File: test-stress.c

package info (click to toggle)
solvespace 3.1%2Bds1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 15,960 kB
  • sloc: cpp: 122,491; ansic: 11,375; javascript: 1,919; sh: 89; xml: 44; makefile: 25
file content (345 lines) | stat: -rw-r--r-- 10,044 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license.
-----------------------------------------------------------------------------*/

/* This is a stress test for the allocator, using multiple threads and
   transferring objects between threads. It tries to reflect real-world workloads:
   - allocation size is distributed linearly in powers of two
   - with some fraction extra large (and some extra extra large)
   - the allocations are initialized and read again at free
   - pointers transfer between threads
   - threads are terminated and recreated with some objects surviving in between
   - uses deterministic "randomness", but execution can still depend on
     (random) thread scheduling. Do not use this test as a benchmark!
*/

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>

// > mimalloc-test-stress [THREADS] [SCALE] [ITER]
//
// argument defaults
static int THREADS = 32;      // more repeatable if THREADS <= #processors
static int SCALE   = 25;      // scaling factor
static int ITER    = 50;      // N full iterations destructing and re-creating all threads

// static int THREADS = 8;    // more repeatable if THREADS <= #processors
// static int SCALE   = 100;  // scaling factor

#define STRESS   // undefine for leak test

static bool   allow_large_objects = true;    // allow very large objects?
static size_t use_one_size = 0;              // use single object size of `N * sizeof(uintptr_t)`?


// #define USE_STD_MALLOC
#ifdef USE_STD_MALLOC
#define custom_calloc(n,s)    malloc(n*s)
#define custom_realloc(p,s)   realloc(p,s)
#define custom_free(p)        free(p)
#else
#include <mimalloc.h>
#define custom_calloc(n,s)    mi_malloc(n*s)
#define custom_realloc(p,s)   mi_realloc(p,s)
#define custom_free(p)        mi_free(p)
#endif

// transfer pointer between threads
#define TRANSFERS     (1000)
static volatile void* transfer[TRANSFERS];


#if (UINTPTR_MAX != UINT32_MAX)
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
#else
const uintptr_t cookie = 0x1ce4e5b9UL;
#endif

static void* atomic_exchange_ptr(volatile void** p, void* newval);

typedef uintptr_t* random_t;

static uintptr_t pick(random_t r) {
  uintptr_t x = *r;
#if (UINTPTR_MAX > UINT32_MAX)
  // by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
  x ^= x >> 30;
  x *= 0xbf58476d1ce4e5b9UL;
  x ^= x >> 27;
  x *= 0x94d049bb133111ebUL;
  x ^= x >> 31;
#else
  // by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
  x ^= x >> 16;
  x *= 0x7feb352dUL;
  x ^= x >> 15;
  x *= 0x846ca68bUL;
  x ^= x >> 16;
#endif
  *r = x;
  return x;
}

static bool chance(size_t perc, random_t r) {
  return (pick(r) % 100 <= perc);
}

static void* alloc_items(size_t items, random_t r) {
  if (chance(1, r)) {
    if (chance(1, r) && allow_large_objects) items *= 10000;       // 0.01% giant
    else if (chance(10, r) && allow_large_objects) items *= 1000;  // 0.1% huge
    else items *= 100;                                             // 1% large objects;
  }
  if (items == 40) items++;              // pthreads uses that size for stack increases
  if (use_one_size > 0) items = (use_one_size / sizeof(uintptr_t));
  if (items==0) items = 1;
  uintptr_t* p = (uintptr_t*)custom_calloc(items,sizeof(uintptr_t));
  if (p != NULL) {
    for (uintptr_t i = 0; i < items; i++) {
      p[i] = (items - i) ^ cookie;
    }
  }
  return p;
}

