File: modify.cpp

package info (click to toggle)
solvespace 2.3%2Brepack1-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,752 kB
  • sloc: cpp: 111,351; ansic: 493; xml: 22; sh: 12; makefile: 3
file content (670 lines) | stat: -rw-r--r-- 24,599 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
//-----------------------------------------------------------------------------
// User-initiated (not parametric) operations to modify our sketch, by
// changing the requests, like to round a corner or split curves where they
// intersect.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"

//-----------------------------------------------------------------------------
// Replace constraints on oldpt with the same constraints on newpt.
// Useful when splitting, tangent arcing, or removing bezier points.
//-----------------------------------------------------------------------------
void GraphicsWindow::ReplacePointInConstraints(hEntity oldpt, hEntity newpt) {
    int i;
    for(i = 0; i < SK.constraint.n; i++) {
        Constraint *c = &(SK.constraint.elem[i]);
        if(c->ptA.v == oldpt.v) c->ptA = newpt;
        if(c->ptB.v == oldpt.v) c->ptB = newpt;
    }
}

//-----------------------------------------------------------------------------
// Remove constraints on hpt. Useful when removing bezier points.
//-----------------------------------------------------------------------------
void GraphicsWindow::RemoveConstraintsForPointBeingDeleted(hEntity hpt) {
    SK.constraint.ClearTags();
    for(int i = 0; i < SK.constraint.n; i++) {
        Constraint *c = &(SK.constraint.elem[i]);
        if(c->ptA.v == hpt.v || c->ptB.v == hpt.v) {
            c->tag = 1;
            (SS.deleted.constraints)++;
            if(c->type != Constraint::POINTS_COINCIDENT &&
               c->type != Constraint::HORIZONTAL &&
               c->type != Constraint::VERTICAL)
            {
                (SS.deleted.nonTrivialConstraints)++;
            }
        }
    }
    SK.constraint.RemoveTagged();
}

//-----------------------------------------------------------------------------
// Let's say that A is coincident with B, and B is coincident with C. This
// implies that A is coincident with C; but if we delete B, then both
// constraints must be deleted too (since they reference B), and A is no
// longer constrained to C. This routine adds back that constraint.
//-----------------------------------------------------------------------------
void GraphicsWindow::FixConstraintsForRequestBeingDeleted(hRequest hr) {
    Request *r = SK.GetRequest(hr);
    if(r->group.v != SS.GW.activeGroup.v) return;

    Entity *e;
    for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
        if(!(e->h.isFromRequest())) continue;
        if(e->h.request().v != hr.v) continue;

        if(e->type != Entity::POINT_IN_2D &&
           e->type != Entity::POINT_IN_3D)
        {
            continue;
        }

        // This is a point generated by the request being deleted; so fix
        // the constraints for that.
        FixConstraintsForPointBeingDeleted(e->h);
    }
}
void GraphicsWindow::FixConstraintsForPointBeingDeleted(hEntity hpt) {
    List<hEntity> ld = {};

    Constraint *c;
    SK.constraint.ClearTags();
    for(c = SK.constraint.First(); c; c = SK.constraint.NextAfter(c)) {
        if(c->type != Constraint::POINTS_COINCIDENT) continue;
        if(c->group.v != SS.GW.activeGroup.v) continue;

        if(c->ptA.v == hpt.v) {
            ld.Add(&(c->ptB));
            c->tag = 1;
        }
        if(c->ptB.v == hpt.v) {
            ld.Add(&(c->ptA));
            c->tag = 1;
        }
    }
    // Remove constraints without waiting for regeneration; this way
    // if another point takes the place of the deleted one (e.g. when
    // removing control points of a bezier) the constraint doesn't
    // spuriously move. Similarly, subsequent calls of this function
    // (if multiple coincident points are getting deleted) will work
    // correctly.
    SK.constraint.RemoveTagged();

    // If more than one point was constrained coincident with hpt, then
    // those two points were implicitly coincident with each other. By
    // deleting hpt (and all constraints that mention it), we will delete
    // that relationship. So put it back here now.
    int i;
    for(i = 1; i < ld.n; i++) {
        Constraint::ConstrainCoincident(ld.elem[i-1], ld.elem[i]);
    }
    ld.Clear();
}

