21, 22)
slv.AddParam(23, g, 30.0)
slv.AddDistance(307, g, 200, 23)
' And a complete circle, centered at point 306 with radius equal to
' distance 307. The normal is 102, the same as our workplane.
slv.AddCircle(402, g, 200, 306, 102, 307)
' The length of our line segment is 30.0 units.
slv.AddConstraint(1, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
200, 30.0, 301, 302, 0, 0)
' And the distance from our line segment to the origin is 10.0 units.
slv.AddConstraint(2, g, Slvs.SLVS_C_PT_LINE_DISTANCE, _
200, 10.0, 101, 0, 400, 0)
' And the line segment is vertical.
slv.AddConstraint(3, g, Slvs.SLVS_C_VERTICAL, _
200, 0.0, 0, 0, 400, 0)
' And the distance from one endpoint to the origin is 15.0 units.
slv.AddConstraint(4, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
200, 15.0, 301, 101, 0, 0)
' And same for the other endpoint; so if you add this constraint then
' the sketch is overconstrained and will signal an error.
'slv.AddConstraint(5, g, Slvs.SLVS_C_PT_PT_DISTANCE, _
' 200, 18.0, 302, 101, 0, 0)
' The arc and the circle have equal radius.
slv.AddConstraint(6, g, Slvs.SLVS_C_EQUAL_RADIUS, _
200, 0.0, 0, 0, 401, 402)
' The arc has radius 17.0 units.
slv.AddConstraint(7, g, Slvs.SLVS_C_DIAMETER, _
200, 2 * 17.0, 0, 0, 401, 0)
' If the solver fails, then ask it to report which constraints caused
' the problem.
slv.Solve(g, 0, 0, 0, 0, True)
If (slv.GetResult() = Slvs.SLVS_RESULT_OKAY) Then
Console.WriteLine("solved okay")
' Note that we are referring to the parameters by their handles,
' and not by their index in the list. This is a difference from
' the C example.
Console.WriteLine(String.Format( _
"line from ({0:F3} {1:F3}) to ({2:F3} {3:F3})", _
slv.GetParamByHandle(11), slv.GetParamByHandle(12), _
slv.GetParamByHandle(13), slv.GetParamByHandle(14)))
Console.WriteLine(String.Format( _
"arc center ({0:F3} {1:F3}) start ({2:F3} {3:F3}) " + _
"finish ({4:F3} {5:F3})", _
slv.GetParamByHandle(15), slv.GetParamByHandle(16), _
slv.GetParamByHandle(17), slv.GetParamByHandle(18), _
slv.GetParamByHandle(19), slv.GetParamByHandle(20)))
Console.WriteLine(String.Format( _
"circle center ({0:F3} {1:F3}) radius {2:F3}", _
slv.GetParamByHandle(21), slv.GetParamByHandle(22), _
slv.GetParamByHandle(23)))
Console.WriteLine(slv.GetDof().ToString() + " DOF")
Else
Console.Write("solve failed; problematic constraints are:")
Dim t As UInteger
For Each t In slv.GetFaileds()
Console.Write(" " + t.ToString())
Next
Console.WriteLine("")
If (slv.GetResult() = Slvs.SLVS_RESULT_INCONSISTENT) Then
Console.WriteLine("system inconsistent")
Else
Console.WriteLine("system nonconvergent")
End If
End If
End Sub
'''''''''''''''''''''''''''''''
' The interface to the library, and the wrapper functions around
' that interface, follow.
' These are the core functions imported from the DLL
<DllImport("slvs.dll", CallingConvention:=CallingConvention.Cdecl)> _
Public Sub Slvs_Solve(ByVal sys As IntPtr, ByVal hg As UInteger)
End Sub
<DllImport("slvs.dll", CallingConvention:=CallingConvention.Cdecl)> _
Public Sub Slvs_MakeQuaternion(
ByVal ux As Double, ByVal uy As Double, ByVal uz As Double,
ByVal vx As Double, ByVal vy As Double, ByVal vz As Double,
ByRef qw As Double, ByRef qx As Double, ByRef qy As Double,
ByRef qz As Double)
End Sub
' And this is a thin wrapper around those functions, which provides
' convenience functions similar to those provided in slvs.h for the C API.
