File: main-override-static.c

package info (click to toggle)
solvespace 3.1%2Bds1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,960 kB
  • sloc: cpp: 122,491; ansic: 11,375; javascript: 1,919; sh: 89; xml: 44; makefile: 25
file content (385 lines) | stat: -rw-r--r-- 9,648 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdint.h>

#include <mimalloc.h>
#include <mimalloc-override.h>  // redefines malloc etc.


static void double_free1();
static void double_free2();
static void corrupt_free();
static void block_overflow1();
static void invalid_free();
static void test_aslr(void);
static void test_process_info(void);
static void test_reserved(void);
static void negative_stat(void);
static void alloc_huge(void);
static void test_heap_walk(void);

int main() {
  mi_version();
  mi_stats_reset();
  // detect double frees and heap corruption
  // double_free1();
  // double_free2();
  // corrupt_free();
  // block_overflow1();
  // test_aslr();
  // invalid_free();
  // test_reserved();
  // negative_stat();
  // alloc_huge();
  test_heap_walk();
  
  void* p1 = malloc(78);
  void* p2 = malloc(24);
  free(p1);
  p1 = mi_malloc(8);
  char* s = strdup("hello\n");
  free(p2);
  
  p2 = malloc(16);
  p1 = realloc(p1, 32);
  free(p1);
  free(p2);
  free(s);
  
  /* now test if override worked by allocating/freeing across the api's*/
  //p1 = mi_malloc(32);
  //free(p1);
  //p2 = malloc(32);
  //mi_free(p2);
  
  //mi_collect(true);
  //mi_stats_print(NULL);
  
  // test_process_info();
  return 0;
}

static void invalid_free() {
  free((void*)0xBADBEEF);
  realloc((void*)0xBADBEEF,10);
}

static void block_overflow1() {
  uint8_t* p = (uint8_t*)mi_malloc(17);
  p[18] = 0;
  free(p);
}

// The double free samples come ArcHeap [1] by Insu Yun (issue #161)
// [1]: https://arxiv.org/pdf/1903.00503.pdf

static void double_free1() {
  void* p[256];
  //uintptr_t buf[256];

  p[0] = mi_malloc(622616);
  p[1] = mi_malloc(655362);
  p[2] = mi_malloc(786432);
  mi_free(p[2]);
  // [VULN] Double free
  mi_free(p[2]);
  p[3] = mi_malloc(786456);
  // [BUG] Found overlap
  // p[3]=0x429b2ea2000 (size=917504), p[1]=0x429b2e42000 (size=786432)
  fprintf(stderr, "p3: %p-%p, p1: %p-%p, p2: %p\n", p[3], (uint8_t*)(p[3]) + 786456, p[1], (uint8_t*)(p[1]) + 655362, p[2]);
}

static void double_free2() {
  void* p[256];
  //uintptr_t buf[256];
  // [INFO] Command buffer: 0x327b2000
  // [INFO] Input size: 182
  p[0] = malloc(712352);
  p[1] = malloc(786432);
  free(p[0]);
  // [VULN] Double free
  free(p[0]);
  p[2] = malloc(786440);
  p[3] = malloc(917504);
  p[4] = malloc(786440);
  // [BUG] Found overlap
  // p[4]=0x433f1402000 (size=917504), p[1]=0x433f14c2000 (size=786432)
  fprintf(stderr, "p1: %p-%p, p2: %p-%p\n", p[4], (uint8_t*)(p[4]) + 917504, p[1], (uint8_t*)(p[1]) + 786432);
}