//-----------------------------------------------------------------------------
// A curve by its parametric equation, helper functions for computing tangent
// arcs by a numerical method.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::MakeFromEntity(hEntity he, bool reverse) {
    *this = {};
    Entity *e = SK.GetEntity(he);
    if(e->type == Entity::LINE_SEGMENT) {
        isLine = true;
        p0 = e->EndpointStart(),
        p1 = e->EndpointFinish();
        if(reverse) {
            swap(p0, p1);
        }
    } else if(e->type == Entity::ARC_OF_CIRCLE) {
        isLine = false;
        p0 = SK.GetEntity(e->point[0])->PointGetNum();
        Vector pe = SK.GetEntity(e->point[1])->PointGetNum();
        r = (pe.Minus(p0)).Magnitude();
        e->ArcGetAngles(&theta0, &theta1, &dtheta);
        if(reverse) {
            swap(theta0, theta1);
            dtheta = -dtheta;
        }
        EntityBase *wrkpln = SK.GetEntity(e->workplane)->Normal();
        u = wrkpln->NormalU();
        v = wrkpln->NormalV();
    } else {
        oops();
    }
}
double GraphicsWindow::ParametricCurve::LengthForAuto(void) {
    if(isLine) {
        // Allow a third of the line to disappear with auto radius
        return (p1.Minus(p0)).Magnitude() / 3;
    } else {
        // But only a twentieth of the arc; shorter means fewer numerical
        // problems since the curve is more linear over shorter sections.
        return (fabs(dtheta)*r)/20;
    }
}
Vector GraphicsWindow::ParametricCurve::PointAt(double t) {
    if(isLine) {
        return p0.Plus((p1.Minus(p0)).ScaledBy(t));
    } else {
        double theta = theta0 + dtheta*t;
        return p0.Plus(u.ScaledBy(r*cos(theta)).Plus(v.ScaledBy(r*sin(theta))));
    }
}
Vector GraphicsWindow::ParametricCurve::TangentAt(double t) {
    if(isLine) {
        return p1.Minus(p0);
    } else {
        double theta = theta0 + dtheta*t;
        Vector t =  u.ScaledBy(-r*sin(theta)).Plus(v.ScaledBy(r*cos(theta)));
        t = t.ScaledBy(dtheta);
        return t;
    }
}
hRequest GraphicsWindow::ParametricCurve::CreateRequestTrimmedTo(double t,
    bool extraConstraints, hEntity orig, hEntity arc, bool arcFinish)
{
    hRequest hr;
    Entity *e;
    if(isLine) {
        hr = SS.GW.AddRequest(Request::LINE_SEGMENT, false),
        e = SK.GetEntity(hr.entity(0));
        SK.GetEntity(e->point[0])->PointForceTo(PointAt(t));
        SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
        ConstrainPointIfCoincident(e->point[0]);
        ConstrainPointIfCoincident(e->point[1]);
        if(extraConstraints) {
            Constraint::Constrain(Constraint::PT_ON_LINE,
                hr.entity(1), Entity::NO_ENTITY, orig);
        }
        Constraint::Constrain(Constraint::ARC_LINE_TANGENT,
            Entity::NO_ENTITY, Entity::NO_ENTITY,
            arc, e->h, arcFinish, false);
    } else {
        hr = SS.GW.AddRequest(Request::ARC_OF_CIRCLE, false),
        e = SK.GetEntity(hr.entity(0));
        SK.GetEntity(e->point[0])->PointForceTo(p0);
        if(dtheta > 0) {
            SK.GetEntity(e->point[1])->PointForceTo(PointAt(t));
            SK.GetEntity(e->point[2])->PointForceTo(PointAt(1));
        } else {
            SK.GetEntity(e->point[2])->PointForceTo(PointAt(t));
            SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
        }
        ConstrainPointIfCoincident(e->point[0]);
        ConstrainPointIfCoincident(e->point[1]);
        ConstrainPointIfCoincident(e->point[2]);
        // The tangency constraint alone is enough to fully constrain it,
        // so there's no need for more.
        Constraint::Constrain(Constraint::CURVE_CURVE_TANGENT,
            Entity::NO_ENTITY, Entity::NO_ENTITY,
            arc, e->h, arcFinish, (dtheta < 0));
    }
    return hr;
}