Public Class Slvs
<StructLayout(LayoutKind.Sequential)> Public Structure Slvs_Param
Public h As UInteger
Public group As UInteger
Public val As Double
End Structure
Public Const SLVS_FREE_IN_3D As Integer = 0
Public Const SLVS_E_POINT_IN_3D As Integer = 50000
Public Const SLVS_E_POINT_IN_2D As Integer = 50001
Public Const SLVS_E_NORMAL_IN_3D As Integer = 60000
Public Const SLVS_E_NORMAL_IN_2D As Integer = 60001
Public Const SLVS_E_DISTANCE As Integer = 70000
Public Const SLVS_E_WORKPLANE As Integer = 80000
Public Const SLVS_E_LINE_SEGMENT As Integer = 80001
Public Const SLVS_E_CUBIC As Integer = 80002
Public Const SLVS_E_CIRCLE As Integer = 80003
Public Const SLVS_E_ARC_OF_CIRCLE As Integer = 80004
<StructLayout(LayoutKind.Sequential)> Public Structure Slvs_Entity
Public h As UInteger
Public group As UInteger
Public type As Integer
Public wrkpl As UInteger
Public point0 As UInteger
Public point1 As UInteger
Public point2 As UInteger
Public point3 As UInteger
Public normal As UInteger
Public distance As UInteger
Public param0 As UInteger
Public param1 As UInteger
Public param2 As UInteger
Public param3 As UInteger
End Structure
Public Const SLVS_C_POINTS_COINCIDENT As Integer = 100000
Public Const SLVS_C_PT_PT_DISTANCE As Integer = 100001
Public Const SLVS_C_PT_PLANE_DISTANCE As Integer = 100002
Public Const SLVS_C_PT_LINE_DISTANCE As Integer = 100003
Public Const SLVS_C_PT_FACE_DISTANCE As Integer = 100004
Public Const SLVS_C_PT_IN_PLANE As Integer = 100005
Public Const SLVS_C_PT_ON_LINE As Integer = 100006
Public Const SLVS_C_PT_ON_FACE As Integer = 100007
Public Const SLVS_C_EQUAL_LENGTH_LINES As Integer = 100008
Public Const SLVS_C_LENGTH_RATIO As Integer = 100009
Public Const SLVS_C_EQ_LEN_PT_LINE_D As Integer = 100010
Public Const SLVS_C_EQ_PT_LN_DISTANCES As Integer = 100011
Public Const SLVS_C_EQUAL_ANGLE As Integer = 100012
Public Const SLVS_C_EQUAL_LINE_ARC_LEN As Integer = 100013
Public Const SLVS_C_SYMMETRIC As Integer = 100014
Public Const SLVS_C_SYMMETRIC_HORIZ As Integer = 100015
Public Const SLVS_C_SYMMETRIC_VERT As Integer = 100016
Public Const SLVS_C_SYMMETRIC_LINE As Integer = 100017
Public Const SLVS_C_AT_MIDPOINT As Integer = 100018
Public Const SLVS_C_HORIZONTAL As Integer = 100019
Public Const SLVS_C_VERTICAL As Integer = 100020
Public Const SLVS_C_DIAMETER As Integer = 100021
Public Const SLVS_C_PT_ON_CIRCLE As Integer = 100022
Public Const SLVS_C_SAME_ORIENTATION As Integer = 100023
Public Const SLVS_C_ANGLE As Integer = 100024
Public Const SLVS_C_PARALLEL As Integer = 100025
Public Const SLVS_C_PERPENDICULAR As Integer = 100026
Public Const SLVS_C_ARC_LINE_TANGENT As Integer = 100027
Public Const SLVS_C_CUBIC_LINE_TANGENT As Integer = 100028
Public Const SLVS_C_EQUAL_RADIUS As Integer = 100029
Public Const SLVS_C_PROJ_PT_DISTANCE As Integer = 100030
Public Const SLVS_C_WHERE_DRAGGED As Integer = 100031
Public Const SLVS_C_CURVE_CURVE_TANGENT As Integer = 100032
Public Const SLVS_C_LENGTH_DIFFERENCE As Integer = 100033
<StructLayout(LayoutKind.Sequential)> Public Structure Slvs_Constraint