static void free_items(void* p) {
  if (p != NULL) {
    uintptr_t* q = (uintptr_t*)p;
    uintptr_t items = (q[0] ^ cookie);
    for (uintptr_t i = 0; i < items; i++) {
      if ((q[i] ^ cookie) != items - i) {
        fprintf(stderr, "memory corruption at block %p at %zu\n", p, i);
        abort();
      }
    }
  }
  custom_free(p);
}


static void stress(intptr_t tid) {
  //bench_start_thread();
  uintptr_t r = ((tid + 1) * 43); // rand();
  const size_t max_item_shift = 5; // 128
  const size_t max_item_retained_shift = max_item_shift + 2;
  size_t allocs = 100 * ((size_t)SCALE) * (tid % 8 + 1); // some threads do more
  size_t retain = allocs / 2;
  void** data = NULL;
  size_t data_size = 0;
  size_t data_top = 0;
  void** retained = (void**)custom_calloc(retain,sizeof(void*));
  size_t retain_top = 0;

  while (allocs > 0 || retain > 0) {
    if (retain == 0 || (chance(50, &r) && allocs > 0)) {
      // 50%+ alloc
      allocs--;
      if (data_top >= data_size) {
        data_size += 100000;
        data = (void**)custom_realloc(data, data_size * sizeof(void*));
      }
      data[data_top++] = alloc_items(1ULL << (pick(&r) % max_item_shift), &r);
    }
    else {
      // 25% retain
      retained[retain_top++] = alloc_items( 1ULL << (pick(&r) % max_item_retained_shift), &r);
      retain--;
    }
    if (chance(66, &r) && data_top > 0) {
      // 66% free previous alloc
      size_t idx = pick(&r) % data_top;
      free_items(data[idx]);
      data[idx] = NULL;
    }
    if (chance(25, &r) && data_top > 0) {
      // 25% exchange a local pointer with the (shared) transfer buffer.
      size_t data_idx = pick(&r) % data_top;
      size_t transfer_idx = pick(&r) % TRANSFERS;
      void* p = data[data_idx];
      void* q = atomic_exchange_ptr(&transfer[transfer_idx], p);
      data[data_idx] = q;
    }
  }
  // free everything that is left
  for (size_t i = 0; i < retain_top; i++) {
    free_items(retained[i]);
  }
  for (size_t i = 0; i < data_top; i++) {
    free_items(data[i]);
  }
  custom_free(retained);
  custom_free(data);
  //bench_end_thread();
}

static void run_os_threads(size_t nthreads, void (*entry)(intptr_t tid));

static void test_stress(void) {
  uintptr_t r = rand();
  for (int n = 0; n < ITER; n++) {
    run_os_threads(THREADS, &stress);    
    for (int i = 0; i < TRANSFERS; i++) {
      if (chance(50, &r) || n + 1 == ITER) { // free all on last run, otherwise free half of the transfers
        void* p = atomic_exchange_ptr(&transfer[i], NULL);
        free_items(p);
      }
    }
    #ifndef NDEBUG
    //mi_collect(false);
    //mi_debug_show_arenas();
    #endif    
    #if !defined(NDEBUG) || defined(MI_TSAN)
    if ((n + 1) % 10 == 0) { printf("- iterations left: %3d\n", ITER - (n + 1)); }
    #endif
  }
}

#ifndef STRESS
static void leak(intptr_t tid) {
  uintptr_t r = rand();
  void* p = alloc_items(1 /*pick(&r)%128*/, &r);
  if (chance(50, &r)) {
    intptr_t i = (pick(&r) % TRANSFERS);
    void* q = atomic_exchange_ptr(&transfer[i], p);
    free_items(q);
  }
}

static void test_leak(void) {
  for (int n = 0; n < ITER; n++) {
    run_os_threads(THREADS, &leak);
    mi_collect(false);
#ifndef NDEBUG
    if ((n + 1) % 10 == 0) { printf("- iterations left: %3d\n", ITER - (n + 1)); }
#endif
  }
}
#endif

