1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*-----------------------------------------------------------------------------
* Some sample code for slvs.dll. We draw some geometric entities, provide
* initial guesses for their positions, and then constrain them. The solver
* calculates their new positions, in order to satisfy the constraints.
*
* Copyright 2008-2013 Jonathan Westhues.
*---------------------------------------------------------------------------*/
#ifdef WIN32
# include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <slvs.h>
static Slvs_System sys;
static void *CheckMalloc(size_t n)
{
void *r = malloc(n);
if(!r) {
printf("out of memory!\n");
exit(-1);
}
return r;
}
/*-----------------------------------------------------------------------------
* An example of a constraint in 3d. We create a single group, with some
* entities and constraints.
*---------------------------------------------------------------------------*/
void Example3d()
{
/* This will contain a single group, which will arbitrarily number 1. */
Slvs_hGroup g = 1;
/* A point, initially at (x y z) = (10 10 10) */
sys.param[sys.params++] = Slvs_MakeParam(1, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(2, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(3, g, 10.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3);
/* and a second point at (20 20 20) */
sys.param[sys.params++] = Slvs_MakeParam(4, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(5, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(6, g, 20.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(102, g, 4, 5, 6);
/* and a line segment connecting them. */
sys.entity[sys.entities++] = Slvs_MakeLineSegment(200, g,
SLVS_FREE_IN_3D, 101, 102);
/* The distance between the points should be 30.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
1, g,
SLVS_C_PT_PT_DISTANCE,
SLVS_FREE_IN_3D,
30.0,
101, 102, 0, 0);
/* Let's tell the solver to keep the second point as close to constant
* as possible, instead moving the first point. */
sys.dragged[0] = 4;
sys.dragged[1] = 5;
sys.dragged[2] = 6;
/* Now that we have written our system, we solve. */
Slvs_Solve(&sys, g);
if(sys.result == SLVS_RESULT_OKAY) {
printf("okay; now at (%.3f %.3f %.3f)\n"
" (%.3f %.3f %.3f)\n",
sys.param[0].val, sys.param[1].val, sys.param[2].val,
sys.param[3].val, sys.param[4].val, sys.param[5].val);
printf("%d DOF\n", sys.dof);
} else {
printf("solve failed");
}
}
/*-----------------------------------------------------------------------------
* An example of a constraint in 2d. In our first group, we create a workplane
* along the reference frame's xy plane. In a second group, we create some
* entities in that group and dimension them.
*---------------------------------------------------------------------------*/
void Example2d()
{
Slvs_hGroup g;
double qw, qx, qy, qz;
g = 1;
/* First, we create our workplane. Its origin corresponds to the origin
* of our base frame (x y z) = (0 0 0) */
sys.param[sys.params++] = Slvs_MakeParam(1, g, 0.0);
sys.param[sys.params++] = Slvs_MakeParam(2, g, 0.0);
sys.param[sys.params++] = Slvs_MakeParam(3, g, 0.0);
sys.entity[sys.entities++] = Slvs_MakePoint3d(101, g, 1, 2, 3);
/* and it is parallel to the xy plane, so it has basis vectors (1 0 0)
* and (0 1 0). */
Slvs_MakeQuaternion(1, 0, 0,
0, 1, 0, &qw, &qx, &qy, &qz);
sys.param[sys.params++] = Slvs_MakeParam(4, g, qw);
sys.param[sys.params++] = Slvs_MakeParam(5, g, qx);
sys.param[sys.params++] = Slvs_MakeParam(6, g, qy);
sys.param[sys.params++] = Slvs_MakeParam(7, g, qz);
sys.entity[sys.entities++] = Slvs_MakeNormal3d(102, g, 4, 5, 6, 7);
sys.entity[sys.entities++] = Slvs_MakeWorkplane(200, g, 101, 102);
/* Now create a second group. We'll solve group 2, while leaving group 1
* constant; so the workplane that we've created will be locked down,
* and the solver can't move it. */
g = 2;
/* These points are represented by their coordinates (u v) within the
* workplane, so they need only two parameters each. */
sys.param[sys.params++] = Slvs_MakeParam(11, g, 10.0);
sys.param[sys.params++] = Slvs_MakeParam(12, g, 20.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(301, g, 200, 11, 12);