Public h As UInteger
Public group As UInteger
Public type As Integer
Public wrkpl As UInteger
Public valA As Double
Public ptA As UInteger
Public ptB As UInteger
Public entityA As UInteger
Public entityB As UInteger
Public entityC As UInteger
Public entityD As UInteger
Public other As Integer
Public other2 As Integer
End Structure
Public Const SLVS_RESULT_OKAY As Integer = 0
Public Const SLVS_RESULT_INCONSISTENT As Integer = 1
Public Const SLVS_RESULT_DIDNT_CONVERGE As Integer = 2
Public Const SLVS_RESULT_TOO_MANY_UNKNOWNS As Integer = 3
<StructLayout(LayoutKind.Sequential)> Public Structure Slvs_System
Public param As IntPtr
Public params As Integer
Public entity As IntPtr
Public entities As Integer
Public constraint As IntPtr
Public constraints As Integer
Public dragged0 As UInteger
Public dragged1 As UInteger
Public dragged2 As UInteger
Public dragged3 As UInteger
Public calculatedFaileds As Integer
Public failed As IntPtr
Public faileds As Integer
Public dof As Integer
Public result As Integer
End Structure
Dim Params As New List(Of Slvs_Param)
Dim Entities As New List(Of Slvs_Entity)
Dim Constraints As New List(Of Slvs_Constraint)
Dim Faileds As New List(Of UInteger)
Dim Result As Integer
Dim Dof As Integer
' Return the value of a parameter, by its handle. This function
' may be used, for example, to obtain the new values of the
' parameters after a call to Solve().
Public Function GetParamByHandle(ByVal h As UInteger) As Double
Dim t As Slvs_Param
For Each t In Params
If (t.h = h) Then
Return t.val
End If
Next
Throw New Exception("Invalid parameter handle.")
End Function
' Return the value of a parameter, by its index in the list (where
' that index is determined by the order in which the parameters
' were inserted with AddParam(), not by its handle).
Public Function GetParamByIndex(ByVal i As Integer) As Double
Return Params(i).val
End Function
' Get the result after a call to Solve(). This may be
' SLVS_RESULT_OKAY - it worked
' SLVS_RESULT_INCONSISTENT - failed, inconsistent
' SLVS_RESULT_DIDNT_CONVERGE - consistent, but still failed
' SLVS_RESULT_TOO_MANY_UNKNOWNS - too many parameters in one group
Public Function GetResult() As Integer
Return Result
End Function
' After a call to Solve(), this returns the number of unconstrained
' degrees of freedom for the sketch.
Public Function GetDof() As Integer
Return Dof
End Function
' After a failing call to Solve(), this returns the list of
' constraints, identified by ther handle, that would fix the
' system if they were deleted. This list will be populated only
' if calculateFaileds is True in the Solve() call.
Public Function GetFaileds() As List(Of UInteger)
Return Faileds
End Function
' Clear our lists of entities, constraints, and parameters.
Public Sub ResetAll()
Params.Clear()
Entities.Clear()
Constraints.Clear()
End Sub
'''''''''''''''''''''''''''''''
' These functions are broadly similar to the Slvs_Make...
' functions in slvs.h. See the file DOC.txt accompanying the
' library for details.