//-----------------------------------------------------------------------------
// If a point in the same group as hpt, and numerically coincident with hpt,
// happens to exist, then constrain that point coincident to hpt.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::ConstrainPointIfCoincident(hEntity hpt) {
    Entity *e, *pt;
    pt = SK.GetEntity(hpt);
    Vector ev, ptv;
    ptv = pt->PointGetNum();

    for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
        if(e->h.v == pt->h.v) continue;
        if(!e->IsPoint()) continue;
        if(e->group.v != pt->group.v) continue;
        if(e->workplane.v != pt->workplane.v) continue;

        ev = e->PointGetNum();
        if(!ev.Equals(ptv)) continue;

        Constraint::ConstrainCoincident(hpt, e->h);
        break;
    }
}

//-----------------------------------------------------------------------------
// A single point must be selected when this function is called. We find two
// non-construction line segments that join at this point, and create a
// tangent arc joining them.
//-----------------------------------------------------------------------------
void GraphicsWindow::MakeTangentArc(void) {
    if(!LockedInWorkplane()) {
        Error("Must be sketching in workplane to create tangent "
              "arc.");
        return;
    }

    // The point corresponding to the vertex to be rounded.
    Vector pshared = SK.GetEntity(gs.point[0])->PointGetNum();
    ClearSelection();

    // First, find two requests (that are not construction, and that are
    // in our group and workplane) that generate entities that have an
    // endpoint at our vertex to be rounded.
    int i, c = 0;
    Entity *ent[2];
    Request *req[2];
    hRequest hreq[2];
    hEntity hent[2];
    bool pointf[2];
    for(i = 0; i < SK.request.n; i++) {
        Request *r = &(SK.request.elem[i]);
        if(r->group.v != activeGroup.v) continue;
        if(r->workplane.v != ActiveWorkplane().v) continue;
        if(r->construction) continue;
        if(r->type != Request::LINE_SEGMENT &&
           r->type != Request::ARC_OF_CIRCLE)
        {
            continue;
        }

        Entity *e = SK.GetEntity(r->h.entity(0));
        Vector ps = e->EndpointStart(),
               pf = e->EndpointFinish();

        if(ps.Equals(pshared) || pf.Equals(pshared)) {
            if(c < 2) {
                // We record the entity and request and their handles,
                // and whether the vertex to be rounded is the start or
                // finish of this entity.
                ent[c] = e;
                hent[c] = e->h;
                req[c] = r;
                hreq[c] = r->h;
                pointf[c] = (pf.Equals(pshared));
            }
            c++;
        }
    }
    if(c != 2) {
        Error("To create a tangent arc, select a point where two "
              "non-construction lines or cicles in this group and "
              "workplane join.");
        return;
    }

    Entity *wrkpl = SK.GetEntity(ActiveWorkplane());
    Vector wn = wrkpl->Normal()->NormalN();

    // Based on these two entities, we make the objects that we'll use to
    // numerically find the tangent arc.
    ParametricCurve pc[2];
    pc[0].MakeFromEntity(ent[0]->h, pointf[0]);
    pc[1].MakeFromEntity(ent[1]->h, pointf[1]);

    // And thereafter we mustn't touch the entity or req ptrs,
    // because the new requests/entities we add might force a
    // realloc.
    memset(ent, 0, sizeof(ent));
    memset(req, 0, sizeof(req));

    Vector pinter;
    double r = 0.0, vv = 0.0;
    // We now do Newton iterations to find the tangent arc, and its positions
    // t back along the two curves, starting from shared point of the curves
    // at t = 0. Lots of iterations helps convergence, and this is still
    // ~10 ms for everything.
    int iters = 1000;
    double t[2] = { 0, 0 }, tp[2];
    for(i = 0; i < iters + 20; i++) {
        Vector p0 = pc[0].PointAt(t[0]),
               p1 = pc[1].PointAt(t[1]),
               t0 = pc[0].TangentAt(t[0]),
               t1 = pc[1].TangentAt(t[1]);

        pinter = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
                                               p1, p1.Plus(t1),
                                               NULL, NULL, NULL);

        // The sign of vv determines whether shortest distance is
        // clockwise or anti-clockwise.
        Vector v = (wn.Cross(t0)).WithMagnitude(1);
        vv = t1.Dot(v);

        double dot = (t0.WithMagnitude(1)).Dot(t1.WithMagnitude(1));
        double theta = acos(dot);

        if(SS.tangentArcManual) {
            r = SS.tangentArcRadius;
        } else {
            r = 200/scale;
            // Set the radius so that no more than one third of the
            // line segment disappears.
            r = min(r, pc[0].LengthForAuto()*tan(theta/2));
            r = min(r, pc[1].LengthForAuto()*tan(theta/2));;
        }
        // We are source-stepping the radius, to improve convergence. So
        // ramp that for most of the iterations, and then do a few at
        // the end with that constant for polishing.
        if(i < iters) {
            r *= 0.1 + 0.9*i/((double)iters);
        }