int main(int argc, char** argv) {  
  // > mimalloc-test-stress [THREADS] [SCALE] [ITER]
  if (argc >= 2) {
    char* end;
    long n = strtol(argv[1], &end, 10);
    if (n > 0) THREADS = n;
  }
  if (argc >= 3) {
    char* end;
    long n = (strtol(argv[2], &end, 10));
    if (n > 0) SCALE = n;
  }
  if (argc >= 4) {
    char* end;
    long n = (strtol(argv[3], &end, 10));
    if (n > 0) ITER = n;
  }
  printf("Using %d threads with a %d%% load-per-thread and %d iterations\n", THREADS, SCALE, ITER);
  //mi_reserve_os_memory(1024*1024*1024ULL, false, true);
  //int res = mi_reserve_huge_os_pages(4,1);
  //printf("(reserve huge: %i\n)", res);

  //bench_start_program();

  // Run ITER full iterations where half the objects in the transfer buffer survive to the next round.
  srand(0x7feb352d);
  
  //mi_reserve_os_memory(512ULL << 20, true, true);

#if !defined(NDEBUG) && !defined(USE_STD_MALLOC)
  mi_stats_reset();
#endif

#ifdef STRESS
  test_stress();
#else
  test_leak();
#endif

#ifndef USE_STD_MALLOC
  #ifndef NDEBUG
  mi_collect(true);
  //mi_debug_show_arenas();
  #endif
  mi_stats_print(NULL);
#endif
  //bench_end_program();
  return 0;
}


static void (*thread_entry_fun)(intptr_t) = &stress;

#ifdef _WIN32

#include <Windows.h>

static DWORD WINAPI thread_entry(LPVOID param) {
  thread_entry_fun((intptr_t)param);
  return 0;
}

static void run_os_threads(size_t nthreads, void (*fun)(intptr_t)) {
  thread_entry_fun = fun;
  DWORD* tids = (DWORD*)custom_calloc(nthreads,sizeof(DWORD));
  HANDLE* thandles = (HANDLE*)custom_calloc(nthreads,sizeof(HANDLE));
  for (uintptr_t i = 0; i < nthreads; i++) {
    thandles[i] = CreateThread(0, 8*1024, &thread_entry, (void*)(i), 0, &tids[i]);
  }
  for (size_t i = 0; i < nthreads; i++) {
    WaitForSingleObject(thandles[i], INFINITE);
  }
  for (size_t i = 0; i < nthreads; i++) {
    CloseHandle(thandles[i]);
  }
  custom_free(tids);
  custom_free(thandles);
}

static void* atomic_exchange_ptr(volatile void** p, void* newval) {
#if (INTPTR_MAX == INT32_MAX)
  return (void*)InterlockedExchange((volatile LONG*)p, (LONG)newval);
#else
  return (void*)InterlockedExchange64((volatile LONG64*)p, (LONG64)newval);
#endif
}
#else

#include <pthread.h>

static void* thread_entry(void* param) {
  thread_entry_fun((uintptr_t)param);
  return NULL;
}

static void run_os_threads(size_t nthreads, void (*fun)(intptr_t)) {
  thread_entry_fun = fun;
  pthread_t* threads = (pthread_t*)custom_calloc(nthreads,sizeof(pthread_t));
  memset(threads, 0, sizeof(pthread_t) * nthreads);
  //pthread_setconcurrency(nthreads);
  for (size_t i = 0; i < nthreads; i++) {
    pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
  }
  for (size_t i = 0; i < nthreads; i++) {
    pthread_join(threads[i], NULL);
  }
  custom_free(threads);
}

#ifdef __cplusplus
#include <atomic>
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
  return std::atomic_exchange((volatile std::atomic<void*>*)p, newval);
}
#else
#include <stdatomic.h>
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
  return atomic_exchange((volatile _Atomic(void*)*)p, newval);
}
#endif

#endif