Public Sub AddParam(ByVal h As UInteger, ByVal group As UInteger,
ByVal val As Double)
Dim p As Slvs_Param
p.h = h
p.group = group
p.val = val
Params.Add(p)
End Sub
Public Sub AddPoint2d(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger,
ByVal u As UInteger, ByVal v As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_POINT_IN_2D
e.wrkpl = wrkpl
e.param0 = u
e.param1 = v
Entities.Add(e)
End Sub
Public Sub AddPoint3d(ByVal h As UInteger, ByVal group As UInteger,
ByVal x As UInteger, ByVal y As UInteger, ByVal z As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_POINT_IN_3D
e.wrkpl = SLVS_FREE_IN_3D
e.param0 = x
e.param1 = y
e.param2 = z
Entities.Add(e)
End Sub
Public Sub AddNormal3d(ByVal h As UInteger, ByVal group As UInteger,
ByVal qw As UInteger, ByVal qx As UInteger,
ByVal qy As UInteger, ByVal qz As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_NORMAL_IN_3D
e.wrkpl = SLVS_FREE_IN_3D
e.param0 = qw
e.param1 = qx
e.param2 = qy
e.param3 = qz
Entities.Add(e)
End Sub
Public Sub AddNormal2d(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_NORMAL_IN_2D
e.wrkpl = wrkpl
Entities.Add(e)
End Sub
Public Sub AddDistance(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger, ByVal d As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_DISTANCE
e.wrkpl = wrkpl
e.param0 = d
Entities.Add(e)
End Sub
Public Sub AddLineSegment(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger,
ByVal ptA As UInteger, ByVal ptB As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_LINE_SEGMENT
e.wrkpl = wrkpl
e.point0 = ptA
e.point1 = ptB
Entities.Add(e)
End Sub
Public Sub AddCubic(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger,
ByVal pt0 As UInteger, ByVal pt1 As UInteger,
ByVal pt2 As UInteger, ByVal pt3 As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_CUBIC
e.wrkpl = wrkpl
e.point0 = pt0
e.point1 = pt1
e.point2 = pt2
e.point3 = pt3
Entities.Add(e)
End Sub
Public Sub AddArcOfCircle(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger,
ByVal normal As UInteger,
ByVal center As UInteger,
ByVal pstart As UInteger,
ByVal pend As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_ARC_OF_CIRCLE
e.wrkpl = wrkpl
e.normal = normal
e.point0 = center
e.point1 = pstart
e.point2 = pend
Entities.Add(e)
End Sub
Public Sub AddCircle(ByVal h As UInteger, ByVal group As UInteger,
ByVal wrkpl As UInteger,
ByVal center As UInteger, ByVal normal As UInteger,
ByVal radius As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_CIRCLE
e.wrkpl = wrkpl
e.point0 = center
e.normal = normal
e.distance = radius
Entities.Add(e)
End Sub
Public Sub AddWorkplane(ByVal h As UInteger, ByVal group As UInteger,
ByVal origin As UInteger,
ByVal normal As UInteger)
Dim e As Slvs_Entity
e.h = h
e.group = group
e.type = SLVS_E_WORKPLANE
e.wrkpl = SLVS_FREE_IN_3D
e.point0 = origin
e.normal = normal
Entities.Add(e)
End Sub
Public Sub AddConstraint(ByVal h As UInteger,
ByVal group As UInteger,
ByVal type As Integer,
ByVal wrkpl As UInteger,
ByVal valA As Double,
ByVal ptA As UInteger,
ByVal ptB As UInteger,
ByVal entityA As UInteger,
ByVal entityB As UInteger)
Dim c As Slvs_Constraint
c.h = h
c.group = group
c.type = type
c.wrkpl = wrkpl
c.valA = valA
c.ptA = ptA
c.ptB = ptB
c.entityA = entityA
c.entityB = entityB
Constraints.Add(c)
End Sub
' Solve the system. The geometry of the system must already have
' been specified through the Add...() calls. The result of the
' solution process may be obtained by calling GetResult(),
' GetFaileds(), GetDof(), and GetParamByXXX().
'
' The parameters draggedx (indicated by their handles) will be held
' as close as possible to their original positions, even if this
' results in large moves for other parameters. This feature may be
' useful if, for example, the user is dragging the point whose
' location is defined by those parameters. Unused draggedx
' parameters may be specified as zero.