        // The distance from the intersection of the lines to the endpoint
        // of the arc, along each line.
        double el = r/tan(theta/2);

        // Compute the endpoints of the arc, for each curve
        Vector pa0 = pinter.Plus(t0.WithMagnitude(el)),
               pa1 = pinter.Plus(t1.WithMagnitude(el));

        tp[0] = t[0];
        tp[1] = t[1];

        // And convert those points to parameter values along the curve.
        t[0] += (pa0.Minus(p0)).DivPivoting(t0);
        t[1] += (pa1.Minus(p1)).DivPivoting(t1);
    }

    // Stupid check for convergence, and for an out of range result (as
    // we would get, for example, if the line is too short to fit the
    // rounding arc).
    if(fabs(tp[0] - t[0]) > 1e-3 || fabs(tp[1] - t[1]) > 1e-3 ||
        t[0] < 0.01 || t[1] < 0.01 ||
        t[0] > 0.99 || t[1] > 0.99 ||
        isnan(t[0]) || isnan(t[1]))
    {
        Error("Couldn't round this corner. Try a smaller radius, or try "
              "creating the desired geometry by hand with tangency "
              "constraints.");
        return;
    }

    // Compute the location of the center of the arc
    Vector center = pc[0].PointAt(t[0]),
           v0inter = pinter.Minus(center);
    int a, b;
    if(vv < 0) {
        a = 1; b = 2;
        center = center.Minus(v0inter.Cross(wn).WithMagnitude(r));
    } else {
        a = 2; b = 1;
        center = center.Plus(v0inter.Cross(wn).WithMagnitude(r));
    }

    SS.UndoRemember();

    hRequest harc = AddRequest(Request::ARC_OF_CIRCLE, false);
    Entity *earc = SK.GetEntity(harc.entity(0));
    hEntity hearc = earc->h;

    SK.GetEntity(earc->point[0])->PointForceTo(center);
    SK.GetEntity(earc->point[a])->PointForceTo(pc[0].PointAt(t[0]));
    SK.GetEntity(earc->point[b])->PointForceTo(pc[1].PointAt(t[1]));

    earc = NULL;

    pc[0].CreateRequestTrimmedTo(t[0], !SS.tangentArcDeleteOld,
                hent[0], hearc, (b == 1));
    pc[1].CreateRequestTrimmedTo(t[1], !SS.tangentArcDeleteOld,
                hent[1], hearc, (a == 1));

    // Now either make the original entities construction, or delete them
    // entirely, according to user preference.
    Request *re;
    SK.request.ClearTags();
    for(re = SK.request.First(); re; re = SK.request.NextAfter(re)) {
        if(re->h.v == hreq[0].v || re->h.v == hreq[1].v) {
            if(SS.tangentArcDeleteOld) {
                re->tag = 1;
            } else {
                re->construction = true;
            }
        }
    }
    if(SS.tangentArcDeleteOld) {
        DeleteTaggedRequests();
    }

    SS.ScheduleGenerateAll();
}

hEntity GraphicsWindow::SplitLine(hEntity he, Vector pinter) {
    // Save the original endpoints, since we're about to delete this entity.
    Entity *e01 = SK.GetEntity(he);
    hEntity hep0 = e01->point[0], hep1 = e01->point[1];
    Vector p0 = SK.GetEntity(hep0)->PointGetNum(),
           p1 = SK.GetEntity(hep1)->PointGetNum();

    // Add the two line segments this one gets split into.
    hRequest r0i = AddRequest(Request::LINE_SEGMENT, false),
             ri1 = AddRequest(Request::LINE_SEGMENT, false);
    // Don't get entities till after adding, realloc issues

    Entity *e0i = SK.GetEntity(r0i.entity(0)),
           *ei1 = SK.GetEntity(ri1.entity(0));