// Try to corrupt the heap through buffer overflow
#define N   256
#define SZ  64

static void corrupt_free() {
  void* p[N];
  // allocate
  for (int i = 0; i < N; i++) {
    p[i] = malloc(SZ);
  }
  // free some
  for (int i = 0; i < N; i += (N/10)) {
    free(p[i]);
    p[i] = NULL;
  }
  // try to corrupt the free list
  for (int i = 0; i < N; i++) {
    if (p[i] != NULL) {
      memset(p[i], 0, SZ+8);
    }
  }
  // allocate more.. trying to trigger an allocation from a corrupted entry
  // this may need many allocations to get there (if at all)
  for (int i = 0; i < 4096; i++) {
    malloc(SZ);
  }
}

static void test_aslr(void) {
  void* p[256];
  p[0] = malloc(378200);
  p[1] = malloc(1134626);
  printf("p1: %p, p2: %p\n", p[0], p[1]);
}

static void test_process_info(void) {
  size_t elapsed = 0;
  size_t user_msecs = 0;
  size_t system_msecs = 0;
  size_t current_rss = 0;
  size_t peak_rss = 0;
  size_t current_commit = 0;
  size_t peak_commit = 0;
  size_t page_faults = 0;  
  for (int i = 0; i < 100000; i++) {
    void* p = calloc(100,10);
    free(p);
  }
  mi_process_info(&elapsed, &user_msecs, &system_msecs, &current_rss, &peak_rss, &current_commit, &peak_commit, &page_faults);
  printf("\n\n*** process info: elapsed %3zd.%03zd s, user: %3zd.%03zd s, rss: %zd b, commit: %zd b\n\n", elapsed/1000, elapsed%1000, user_msecs/1000, user_msecs%1000, peak_rss, peak_commit);
}

static void test_reserved(void) {
#define KiB 1024ULL
#define MiB (KiB*KiB)
#define GiB (MiB*KiB)
  mi_reserve_os_memory(4*GiB, false, true);
  void* p1 = malloc(100);
  void* p2 = malloc(100000);
  void* p3 = malloc(2*GiB);
  void* p4 = malloc(1*GiB + 100000);
  free(p1);
  free(p2);
  free(p3);
  p3 = malloc(1*GiB);
  free(p4);
}



static void negative_stat(void) {
  int* p = mi_malloc(60000);
  mi_stats_print_out(NULL, NULL);
  *p = 100;
  mi_free(p);
  mi_stats_print_out(NULL, NULL);  
}

static void alloc_huge(void) {
  void* p = mi_malloc(67108872);
  mi_free(p);
}

static bool test_visit(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) {
  if (block == NULL) {
    printf("visiting an area with blocks of size %zu (including padding)\n", area->full_block_size);
  }
  else {
    printf("  block of size %zu (allocated size is %zu)\n", block_size, mi_usable_size(block));
  }
  return true;
}

static void test_heap_walk(void) {
  mi_heap_t* heap = mi_heap_new();
  //mi_heap_malloc(heap, 2097152);
  mi_heap_malloc(heap, 2067152);
  mi_heap_malloc(heap, 2097160);
  mi_heap_malloc(heap, 24576);
  mi_heap_visit_blocks(heap, true, &test_visit, NULL);
}

// ----------------------------
// bin size experiments
// ------------------------------

#if 0
#include <stdint.h>
#include <stdbool.h>

#define MI_INTPTR_SIZE 8
#define MI_LARGE_WSIZE_MAX (4*1024*1024 / MI_INTPTR_SIZE)

#define MI_BIN_HUGE 100
//#define MI_ALIGN2W

// Bit scan reverse: return the index of the highest bit.
static inline uint8_t mi_bsr32(uint32_t x);

#if defined(_MSC_VER)
#include <windows.h>
#include <intrin.h>
static inline uint8_t mi_bsr32(uint32_t x) {
  uint32_t idx;
  _BitScanReverse((DWORD*)&idx, x);
  return idx;
}
#elif defined(__GNUC__) || defined(__clang__)
static inline uint8_t mi_bsr32(uint32_t x) {
  return (31 - __builtin_clz(x));
}
#else
static inline uint8_t mi_bsr32(uint32_t x) {
  // de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
  static const uint8_t debruijn[32] = {
     31,  0, 22,  1, 28, 23, 18,  2, 29, 26, 24, 10, 19,  7,  3, 12,
     30, 21, 27, 17, 25,  9,  6, 11, 20, 16,  8,  5, 15,  4, 14, 13,
  };
  x |= x >> 1;
  x |= x >> 2;
  x |= x >> 4;
  x |= x >> 8;
  x |= x >> 16;
  x++;
  return debruijn[(x*0x076be629) >> 27];
}
#endif