Public Sub Solve(ByVal group As UInteger,
ByVal dragged0 As UInteger, ByVal dragged1 As UInteger,
ByVal dragged2 As UInteger, ByVal dragged3 As UInteger,
ByVal calculateFaileds As Boolean)
Dim i As Integer
Dim pp, p(Params.Count()) As Slvs_Param
i = 0
For Each pp In Params
p(i) = pp
i += 1
Next
Dim ee, e(Entities.Count()) As Slvs_Entity
i = 0
For Each ee In Entities
e(i) = ee
i += 1
Next
Dim cc, c(Constraints.Count()) As Slvs_Constraint
i = 0
For Each cc In Constraints
c(i) = cc
i += 1
Next
Dim f(Constraints.Count()) As UInteger
Dim sys As Slvs_System
Dim pgc, egc, cgc As GCHandle
pgc = GCHandle.Alloc(p, GCHandleType.Pinned)
sys.param = pgc.AddrOfPinnedObject()
sys.params = Params.Count()
egc = GCHandle.Alloc(e, GCHandleType.Pinned)
sys.entity = egc.AddrOfPinnedObject()
sys.entities = Entities.Count()
cgc = GCHandle.Alloc(c, GCHandleType.Pinned)
sys.constraint = cgc.AddrOfPinnedObject()
sys.constraints = Constraints.Count()
sys.dragged0 = dragged0
sys.dragged1 = dragged1
sys.dragged2 = dragged2
sys.dragged3 = dragged3
Dim fgc As GCHandle
fgc = GCHandle.Alloc(f, GCHandleType.Pinned)
If calculateFaileds Then
sys.calculatedFaileds = 1
Else
sys.calculatedFaileds = 0
End If
sys.faileds = Constraints.Count()
sys.failed = fgc.AddrOfPinnedObject()
Dim sysgc As GCHandle
sysgc = GCHandle.Alloc(sys, GCHandleType.Pinned)
Slvs_Solve(sysgc.AddrOfPinnedObject(), group)
sys = sysgc.Target
For i = 0 To Params.Count() - 1
Params(i) = p(i)
Next
Faileds.Clear()
For i = 0 To sys.faileds - 1
Faileds.Add(f(i))
Next
sysgc.Free()
fgc.Free()
pgc.Free()
egc.Free()
cgc.Free()
Result = sys.result
Dof = sys.dof
End Sub
' A simpler version of the function, if the parameters being dragged
' correspond to a single point.
Public Sub Solve(ByVal group As UInteger, ByVal dragged As Point,
ByVal calculatedFaileds As Boolean)
If TypeOf dragged Is Point2d Then
Dim p As Point2d
p = dragged
Solve(group, p.up.H, p.vp.H, 0, 0, calculatedFaileds)
ElseIf TypeOf dragged Is Point3d Then
Dim p As Point3d
p = dragged
Solve(group, p.xp.H, p.yp.H, p.zp.H, 0, calculatedFaileds)
Else
Throw New Exception("Can't get dragged params for point.")
End If
End Sub
' or if it's a single distance (e.g., the radius of a circle)
Public Sub Solve(ByVal group As UInteger, ByVal dragged As Distance,
ByVal calculatedFaileds As Boolean)
Solve(group, dragged.dp.H, 0, 0, 0, calculatedFaileds)
End Sub
' or if it's nothing.
Public Sub Solve(ByVal group As UInteger,
ByVal calculateFaileds As Boolean)
Solve(group, 0, 0, 0, 0, calculateFaileds)
End Sub
' Return the quaternion in (qw, qx, qy, qz) that represents a
' rotation from the base frame to a coordinate system with the
' specified basis vectors u and v. For example, u = (0, 1, 0)
' and v = (0, 0, 1) specifies the yz plane, such that a point with
' (u, v) = (7, 12) has (x, y, z) = (0, 7, 12).
Public Sub MakeQuaternion(
ByVal ux As Double, ByVal uy As Double, ByVal uz As Double,
ByVal vx As Double, ByVal vy As Double, ByVal vz As Double,
ByRef qw As Double, ByRef qx As Double, ByRef qy As Double,
ByRef qz As Double)
Slvs_MakeQuaternion(ux, uy, uz, _
vx, vy, vz, _
qw, qx, qy, qz)
End Sub
Public Function FreeIn3d()
Return New Workplane(Me)
End Function
'''''''''''''''''''''''''''''''
' Functions to create the object-oriented wrappers defined below.