    SK.GetEntity(e0i->point[0])->PointForceTo(p0);
    SK.GetEntity(e0i->point[1])->PointForceTo(pinter);
    SK.GetEntity(ei1->point[0])->PointForceTo(pinter);
    SK.GetEntity(ei1->point[1])->PointForceTo(p1);

    ReplacePointInConstraints(hep0, e0i->point[0]);
    ReplacePointInConstraints(hep1, ei1->point[1]);
    Constraint::ConstrainCoincident(e0i->point[1], ei1->point[0]);
    return e0i->point[1];
}

hEntity GraphicsWindow::SplitCircle(hEntity he, Vector pinter) {
    Entity *circle = SK.GetEntity(he);
    if(circle->type == Entity::CIRCLE) {
        // Start with an unbroken circle, split it into a 360 degree arc.
        Vector center = SK.GetEntity(circle->point[0])->PointGetNum();

        circle = NULL; // shortly invalid!
        hRequest hr = AddRequest(Request::ARC_OF_CIRCLE, false);

        Entity *arc = SK.GetEntity(hr.entity(0));

        SK.GetEntity(arc->point[0])->PointForceTo(center);
        SK.GetEntity(arc->point[1])->PointForceTo(pinter);
        SK.GetEntity(arc->point[2])->PointForceTo(pinter);

        Constraint::ConstrainCoincident(arc->point[1], arc->point[2]);
        return arc->point[1];
    } else {
        // Start with an arc, break it in to two arcs
        hEntity hc = circle->point[0],
                hs = circle->point[1],
                hf = circle->point[2];
        Vector center = SK.GetEntity(hc)->PointGetNum(),
               start  = SK.GetEntity(hs)->PointGetNum(),
               finish = SK.GetEntity(hf)->PointGetNum();

        circle = NULL; // shortly invalid!
        hRequest hr0 = AddRequest(Request::ARC_OF_CIRCLE, false),
                 hr1 = AddRequest(Request::ARC_OF_CIRCLE, false);

        Entity *arc0 = SK.GetEntity(hr0.entity(0)),
               *arc1 = SK.GetEntity(hr1.entity(0));

        SK.GetEntity(arc0->point[0])->PointForceTo(center);
        SK.GetEntity(arc0->point[1])->PointForceTo(start);
        SK.GetEntity(arc0->point[2])->PointForceTo(pinter);

        SK.GetEntity(arc1->point[0])->PointForceTo(center);
        SK.GetEntity(arc1->point[1])->PointForceTo(pinter);
        SK.GetEntity(arc1->point[2])->PointForceTo(finish);

        ReplacePointInConstraints(hs, arc0->point[1]);
        ReplacePointInConstraints(hf, arc1->point[2]);
        Constraint::ConstrainCoincident(arc0->point[2], arc1->point[1]);
        return arc0->point[2];
    }
}

hEntity GraphicsWindow::SplitCubic(hEntity he, Vector pinter) {
    // Save the original endpoints, since we're about to delete this entity.
    Entity *e01 = SK.GetEntity(he);
    SBezierList sbl = {};
    e01->GenerateBezierCurves(&sbl);

    hEntity hep0 = e01->point[0],
            hep1 = e01->point[3+e01->extraPoints],
            hep0n = Entity::NO_ENTITY, // the new start point
            hep1n = Entity::NO_ENTITY, // the new finish point
            hepin = Entity::NO_ENTITY; // the intersection point

    // The curve may consist of multiple cubic segments. So find which one
    // contains the intersection point.
    double t;
    int i, j;
    for(i = 0; i < sbl.l.n; i++) {
        SBezier *sb = &(sbl.l.elem[i]);
        if(sb->deg != 3) oops();

        sb->ClosestPointTo(pinter, &t, false);
        if(pinter.Equals(sb->PointAt(t))) {
            // Split that segment at the intersection.
            SBezier b0i, bi1, b01 = *sb;
            b01.SplitAt(t, &b0i, &bi1);

            // Add the two cubic segments this one gets split into.
            hRequest r0i = AddRequest(Request::CUBIC, false),
                     ri1 = AddRequest(Request::CUBIC, false);
            // Don't get entities till after adding, realloc issues

            Entity *e0i = SK.GetEntity(r0i.entity(0)),
                   *ei1 = SK.GetEntity(ri1.entity(0));

            for(j = 0; j <= 3; j++) {
                SK.GetEntity(e0i->point[j])->PointForceTo(b0i.ctrl[j]);
            }
            for(j = 0; j <= 3; j++) {
                SK.GetEntity(ei1->point[j])->PointForceTo(bi1.ctrl[j]);
            }