/*
// Bit scan reverse: return the index of the highest bit.
uint8_t _mi_bsr(uintptr_t x) {
  if (x == 0) return 0;
  #if MI_INTPTR_SIZE==8
  uint32_t hi = (x >> 32);
  return (hi == 0 ? mi_bsr32((uint32_t)x) : 32 + mi_bsr32(hi));
  #elif MI_INTPTR_SIZE==4
  return mi_bsr32(x);
  #else
  # error "define bsr for non-32 or 64-bit platforms"
  #endif
}
*/


static inline size_t _mi_wsize_from_size(size_t size) {
  return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}

// Return the bin for a given field size.
// Returns MI_BIN_HUGE if the size is too large.
// We use `wsize` for the size in "machine word sizes",
// i.e. byte size == `wsize*sizeof(void*)`.
extern inline uint8_t _mi_bin8(size_t size) {
  size_t wsize = _mi_wsize_from_size(size);
  uint8_t bin;
  if (wsize <= 1) {
    bin = 1;
  }
#if defined(MI_ALIGN4W)
  else if (wsize <= 4) {
    bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
  }
#elif defined(MI_ALIGN2W)
  else if (wsize <= 8) {
    bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
  }
#else
  else if (wsize <= 8) {
    bin = (uint8_t)wsize;
  }
#endif
  else if (wsize > MI_LARGE_WSIZE_MAX) {
    bin = MI_BIN_HUGE;
  }
  else {
#if defined(MI_ALIGN4W)
    if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
#endif
    wsize--;
    // find the highest bit
    uint8_t b = mi_bsr32((uint32_t)wsize);
    // and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
    // - adjust with 3 because we use do not round the first 8 sizes
    //   which each get an exact bin
    bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3;
  }
  return bin;
}

static inline uint8_t _mi_bin4(size_t size) {
  size_t wsize = _mi_wsize_from_size(size);
  uint8_t bin;
  if (wsize <= 1) {
    bin = 1;
  }
#if defined(MI_ALIGN4W)
  else if (wsize <= 4) {
    bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
  }
#elif defined(MI_ALIGN2W)
  else if (wsize <= 8) {
    bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
  }
#else
  else if (wsize <= 8) {
    bin = (uint8_t)wsize;
  }
#endif
  else if (wsize > MI_LARGE_WSIZE_MAX) {
    bin = MI_BIN_HUGE;
  }
  else {
    uint8_t b = mi_bsr32((uint32_t)wsize);
    bin = ((b << 1) + (uint8_t)((wsize >> (b - 1)) & 0x01)) + 3;
  }
  return bin;
}

static size_t _mi_binx4(size_t bsize) {
  if (bsize==0) return 0;
  uint8_t b = mi_bsr32((uint32_t)bsize);
  if (b <= 1) return bsize;
  size_t bin = ((b << 1) | (bsize >> (b - 1))&0x01);
  return bin;
}

static size_t _mi_binx8(size_t bsize) {
  if (bsize<=1) return bsize;
  uint8_t b = mi_bsr32((uint32_t)bsize);
  if (b <= 2) return bsize;
  size_t bin = ((b << 2) | (bsize >> (b - 2))&0x03) - 5;
  return bin;
}

static void mi_bins(void) {
  //printf("  QNULL(1), /* 0 */ \\\n  ");
  size_t last_bin = 0;
  size_t min_bsize = 0;
  size_t last_bsize = 0;
  for (size_t bsize = 1; bsize < 2*1024; bsize++) {
    size_t size = bsize * 64 * 1024;
    size_t bin = _mi_binx8(bsize);
    if (bin != last_bin) {
      printf("min bsize: %6zd, max bsize: %6zd, bin: %6zd\n", min_bsize, last_bsize, last_bin);
      //printf("QNULL(%6zd), ", wsize);
      //if (last_bin%8 == 0) printf("/* %i */ \\\n  ", last_bin);
      last_bin = bin;
      min_bsize = bsize;
    }
    last_bsize = bsize;
  }
}
#endif