Public Function NewParam(ByVal group As UInteger, ByVal val As Double)
Return New Param(Me, group, val)
End Function
Public Function NewPoint2d(ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal u As Double, ByVal v As Double)
Return New Point2d(Me, group, wrkpl, u, v)
End Function
Public Function NewPoint2d(ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal u As Param, ByVal v As Param)
Return New Point2d(Me, group, wrkpl, u, v)
End Function
Public Function NewPoint3d(ByVal group As UInteger,
ByVal x As Double,
ByVal y As Double,
ByVal z As Double)
Return New Point3d(Me, group, x, y, z)
End Function
Public Function NewPoint3d(ByVal group As UInteger,
ByVal x As Param,
ByVal y As Param,
ByVal z As Param)
Return New Point3d(Me, group, x, y, z)
End Function
Public Function NewNormal3d(ByVal group As UInteger,
ByVal ux As Double, ByVal uy As Double, ByVal uz As Double,
ByVal vx As Double, ByVal vy As Double, ByVal vz As Double)
Return New Normal3d(Me, group, ux, uy, uz, vx, vy, vz)
End Function
Public Function NewNormal3d(ByVal group As UInteger,
ByVal qw As Param, ByVal qx As Param,
ByVal qy As Param, ByVal qz As Param)
Return New Normal3d(Me, group, qw, qx, qy, qz)
End Function
Public Function NewNormal2d(ByVal group As UInteger,
ByVal wrkpl As Workplane)
Return New Normal2d(Me, group, wrkpl)
End Function
Public Function NewDistance(ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal d As Double)
Return New Distance(Me, group, wrkpl, d)
End Function
Public Function NewDistance(ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal d As Param)
Return New Distance(Me, group, wrkpl, d)
End Function
Public Function NewLineSegment(ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal ptA As Point, ByVal ptB As Point)
Return New LineSegment(Me, group, wrkpl, ptA, ptB)
End Function
Public Function NewArcOfCircle(ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal normal As Normal,
ByVal center As Point,
ByVal pstart As Point,
ByVal pend As Point)
Return New ArcOfCircle(Me, group, wrkpl, normal, _
center, pstart, pend)
End Function
Public Function NewCircle(ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal center As Point,
ByVal normal As Normal,
ByVal radius As Distance)
Return New Circle(Me, group, wrkpl, center, normal, radius)
End Function
Public Function NewWorkplane(ByVal group As UInteger,
ByVal origin As Point,
ByVal normal As Normal)
Return New Workplane(Me, group, origin, normal)
End Function
Public Sub AddConstraint(ByVal H As UInteger, ByVal group As UInteger,
ByVal type As Integer,
ByVal wrkpl As Workplane,
ByVal valA As Double,
ByVal ptA As Point, ByVal ptB As Point,
ByVal entityA As Entity,
ByVal entityB As Entity)
AddConstraint(H, group, type, _
If(IsNothing(wrkpl), 0, wrkpl.H), _
valA, _
If(IsNothing(ptA), 0, ptA.H), _
If(IsNothing(ptB), 0, ptB.H), _
If(IsNothing(entityA), 0, entityA.H), _
If(IsNothing(entityB), 0, entityB.H))
End Sub
'''''''''''''''''''''''''''''''
' The object-oriented wrapper classes themselves, to allow the
' representation of entities and constraints as .net objects, not
' integer handles. These don't do any work themselves, beyond
' allocating and storing a unique integer handle.
'
' These functions will assign parameters and entities with
' consecutive handles starting from 1. If they are intermixed
' with parameters and entities with user-specified handles, then
' those handles must be chosen not to conflict, e.g. starting
' from 100 000 or another large number.
Public Class Param
Public Slv As Slvs
Public H As UInteger
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal val As Double)
Slv = s
H = Slv.Params.Count() + 1
Slv.AddParam(H, group, val)
End Sub
End Class
Public MustInherit Class Entity
Public Slv As Slvs
Public H As UInteger
Public Sub New(ByVal s As Slvs)
Slv = s
H = Slv.Entities.Count() + 1
End Sub
End Class
Public MustInherit Class Point
Inherits Entity
Public Sub New(ByVal s As Slvs)
MyBase.New(s)
End Sub
End Class
Public MustInherit Class Normal
Inherits Entity
Public Sub New(ByVal s As Slvs)
MyBase.New(s)