            Constraint::ConstrainCoincident(e0i->point[3], ei1->point[0]);
            if(i == 0) hep0n = e0i->point[0];
            hep1n = ei1->point[3];
            hepin = e0i->point[3];
        } else {
            hRequest r = AddRequest(Request::CUBIC, false);
            Entity *e = SK.GetEntity(r.entity(0));

            for(j = 0; j <= 3; j++) {
                SK.GetEntity(e->point[j])->PointForceTo(sb->ctrl[j]);
            }

            if(i == 0) hep0n = e->point[0];
            hep1n = e->point[3];
        }
    }

    sbl.Clear();

    ReplacePointInConstraints(hep0, hep0n);
    ReplacePointInConstraints(hep1, hep1n);
    return hepin;
}

hEntity GraphicsWindow::SplitEntity(hEntity he, Vector pinter) {
    Entity *e = SK.GetEntity(he);
    int entityType = e->type;

    hEntity ret;
    if(e->IsCircle()) {
        ret = SplitCircle(he, pinter);
    } else if(e->type == Entity::LINE_SEGMENT) {
        ret = SplitLine(he, pinter);
    } else if(e->type == Entity::CUBIC || e->type == Entity::CUBIC_PERIODIC) {
        ret = SplitCubic(he, pinter);
    } else {
        Error("Couldn't split this entity; lines, circles, or cubics only.");
        return Entity::NO_ENTITY;
    }

    // Finally, delete the request that generated the original entity.
    int reqType = EntReqTable::GetRequestForEntity(entityType);
    SK.request.ClearTags();
    for(int i = 0; i < SK.request.n; i++) {
        Request *r = &(SK.request.elem[i]);
        if(r->group.v != activeGroup.v) continue;
        if(r->type != reqType) continue;

        // If the user wants to keep the old entities around, they can just
        // mark them construction first.
        if(he.v == r->h.entity(0).v && !r->construction) {
            r->tag = 1;
            break;
        }
    }
    DeleteTaggedRequests();

    return ret;
}

void GraphicsWindow::SplitLinesOrCurves(void) {
    if(!LockedInWorkplane()) {
        Error("Must be sketching in workplane to split.");
        return;
    }

    GroupSelection();
    if(!(gs.n == 2 &&(gs.lineSegments +
                      gs.circlesOrArcs +
                      gs.cubics +
                      gs.periodicCubics) == 2))
    {
        Error("Select two entities that intersect each other (e.g. two lines "
              "or two circles or a circle and a line).");
        return;
    }

    hEntity ha = gs.entity[0],
            hb = gs.entity[1];
    Entity *ea = SK.GetEntity(ha),
           *eb = SK.GetEntity(hb);

    // Compute the possibly-rational Bezier curves for each of these entities
    SBezierList sbla, sblb;
    sbla = {};
    sblb = {};
    ea->GenerateBezierCurves(&sbla);
    eb->GenerateBezierCurves(&sblb);
    // and then compute the points where they intersect, based on those curves.
    SPointList inters = {};
    sbla.AllIntersectionsWith(&sblb, &inters);

    if(inters.l.n > 0) {
        Vector pi = Vector::From(0, 0, 0);
        // If there's multiple points, then take the one closest to the
        // mouse pointer.
        double dmin = VERY_POSITIVE;
        SPoint *sp;
        for(sp = inters.l.First(); sp; sp = inters.l.NextAfter(sp)) {
            double d = ProjectPoint(sp->p).DistanceTo(currentMousePosition);
            if(d < dmin) {
                dmin = d;
                pi = sp->p;
            }
        }

        SS.UndoRemember();
        hEntity hia = SplitEntity(ha, pi),
                hib = SplitEntity(hb, pi);
        // SplitEntity adds the coincident constraints to join the split halves
        // of each original entity; and then we add the constraint to join
        // the two entities together at the split point.
        if(hia.v && hib.v) {
            Constraint::ConstrainCoincident(hia, hib);
        }
    } else {
        Error("Can't split; no intersection found.");
    }

    // All done, clean up and regenerate.
    inters.Clear();
    sbla.Clear();
    sblb.Clear();
    ClearSelection();
    SS.ScheduleGenerateAll();
}