sys.param[sys.params++] = Slvs_MakeParam(13, g, 20.0);
sys.param[sys.params++] = Slvs_MakeParam(14, g, 10.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(302, g, 200, 13, 14);
/* And we create a line segment with those endpoints. */
sys.entity[sys.entities++] = Slvs_MakeLineSegment(400, g,
200, 301, 302);
/* Now three more points. */
sys.param[sys.params++] = Slvs_MakeParam(15, g, 100.0);
sys.param[sys.params++] = Slvs_MakeParam(16, g, 120.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(303, g, 200, 15, 16);
sys.param[sys.params++] = Slvs_MakeParam(17, g, 120.0);
sys.param[sys.params++] = Slvs_MakeParam(18, g, 110.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(304, g, 200, 17, 18);
sys.param[sys.params++] = Slvs_MakeParam(19, g, 115.0);
sys.param[sys.params++] = Slvs_MakeParam(20, g, 115.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(305, g, 200, 19, 20);
/* And arc, centered at point 303, starting at point 304, ending at
* point 305. */
sys.entity[sys.entities++] = Slvs_MakeArcOfCircle(401, g, 200, 102,
303, 304, 305);
/* Now one more point, and a distance */
sys.param[sys.params++] = Slvs_MakeParam(21, g, 200.0);
sys.param[sys.params++] = Slvs_MakeParam(22, g, 200.0);
sys.entity[sys.entities++] = Slvs_MakePoint2d(306, g, 200, 21, 22);
sys.param[sys.params++] = Slvs_MakeParam(23, g, 30.0);
sys.entity[sys.entities++] = Slvs_MakeDistance(307, g, 200, 23);
/* And a complete circle, centered at point 306 with radius equal to
* distance 307. The normal is 102, the same as our workplane. */
sys.entity[sys.entities++] = Slvs_MakeCircle(402, g, 200,
306, 102, 307);
/* The length of our line segment is 30.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
1, g,
SLVS_C_PT_PT_DISTANCE,
200,
30.0,
301, 302, 0, 0);
/* And the distance from our line segment to the origin is 10.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
2, g,
SLVS_C_PT_LINE_DISTANCE,
200,
10.0,
101, 0, 400, 0);
/* And the line segment is vertical. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
3, g,
SLVS_C_VERTICAL,
200,
0.0,
0, 0, 400, 0);
/* And the distance from one endpoint to the origin is 15.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
4, g,
SLVS_C_PT_PT_DISTANCE,
200,
15.0,
301, 101, 0, 0);
#if 0
/* And same for the other endpoint; so if you add this constraint then
* the sketch is overconstrained and will signal an error. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
5, g,
SLVS_C_PT_PT_DISTANCE,
200,
18.0,
302, 101, 0, 0);
#endif /* 0 */
/* The arc and the circle have equal radius. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
6, g,
SLVS_C_EQUAL_RADIUS,
200,
0.0,
0, 0, 401, 402);
/* The arc has radius 17.0 units. */
sys.constraint[sys.constraints++] = Slvs_MakeConstraint(
7, g,
SLVS_C_DIAMETER,
200,
17.0*2,
0, 0, 401, 0);
/* If the solver fails, then ask it to report which constraints caused
* the problem. */
sys.calculateFaileds = 1;
/* And solve. */
Slvs_Solve(&sys, g);
if(sys.result == SLVS_RESULT_OKAY) {
printf("solved okay\n");
printf("line from (%.3f %.3f) to (%.3f %.3f)\n",
sys.param[7].val, sys.param[8].val,
sys.param[9].val, sys.param[10].val);
printf("arc center (%.3f %.3f) start (%.3f %.3f) finish (%.3f %.3f)\n",
sys.param[11].val, sys.param[12].val,
sys.param[13].val, sys.param[14].val,
sys.param[15].val, sys.param[16].val);
printf("circle center (%.3f %.3f) radius %.3f\n",
sys.param[17].val, sys.param[18].val,
sys.param[19].val);
printf("%d DOF\n", sys.dof);
} else {
int i;
printf("solve failed: problematic constraints are:");
for(i = 0; i < sys.faileds; i++) {
printf(" %d", sys.failed[i]);
}
printf("\n");
if(sys.result == SLVS_RESULT_INCONSISTENT) {
printf("system inconsistent\n");
} else {
printf("system nonconvergent\n");
}
}
}
int main()
{
sys.param = CheckMalloc(50*sizeof(sys.param[0]));
sys.entity = CheckMalloc(50*sizeof(sys.entity[0]));
sys.constraint = CheckMalloc(50*sizeof(sys.constraint[0]));
sys.failed = CheckMalloc(50*sizeof(sys.failed[0]));
sys.faileds = 50;
/*Example3d();*/
for(;;) {
Example2d();
sys.params = sys.constraints = sys.entities = 0;
break;
}
return 0;
}
|