End Sub
End Class
Public Class Point2d
Inherits Point
Public up, vp As Param
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal u As Double, ByVal v As Double)
MyBase.New(s)
up = New Param(Slv, group, u)
vp = New Param(Slv, group, v)
Slv.AddPoint2d(H, group, wrkpl.H, up.H, vp.H)
End Sub
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal u As Param, ByVal v As Param)
MyBase.New(s)
Slv.AddPoint2d(H, group, wrkpl.H, u.H, v.H)
up = u
vp = v
End Sub
Function GetU()
Return Slv.GetParamByHandle(up.H)
End Function
Function GetV()
Return Slv.GetParamByHandle(vp.H)
End Function
End Class
Public Class Point3d
Inherits Point
Public xp, yp, zp As Param
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal x As Double, ByVal y As Double,
ByVal z As Double)
MyBase.New(s)
xp = New Param(Slv, group, x)
yp = New Param(Slv, group, y)
zp = New Param(Slv, group, z)
Slv.AddPoint3d(H, group, xp.H, yp.H, zp.H)
End Sub
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal x As Param, ByVal y As Param, ByVal z As Param)
MyBase.New(s)
Slv.AddPoint3d(H, group, x.H, y.H, z.H)
xp = x
yp = y
zp = z
End Sub
Function GetX()
Return Slv.GetParamByHandle(xp.H)
End Function
Function GetY()
Return Slv.GetParamByHandle(yp.H)
End Function
Function GetZ()
Return Slv.GetParamByHandle(zp.H)
End Function
End Class
Public Class Normal3d
Inherits Normal
Dim qwp, qxp, qyp, qzp As Param
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal ux As Double, ByVal uy As Double, ByVal uz As Double,
ByVal vx As Double, ByVal vy As Double, ByVal vz As Double)
MyBase.New(s)
Dim qw, qx, qy, qz As Double
Slv.MakeQuaternion(ux, uy, uz, vx, vy, vz, qw, qx, qy, qz)
qwp = New Param(Slv, group, qw)
qxp = New Param(Slv, group, qx)
qyp = New Param(Slv, group, qy)
qzp = New Param(Slv, group, qz)
Slv.AddNormal3d(H, group, qwp.H, qxp.H, qyp.H, qzp.H)
End Sub
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal qw As Param, ByVal qx As Param,
ByVal qy As Param, ByVal qz As Param)
MyBase.New(s)
Slv.AddNormal3d(H, group, qw.H, qx.H, qy.H, qz.H)
qwp = qw
qxp = qx
qyp = qy
qzp = qz
End Sub
End Class
Public Class Normal2d
Inherits Normal
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane)
MyBase.New(s)
Slv.AddNormal2d(H, group, wrkpl.H)
End Sub
End Class
Public Class Distance
Inherits Entity
Public dp As Param
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal d As Double)
MyBase.New(s)
dp = New Param(Slv, group, d)
Slv.AddDistance(H, group, wrkpl.H, dp.H)
End Sub
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal d As Param)
MyBase.New(s)
Slv.AddDistance(H, group, wrkpl.H, d.H)
dp = d
End Sub
Function GetDistance() As Double
Return Slv.GetParamByHandle(dp.H)
End Function
End Class
Public Class LineSegment
Inherits Entity
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal ptA As Point, ByVal ptB As Point)
MyBase.New(s)
Slv.AddLineSegment(H, group, wrkpl.H, ptA.H, ptB.H)
End Sub
End Class
Public Class Cubic
Inherits Entity
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane,
ByVal pt0 As Point, ByVal pt1 As Point,
ByVal pt2 As Point, ByVal pt3 As Point)
MyBase.New(s)
Slv.AddCubic(H, group, wrkpl.H, pt0.H, pt1.H, pt2.H, pt3.H)
End Sub
End Class
Public Class ArcOfCircle
Inherits Entity
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal normal As Normal,
ByVal center As Point, ByVal pstart As Point,
ByVal pend As Point)
MyBase.New(s)
Slv.AddArcOfCircle(H, group, wrkpl.H, normal.H, _
center.H, pstart.H, pend.H)
End Sub
End Class
Public Class Circle
Inherits Entity
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal wrkpl As Workplane, ByVal center As Point,
ByVal normal As Normal, ByVal radius As Distance)
MyBase.New(s)
Slv.AddCircle(H, group, wrkpl.H, center.H, normal.H, radius.H)
End Sub
End Class
Public Class Workplane
Inherits Entity
Public Sub New(ByVal s As Slvs)
MyBase.New(s)
H = SLVS_FREE_IN_3D
End Sub
Public Sub New(ByVal s As Slvs, ByVal group As UInteger,
ByVal origin As Point, ByVal normal As Normal)
MyBase.New(s)
Slv.AddWorkplane(H, group, origin.H, normal.H)
End Sub
End Class
End Class
End Module
|